Расчет отопления по объему помещения: Расчет отопления по объему помещения

Содержание

Как посчитать необходимое количество секций радиатора?

Как посчитать необходимое количество секций радиатора?

Радиаторы отопления — это самый распространенный отопительный прибор, который устанавливается в жилых помещениях. При выборе радиаторов необходимо в первую очередь обращать внимание на технические показатели. Грамотно выполненный расчет количества секций радиаторов позволяет установить наиболее комфортный микроклимат в помещении любого типа. Именно поэтому следует отнестись к проектированию отопления с особенным вниманием.

Как посчитать, необходимое количество секций радиатора?
Самые простые методики расчета дают примерный результат. Их можно использовать, если помещение стандартного типа.
Существует несколько вариантов расчета:
1.По объему
2.По площади помещения

Расчет количества секций радиаторов отопления по объему:
Чаще всего используется значение, рекомендованное СНиП, для домов панельного типа на 1 м3 объема требуется 41 Вт тепловой мощности.


Если у Вас квартира в современном доме, со стеклопакетами, утепленными наружными стенами и откосами из гипсокартона, то для расчета уже используется значение тепловой мощности 34вт на 1куб.метр объема.
Пример расчета количества секций:
Комната 4*5м, высота потолка 2,65м
Объем комнаты 4*5*2,65=53 м3 умножаем на 41вт. Итого, требуемая тепловая мощность для обогрева: 2173Вт.
Исходя из полученных данных, не трудно рассчитать количество секций радиаторов. Для этого необходимо знать теплоотдачу одной секции, выбранного Вами радиатора.
Допустим:
Биметаллический радиатор AS-500C BiMetal мощность теплоотдачи секции 170 ВТ.

Итого: 2173 Вт делим на теплоотдачу одной секции 170Вт, получаем 2173Вт/170Вт=12,78 секций. Округляем в сторону целого числа, и получаем 12 или 14 секций.
В ассортименте ТМ I-TECH представлены радиаторы с уже подготовленным количеством секций от 5 до 14. Некоторые продавцы предлагают услугу по сборке радиаторов с необходимым числом секций, то есть для нашего примера — 13. Но это уже будет не заводская сборка и гарантия на такое соединение от производителя теряется.
Этот метод, как и следующий является приблизительным.

Расчет количества секций радиаторов отопления по площади помещения


Является актуальным для высоты потолков помещения 2,45-2,6 метра. Принимается равным, что для обогрева 1кв.метра площади достаточно 100Вт.
То есть для комнаты 18 кв. метров, требуется 18кв.м*100Вт=1800Вт тепловой мощности.
Делим на теплоотдачу одной секции: 1800Вт/170Вт=10,59, то есть 11 секций.
В какую сторону лучше округлить результаты расчетов?
Комната угловая или с балконом, то к расчетам добавляем 20%
Если батарея будет устанавливаться за экраном или в нишу, то потери тепла могут достигать 15-20%
Но в то же время, для кухни, можно смело округлить в меньшую сторону, до 10 секций.
Кроме того, на кухне, очень часто монтируется электрический теплый пол. А это минимум 120 Вт с одного квадратного метра, обогреваемого теплым полом.
Если же помещение обладает «нестандартными» характеристиками (чрезмерно большие окна, выход на чердак или в подвал, угловое помещение), то при расчетах стоит использовать коэффициенты, которые позволяют учесть имеющиеся «нестандартные» условия.


Точный расчет количества секций радиаторов
Определяем требуемую тепловую мощность радиатора по формуле:
Qт= 100ватт/м2 х S(помещения)м2 х q1 х q2 х q3 х q4 х q5 х q6 х q7;
если рассчитывать количество радиаторов для комнаты с теми же размерами но учетом корректирующих коэффициентов (к примеру комната имеет тройной стеклопакет, качественную теплоизоляцию, мин. температура снаружи не ниже -15 С, сверху отапливаемое помещение)

Qт= 100/м2 х 18м2 х 0,85 х 0,85 х 0,9 х 0,8 ,
Итого потребуется с учетом всех коэффициентов тепловая мощность для обогрева помещения 936,36 ВТ
делим на мощность секции 170 Вт , и получим 6 секций.


Калькулятор расчета мощности конвектора по площади помещения

Подобрать конвектор по параметрам

Стены

Общая длина внешних (холодных) стен помещения м

Высота стены м

Количество слоев материала наружних стен 1 2 3 4 5

Тип материала:

Слой 1 ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло
Толщина слоя м

Слой 2 ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло

Толщина слоя м

Слой 3 ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло

Толщина слоя м

Слой 4 ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло

Толщина слоя м

Слой 5 ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло

Толщина слоя м

Остекление

Пол

Кровля

0 Вт Тепловая мощность конвектора

Подберите модель

Расчет мощности конвектора: полезные таблицы и формулы

При проектировании системы отопления в квартире или доме важно определить необходимую мощность теплового оборудования.

Для этого нужно знать площадь помещения, высоту потолков, количество внешних стен и окон для применения повышающего коэффициента. Если высота потолков в доме – около 2,7 м, вы легко произведете расчет мощности конвекторов по площади. Согласно нормам СНиП 41-01-2003, 1 кВт тепловой энергии достаточно для обогрева 10 кв. м помещения.

Как рассчитать мощность конвекторов по площади?

В соответствии со строительными нормами номинальная мощность конвектора для комнаты 25 кв. м составит:

(25 кв. м : 10 кв. м) * 1 кВт = 2,5 кВт

или

25 кв. м * 0,1 кВт = 2,5 кВт

Полученный результат приведен без учета особенностей помещения. Для повышения точности вычислений учтите следующие факторы:

  • расположение конвектора под окном снижает теплоотдачу, поэтому для компенсации тепловых потерь выбирайте оборудование на 5 – 10 % мощнее;
  • если окна занимают большую площадь стены (панорамные, французские), а также выходят на север и северо-восток, при расчетах увеличьте результат на 15 %;
  • угловое расположение помещения требует увеличения мощности на 20 %, а при наличии в такой комнате 2 окон полученный результат повышают на 30 %.

Сделать расчеты наиболее точными вам поможет таблица повышающих коэффициентов

:

Особенность помещения Коэффициент
Отсутствие утепления стен 1,1
Установка конвектора под окном 1,05
Монтаж конвектора в угловом помещении с 1 окном 1,2
Монтаж конвектора в угловом помещении с 2 окнами 1,3
Наличие однослойных стеклопакетов 0,9
Высота потолков от 2,8 до 3 м 1,05

Произведем расчет мощности электрического конвектора отопления для угловой комнаты с двумя внешними стенами и площадью 18 кв. м:

(18 кв. м * 0,1 кВт) * 1,2 = 2,16 кВт

В некоторых регионах при расчете учитывают климатические особенности, но в средней полосе России погодный коэффициент равен 1,0.

Расчет мощности конвектора по объему помещения

Согласно положениям СП 60.13330.2012, для обогрева помещений с очень высокими и низкими потолками необходимо 41 Вт на 1 куб. м объема. Зная длину, ширину комнаты и высоту потолка, вы сможете рассчитать мощность отопления на калькуляторе по формуле:

abc * 0,041 кВт,

где abc – формула расчета объема;

0,041 кВт – норматив тепловой энергии.

Рассчитаем мощность конвектора для комнаты 3х4 м с потолками 2 м:

(3*4*2) * 0,041 = 0,984 кВт

Для обогрева такой комнаты потребуется конвектор мощностью 1 кВт (без учета повышающих коэффициентов).

Стальные радиаторы отопления.

Расчет мощности стальных радиаторов отопления с учетом площади помещения и теплопотерь.

Все про стальные радиаторы отопления: расчет мощности (таблица), определение с учетом теплопотерь, процентное увеличение и вычисление по площади помещения, а также как подобрать панельные батареи.

От того, насколько правильно и грамотно был произведен расчет мощности стального радиатора, настолько же можно ожидать от него тепла.

В данном случае нужно учесть, чтобы совпали технические параметры отопительной системы и обогревателя.

Расчет по площади помещения

Чтобы теплоотдача стальных радиаторов была максимальной, можно воспользоваться расчетом их мощностей, исходя из размера комнаты.

Если взять в качестве примера помещение с площадью 15 м2 и потолками высотой 3 м, то, высчитав его объем (15х3=45) и умножив на количество требуемых Вт (по СНиП – 41 Вт/м3 для панельных домов и 34 Вт/ м3 для кирпичных), то получится, что потребляемая мощность равна 1845 Вт (панельное здание) или 1530 Вт (кирпичное).

После этого достаточно проследить, чтобы расчет мощности стальных радиаторов отопления (можно свериться с таблицей, которую предоставляет производитель) соответствовал полученным параметрам. Например, при покупке обогревателя типа 22 нужно отдать предпочтение конструкции, имеющей высоту 500 мм, а длину 900 мм, которой свойственна мощность 1851 Вт.

Если предстоит замена старых батарей на новые или переустройство всей отопительной системы, то следует тщательно ознакомиться с требованиями СНиП. Это избавит от возможных недочетов и нарушений при монтажных работах.

Стальные радиаторы отопления: расчет мощности (таблица)

Определение мощности с учетом теплопотерь

Кроме показателей, связанных с материалом, из которого построен многоквартирный дом и указанных в СНиП, в расчетах можно использовать температурные параметры воздуха на улице. Этот способ основан на учете теплопотерь в помещении.

Для каждой климатической зоны определен коэффициент в соответствии с холодными температурами:

  • при -10 ° C – 0. 7;
  • — 15 ° C – 0.9;
  • при — 20 ° C – 1.1;
  • — 25 ° C – 1.3;
  • до — 30 ° C – 1.5.

Теплоотдача стальных радиаторов отопления (таблица предоставляется фирмой-производителем) должна быть определена с учетом количества наружных стен. Так если в комнате она одна, то результат, полученный при расчете стальных радиаторов отопления по площади, нужно умножить на коэффициент 1.1, если их две или три, то он равен 1.2 или 1.3.

Например, если температура за окном – 25 ° C, то при расчете стального радиатора типа 22 и требуемой мощностью 1845 Вт (панельный дом) в помещении, где 2 наружные стены, получится следующий результат:

  • 1845х1.2х1.3 = 2878.2 Вт. Этому показателю соответствуют панельные конструкции 22-го типа 500 мм высоты и 1400 мм длины, имеющие мощность 2880 Вт.

Так подбираются панельные радиаторы отопления (расчет по площади с учетом коэффициента теплопотерь). Подобный подход к выбору мощности панельной батареи обеспечит максимально эффективную ее работу.

Чтобы было легче произвести расчет стальных радиаторов отопления по площади, калькулятор онлайн сделает это в считанные секунды, достаточно внести в него необходимые параметры.

Процентное увеличение мощности

Можно учитывать теплопотери не только по стенам, но и окнам.

Например, прежде чем выбирать стальной радиатор отопления, расчет по площади нужно увеличить на определенное количество процентов в зависимости от количества окон в помещении:

  1. При наличии двух наружных стен и одного окна показатель увеличивается на 20%.
  2. Если и окон, и стен, выходящих наружу по два, то прибавляется 30%.
  3. Когда стены внутренние, но окно выходит на север, то на 10%.
  4. Если квартира расположена внутри дома, а обогреватели закрыты решетками, то теплоотдача стальных панельных радиаторов должна быть увеличена на 15%.

Учет подобных нюансов перед установкой панельных батарей из стали позволяет правильно выбрать нужную модель. Это сэкономит средства на ее эксплуатации при максимальной теплоотдаче.

Поэтому не следует думать только о том, как подобрать стальные радиаторы отопления по площади помещения, но и учитывать его теплопотери и даже расположение окон. Такой комплексный подход позволяет учесть все факторы, влияющие на температуру в квартире или доме.

Как рассчитать количество батарей для отопления для вашей квартиры

Расчет необходимого количества радиаторов отопления для обогрева помещения производится для каждой комнаты отдельно. Или, в том случае, если комнаты соединены проёмом, дверь между ними постоянно открыта, при расчёте они принимаются за одно помещение. А вот как рассчитать количество секций батарей – узнайте из статьи на нашем сайте.

Расчет количества радиаторов отопления на комнату

Примерный расчёт количества секций радиаторов отопления можно произвести по объему помещения, исходя из того, что на 1 куб. м объема нужно 34 Вт мощности батареи. Например, комната площадью 20 кв. м и с высотой потолка 2,5 м имеет объем 50 куб. м. Значит, для нее нужна суммарная мощность батарей отопления 50 * 34 = 1,7 кВт.

Расчет количества секций радиатора

Мощность 8-секционного радиатора Warmica Lux – 1,48 кВт, 10-секционного – 1,85 кВт. Придётся брать 10-секционный: лучше в тепле, чем в холоде!

Более точный расчет радиаторов отопления по площади производят с учётом множества коэффициентов. Формула расчета количества радиаторов отопления в этом случае выглядит следующим образом:

P=100*S*k1*k2*k3*k4*k5*k6*k7, где

P – суммарная мощность радиаторов, необходимых для обогрева помещения, в Ваттах;

S – площадь помещения в кв. метрах;

Чем больше комната, тем больше секций радиатора отопления нужно для ее обогрева

k1 – коэффициент, вносящий поправку на качество остекления окон, для обычного пакета в два стекла

k1=1,27,

для двойного стеклопакета k1=1,

для тройного k1=0,85;

k2 – коэффициент, характеризующий качество теплоизоляции стен. Для стены в два кирпича принимается равным 1,

для стены с худшей теплоизоляцией – 1,27,

с лучшей теплоизоляцией – 0,85;

Выбирайте радиатор нужной мощности!

k3 – коэффициент, характеризующий отношение площади окон к площади пола в помещении. При отношении Sокон/Sпола= 0,5 k3=1,2ж

при Sокон/Sпола= 0,4 k3=1,1;

при Sокон/Sпола= 0,3 k3=1,0;

при Sокон/Sпола= 0,2 k3=0,9;

при Sокон/Sпола= 0,1 k3=0,8.

k4 – вводит поправку на климатический пояс. Если средняя температура самой холодной недели года в зоне размещения постройки составляет – 35°С, то k4 принимается равным 1,5;

Чем ниже температуры за окном, тем мощнее должен быть радиатор!

если самая холодная температура -25°С, то k4= 1,3;

если -20°С, то k4= 1,1;

если -15°C, то k4= 0,9;

если – 10°С, то k4= 0,7:

k5 вводит поправку на количество стен в помещении, выходящих наружу.

Если одна стена является наружной, то k5=1,1;

если две стены, то k5=1,2;

если три стены, то k5=1,3;

если 4 стены, то k5=1,4.

Радиатор в угловой комнате должен быть мощнее

k6 учитывает тип помещения, находящегося выше обогреваемой комнаты. Если это холодный чердак, то

k6 принимается равным 1;

если отапливаемый чердак, то k6 = 0,9;

если отапливаемое жилое помещение, то k6=0,7.

Коэффициент k7 вводит поправку на высоту потолка. Его надо выбрать из расположенной ниже таблицы:

Высота потолка, м2,53,03,54,04,5
k71,01,051,101,151,20

Но, как понимает читатель, в стандартной квартире с пластиковыми окнами расчет производится элементарным образом: площадь комнаты перемножается на 100 и получается потребная мощность в Ваттах. То есть, для рассмотренной выше комнаты площадью 20 кв. м необходимы батареи общей мощностью 2 кВт. Это немного больше, чем было получено при расчете по объёму, но разница не критична.

В комнате с высоким потолком радиатор должен быть мощнее

Как рассчитать количество батарей отопления в режиме online

Торгующие организации берегут клиентов от лишних умственных усилий и помещают на своих сайтах калькуляторы расчета количества радиаторов отопления. Работа с ними напоминает игру: знай, вводи параметры помещения (площадь, количество наружных стен, размеры окон и т.д.) и получай готовый результат.

Чугунные радиаторы по-прежнему пользуются большой популярностью

На сайте компании «Термал» калькулятор рассчитать количество батарей отопления позволяет даже для разных типов батарей. Впрочем, меняются не характеристики помещения и не количество потребных на его обогрев ватт, а мощность 1 секции радиатора.

Так, если делать расчет количества биметаллических радиаторов отопления, то мощность одной секции принимается равной 220 Вт;

Биметаллические радиаторы имеют растущую популярность

если делать расчет количества радиаторов отопления чугунных, то средняя мощность секции принимается 250 Вт;

если делать расчет количества алюминиевых радиаторов отопления, то средняя мощность секции принимается 180 Вт.

Алюминиевые радиаторы парового отопления привлекательны своей дешевизной

Конечно же, заказчик может скорректировать мощность секции в соответствии с паспортными данными приобретаемого оборудования и более точно рассчитать количество батарей на комнату.

Чтобы самая лютая стужа была нипочём! Расчет радиаторов отопления

Вы просматриваете раздел Расчет, расположенный в большом разделе Установка.

Тщательно продуманная система отопления дома — одна из важнейших задач при строительстве и последующем усовершенствовании жилищных условий, поскольку комфортная температура в помещении не только залог уюта, но и важное условие для человеческой жизни.

Расчёт и подбор необходимо совершать в зависимости от ряда условий, таких как материал радиатора, обогреваемой площади, климатических условий региона и др. Для корректного монтажа отопительной системы можно обратиться к профессионалам, а можно осуществить этот процесс с помощью своих умений и навыков.

Замеры для определения радиаторов отопления

Определение параметров отопления в квартире должно начинаться с получения необходимых данных, снятых путём замера.

Этими данными являются: длина комнаты, ширина комнаты, площадь комнаты, количество внешних стен, высота потолков, количество, дверей, количество окон, площадь каждого из окон.

Определение параметров батарей в зависимости от различных факторов

На расчет радиаторов отопления оказывают влияние множество факторов.

По площади жилого пространства

Приняв искомый параметр как Q, расчёт представляет собой формулу:

Q = S×100 Вт (1), где

S ? площадь пространства, для которого производится подсчёт радиатора, м2;

100 Вт ? величина, принимаемая нормативно, означающая количество тепла, необходимое для 1 м2 жилой площади.

Особенности вычислений с применением уточняющих множителей

Уточняющие множители для этого расчёта ? коэффициенты, учитывающие конструкционные особенности расчётного жилья.

Определение Q с их использованием позволит наиболее точно определить тепловые расходы для каждого индивидуального случая.

Коэффициенты уточняют формулу (1) и приводят её к следующему виду:

Q=S×100Вт×α×β×γ×δ×ε×ζ×η×θ (2), где

α — множитель, учитывающий количество внешних стен, которые увеличивают тепловые потери, принимается равным:

Величина α Кол-во стен
1,0 1
1,2 2
1,3 3
1,4 4

β — множитель, учитывающий степень естественной прогреваемости жилого пространства. Зависит от стороны света, на которую выходит окно. β принимается равным:

Величина β Сторона света
1,1 Север, Восток
1,0 Юг, Запад

γ — множитель, учитывающий местные климатические условия. Зависит от средней минимальной температуры января. Значение уточняется по данным справочников или местной гидрометеослужбы. γ принимается равным:

Величина γ Температура
0,7 до -10°С
0,9 до -15°С
1,1 до -20°С
1,3 от -20°С до -35°С
1,5 от -35°С и ниже

Фото 1. Потери тепла в частном доме. Их нужно учитывать при установке отопительных радиаторов.

δ — множитель, учитывающий наличие стенового утеплителя помещений. δ принимается равным:

Величина δ Уровень утепления
0,85 Высокий
1,0 Средний
1,27 Низкий

ε — множитель, зависящий от высоты потолков жилья. ε принимается равным:

Величина ε Высота потолка
1,0 до 2,7 м
1,05 от 2,8 м до 3,0 м
1,1 от 3,1 м до 3,5 м
1,15 от 3,6 м до 4,0 м
1,2 свыше 4,1 м

ζ — множитель, учитывающий потерю тепла, за счёт помещения, находящегося над расчётным. ζ принимается равным:

Величина ζ Тип помещения сверху
0,8 Отапливаемое
0,9 Утеплённое
1,0 Неотапливаемое

η — множитель, использующий зависимость искомого значения от типа окна, установленного в помещении. η принимается равным:

Величина η Тип окна, стеклопакет
0,85 Трехкамерный
1,0 Двухкамерный
1,27 Рамы двойные обычные

Фото 2. Однокамерные, двухкамерные и трехкамерные стеклопакеты. Тип окна влияет на количество устанавливаемых радиаторов.

θ — множитель, учитывающий при расчёте процентное соотношение площади окна к площади пола. θ принимается равным:

Значение θ Отношение
0,8 10%
0,9 20%
1,0 30%
1,1 40%
1,2 50%

В зависимости от объёма помещения

Учёт объёма жилого пространства позволит получить более точные данные при вычислении отопительного прибора, и формула (1) примет вид:

Q=S×h×41 Вт (3), где

h — высота потолков комнаты, м;

41 Вт ? величина, принимаемая нормативно, означающая количество тепла, необходимое для 1 м3жилой площади.

Внимание! Потери тепла ? неминуемый минус при отоплении квартиры.

Формула расчета теплоотдачи радиаторных приборов для квартир

Теплорасчет для квартиры лучше всего выполнить с учётом общих потерь тепла по формуле:

ТПобщ = V×0,04×ТП0×n0×ТПд×nд (4), где

V — объем расчётного пространства, м3;

0,04 — нормативная величина потерь для 1 м3;

ТП0 — нормативная величина потерь от одного окна, ТП0 = 0,1 кВт;

n0— общее количество окон в квартире;

ТПд — нормативная величина от одной двери, ТПд = 0,2 кВт;

nд — количество дверей в квартире.

Общие теплопотери квартиры определяются также специальным прибором ? тепловизором, который при этом выполняет функцию поиска скрытых строительных дефектов и бракованных материалов.

Фото 3. Тепловизор от производителя Fluke. Прибор позволяет измерить температуру радиаторов отопления.

На общий расчёт также влияет мощность радиатора:

Рст = ТП0/1,5×k (5), где

Рст — мощность радиатора;

1,5 — коэффициент, учитывающий работу прибора при температуре от 50?С до 70?С;

k — коэффициент запаса, применяется равным:

Искомый k Тип жилья
1,2 Квартира
1,3 Частный дом
  • Особенности определения радиаторных приборов для многоэтажного дома

Вычисление проводится по формуле:

Q = S×80 Вт (6), где

80 Вт ? значение, принимаемое нормативно, означающее количество тепла, необходимое на 1 м2 жилой площади, начиная со второго этажа и выше.

Вам также будет интересно:

Вычисление количества радиаторных секций

Для вычисления количества секций радиатора также необходима особая формула.

По площади комнаты

В обеспечении необходимой теплоподачи помещения, одно из важных значений ? количество секций радиатора.

Корректно подобранное, оно обеспечит потребителя необходимым уровнем комфорта при неблагоприятных зимних температурах.

Определение количества секций по площади помещения ведётся по формуле:

nc = S×100 Вт/q0 (7), где

q0 — теплоотдача одной секции радиатора, данные технической документации, комплектующейся вместе с изделием.

По объёму дома

Применение расчёт по объёму позволит более точно определить необходимое количество секций:

nc = V×100 Вт/q0 (8)

  • Особенности определения мощности секции с поправочным коэффициентом:

Для определения поправочного коэффициента необходимо определить температурный напор системы отопления по формуле:

hт = (tвх-tвых/2)-tпом (9), где

tвх— температура на входе радиатора;

tвых — температура на выходе радиатора;

tпом — необходимая температура в помещении.

Следующий шаг ? нахождение поправочного коэффициента k, зависящего от полученного параметра hт по таблице:

hт k hт k hт k hт k
40 0,48 49 0,63 58 0,78 67 0,94
41 0,50 50 0,65 59 0,80 68 0,96
42 0,51 51 0,66 60 0,82 69 0,98
43 0,53 52 0,68 61 0,84 70 1,0
44 0,55 53 0,70 62 0,85 71 1,02
45 0,58 54 0,71 63 0,87 72 1,04
46 0,58 55 0,73 64 0,89 73 1,06
47 0,60 56 0,75 65 0,91 74 1,07
48 0,61 57 0,77 66 0,93 75 1,09

Заключительный этап ? находим параметр мощности секции по формуле:

qс = k×q0 (10).

Самое точное определение мощностного параметра системы отопления в кВт

?

Наиболее точное определение проводится по формуле (2) с учётом уточнённого теплового расчёта:

Мощность, кВт = ((Lд×Lш)×Hп)/2,7))/10 (11), где

Lд — длина комнаты;

Lш — ширина комнаты;

Hп — высота потолка.

Полезное видео

Посмотрите видео, в котором рассказывается, как рассчитать количество секций в батареях отопления.

Правильный расчёт прибора ? залог комфортной температуры

Правильный расчёт теплопотерь, например, через окна и двери, а также подбор радиаторов обеспечит успешное завершение ремонта и будет гарантировать постоянную нормированную температуру в помещении, а, следовательно, и хорошее самочувствие жителей. Серьёзный подход к процессу обеспечивает успех во всех начинаниях.

Правила расчета радиаторов отопления

Самая полная информация по теме: «правила расчета радиаторов отопления» с полным описанием и комментариями от профессионального мастера.

Правильный расчет количества секций батарей отопления

Очень важно купить современные качественные и эффективные батареи. Но куда важнее правильно произвести расчёт количества секций радиатора, чтобы в холодную пору он должным образом прогревал помещение и не пришлось думать об установке дополнительных переносных отопительных приборов, которые увеличат расход средств на отопление.

Сегодня можно назвать огромное количество СНиПов, которые описывают правила проектирования и эксплуатации отопительных систем в различных помещениях. Но наиболее понятным и простым является документ «Отопление, вентиляция и кондиционирование» под номером 2.04.05.

В нем подробно описаны следующие разделы:

  1. Общие положения, касающиеся проектирования систем отопления
  2. Правила проектирования систем отопления зданий
  3. Особенности прокладки труб отопительной системы

Монтировать радиаторы отопления необходимо также согласно СНиП под номером 3. 05.01. Он предписывает следующие правила монтажа, без которых произведенные расчеты количества секций окажутся малоэффективны:

  1. Максимальная ширина радиатора не должна превысить 70% от аналогичной характеристики оконного проема, под которым он устанавливается
  2. Радиатор должен крепиться по центру оконного проема (допускается незначительная погрешность – не более 2 см)
  3. Рекомендуемое пространство между радиаторами и стеной – 2-5 см
  4. Над полом высота не должны быть более 12 см
  5. Расстояние до подоконника от верхней точки батареи – не менее 5 см
  6. В иных случаях для улучшения теплоотдачи поверхность стен покрывают отражающим материалом

Нет тематического видео для этой статьи.

Видео (кликните для воспроизведения).

Следовать таким правилам необходимо для того, чтобы воздушные массы могли свободно циркулировать и сменять друг друга.

Читайте так же, наш сравнительный обзор различных видов радиаторов отопления

Чтобы точно произвести расчёт количества секций отопительного радиатора, необходимых для эффективного и комфортного отопления жилого помещения, следует принимать во внимания его объем. Принцип весьма прост:

  1. Определяем потребность тепла
  2. Узнаем количество секций, способных его отдавать

СНиП предписывает учитывать потребность в тепле для любого помещения – 41 Вт на 1 м. куб. Однако этот показатель весьма относителен. Если стены и пол плохо утеплены, это значение рекомендуют увеличить до 47-50 Вт, ведь часть тепла будет утрачиваться. В ситуациях, когда по поверхностям уже уложен качественный теплоизолятор, смонтированы качественные окна ПВХ и устранены сквозняки – данный показатель можно принять равным 30-34 Вт.

Если в комнате расположены экранированные радиаторы отопления, потребность в тепле необходимо увеличить до 20%. Часть тепловой нагретых воздушных масс не будет пропускаться экраном, циркулируя внутри и быстро остывая.

Формулы расчета количества секций по объему помещения, с примером

Определившись с потребностью на один куб, можно приступит к вычислениям (пример на конкретных цифрах):

  1. На первом шаге рассчитываем объем помещения по простой формуле: [высота]*[длина]*[ширина](3х4х5=60 куб м.)
  2. Следующий этап – определение потребности теплоты для конкретно рассматриваемого помещения по формуле: [объем]*[потребность на м. куб.](60х41=2460 Вт)
  3. В паспорте, прилагаемом к радиатору отопления, необходимо узнать мощность одной секции – средний показатель современных моделей 170 Вт
  4. Определить желаемое количество ребер можно по формуле: [общая потребность в тепле]/[мощность одной секции](2460/170=14.5)
  5. Округление рекомендуется делать в большую сторону – получаем 15 секций

Многие производители не учитывают, что теплоноситель, циркулирующий по трубам, имеет далеко не максимальную температуру. Следовательно, мощность ребер будет ниже, чем указанное предельное значение (именно ее прописывают в паспорте). Если нет минимального показателя мощности, значит имеющийся для упрощения расчетов занижают на 15-25%.

Предыдущий метод расчета – прекрасное решение для помещений, у которых высота более 2.7 м. В комнатах с более низкими потолками (до 2.6 м) можно воспользоваться другим способом, приняв за основу площадь.

В этом случае, рассчитывая общее количество тепловой энергии, потребность на один кв. м. берут равной 100 Вт. Каких-либо корректировок в него покуда вносить не требуется.

Формулы расчета количества секций по площади помещения, с примером

  1. На первом этапе определяется общая площадь помещения: [длина]* [ширина](5х4=20 кв. м.)
  2. Следующий шаг – определение тепла, необходимого для обогрева всего помещения: [площадь]* [потребность на м. кв.](100х20=2000 Вт)
  3. В паспорте, прилагаемом к радиатору отопления, необходимо узнать мощность одной секции – средний показатель современных моделей 170 Вт
  4. Для определения необходимого количества секций следует воспользоваться формулой: [общая потребность в тепле]/[мощность одной секции](2000/170=11.7)
  5. Вносим поправочные коэффициенты (рассмотрены далее)
  6. Округление рекомендуется делать в большую сторону – получаем 12 секций

Рассмотренные выше методы расчёта количества секций радиатора прекрасно подходят для помещений, высота которых достигает 3-х метров. Если этот показатель больше, необходимо увеличивать тепловую мощность прямо пропорционально росту высоты.

Если весь дом оснащен современными пластиковыми окнами, у которых коэффициент тепловых потерь максимально снижен – появляется возможность сэкономить и уменьшить полученный результат до 20%.

Считается, что стандартная температура теплоносителя, циркулирующего по отопительной системе – 70 градусов. Если она ниже этого значения, необходимо на каждые 10 градусов увеличивать полученный результат на 15%. Если выше – наоборот уменьшать.

Помещения, площадь которых более 25 кв. м. отопить одним радиатором, даже состоящим из двух десятков секций, будет крайне проблематично. Чтобы решить подобную проблему, необходимо вычисленное число секций поделить на две равные части и установить две батареи. Тепло в этом случае будет распространяться по комнате более равномерно.

Если в помещении два оконных проема, радиаторы отопления нужно размещать под каждым из них. Они должны быть по мощности в 1.7 раза больше номинальной, определенной при расчетах.

Купив штампованные радиаторы, у которых поделить секции нельзя, необходимо учитывать общую мощность изделия. Если ее недостаточно, следует подумать о покупке второй такой же батареи или чуть менее теплоемкой.

Очень многие факторы могут оказывать влияние на итоговый результат. Рассмотрим, в каких ситуациях необходимо вносить поправочные коэффициенты:

Нет тематического видео для этой статьи.
Видео (кликните для воспроизведения).
  • Окна с обычным остеклением – увеличивающий коэффициент 1.27
  • Недостаточная теплоизоляция стен – увеличивающий коэффициент 1.27
  • Более двух оконным проемов на помещение – увеличивающий коэффициент 1.75
  • Коллекторы с нижней разводкой – увеличивающий коэффициент 1.2
  • Запас в случае возникновения непредвиденных ситуаций – увеличивающий коэффициент 1.2
  • Применение улучшенных теплоизоляционных материалов – уменьшающий коэффициент 0.85
  • Установка качественных теплоизоляционных стеклопакетов – уменьшающий коэффициент 0.85

Количество вносимых поправок в расчет может быть огромным и зависит от каждой конкретной ситуации. Однако следует помнить, что уменьшать теплоотдачу радиатора отопления значительно легче, чем увеличить. Потому все округления делаются в большую сторону.

Если необходимо произвести максимально точный расчёт количества секций радиатора в сложном помещении – не стоит бояться обратиться к специалистам. Самые точные методы, которые описываются в специальной литературе, учитывают не только объем или площадь комнаты, но и температуру снаружи и изнутри, теплопроводность различных материалов, из которых построена коробка дома, и множество других факторов.

Безусловно, можно не бояться и набрасывать несколько ребер к полученному результату. Но и чрезмерное увеличение всех показателей может привести к неоправданным расходам, которые не сразу, порой и не всегда удается окупить.

Правильный расчёт секций радиаторов отопления — довольно важная задача для каждого домовладельца. Если будет использовано недостаточное количество секций, помещение не прогреется во время зимних холодов, а приобретение и эксплуатация слишком больших радиаторов повлечёт неоправданно высокие расходы на отопление.

Для стандартных помещений можно воспользоваться самыми простыми расчётами, однако иногда возникает необходимость учесть различные нюансы, чтобы получить максимально точный результат.

Для выполнения расчётов нужно знать определённые параметры

  • Габариты помещения, которое необходимо отопить;
  • Вид батареи, материал ее изготовления;
  • Мощность каждой секции или цельной батареи в зависимости от ее вида;
  • Максимально допустимое количество секций выбранной модели радиатора;

По материалу изготовления радиаторы разделяются так:

Материалы радиаторов отличаются своими характеристиками, что влияет на расчёты

Как рассчитать количество секций радиаторов отопления для комнаты

Произвести расчёты можно несколькими способы, в каждом из которых используются определённые параметры.

Предварительный расчёт можно сделать, ориентируясь на площадь помещения, для которого покупаются радиаторы. Это очень простое вычисление, которое подходит для комнат с низкими потолками (2,40-2,60 м). Согласно строительным нормам для обогрева понадобится 100 Вт тепловой мощности на каждый квадратный метр помещения.

Вычисляем количество тепла, которое понадобится для всей комнаты. Для этого площадь умножаем на 100 Вт, т. е. для комнаты в 20 кв. м расчётная тепловая мощность составит 2 000 Вт (20 кв. м*100 Вт) или 2 кВт.

Правильный расчёт радиаторов отопления необходим, чтобы гарантировать достаточное количество тепла в доме

Этот результат нужно разделить на теплоотдачу одной секции, указанную производителем. Например, если она равна 170 Вт, то в нашем случае необходимое количество секций радиатора будет составлять: 2 000 Вт/170 Вт = 11,76, т. е. 12, поскольку результат следует округлить до целого числа. Округление обычно осуществляется в сторону увеличения, однако для помещений, в которых теплопотери ниже среднего, например, для кухни, можно округлять в меньшую сторону.

Обязательно следует учесть возможные теплопотери в зависимости от конкретной ситуации. Разумеется, комната с балконом или расположенная в углу здания теряет тепло быстрее. В этом случае следует увеличить значение расчётной тепловой мощности для комнаты на 20%. Примерно на 15-20% стоит повысить расчеты, если планируется скрыть радиаторы за экраном или монтировать их в нишу.

А чтобы вам было удобнее считать онлайн, мы сделали для вас этот калькулятор:

Более точные данные можно получить, если сделать расчёт секций радиаторов отопления с учётом высоты потолка, т. е. по объёму помещения. Принцип здесь примерно такой же, как и в предыдущем случае. Сначала вычисляется общая потребность в тепле, затем рассчитывают количество секций радиаторов.

Если радиатор будет скрыт экраном, нужно увеличить потребность помещения в тепловой энергии на 15-20%

Согласно рекомендациям СНИП на обогрев каждого кубического метра жилого помещения в панельном доме необходим 41 Вт тепловой мощности. Умножив площадь комнаты на высоту потолка, получаем общий объём, который умножаем на это нормативное значение. Для квартир с современными стеклопакетами и наружным утеплением понадобится меньше тепла, всего 34 Вт на кубический метр.

Например, рассчитаем необходимое количество тепла для комнаты площадью 20 кв. м с потолком высотой 3 метра. Объём помещения составит 60 куб. м (20 кв. м*3 м). Расчетная тепловая мощность в этом случае будет равна 2 460 Вт (60 куб. м*41 Вт).

А как рассчитать количество радиаторов отопления? Для этого нужно разделить полученные данные на указанную производителем теплоотдачу одной секции. Если взять, как и в предыдущем примере, 170 Вт, то для комнаты будет нужно: 2 460 Вт / 170 Вт = 14,47, т. е. 15 секций радиатора.

Производители стремятся указывать завышенные показатели теплоотдачи своей продукции, предполагая, что температура теплоносителя в системе будет максимальной. В реальных условиях это требование соблюдается редко, поэтому следует ориентироваться на минимальные показатели теплоотдачи одной секции, которые отражены в паспорте изделия. Это сделает расчёты более реалистичными и точными.

К сожалению, далеко не каждая квартира может считаться стандартной. Ещё в большей степени это относится к частным жилым домам. Как же произвести расчёты с учётом индивидуальных условий их эксплуатации? Для это понадобится учесть множество различных факторов.

При расчёте количества секций отопления нужно учесть высоту потолка, количество и размеры окон, наличие утепления стен и т. п.

Особенность этого метода состоит в том, что при вычислении необходимого количества тепла используется ряд коэффициентов, учитывающих особенности конкретного помещения, способные повлиять на его способность сохранять или отдавать тепловую энергию.

Формула для расчетов выглядит так:

КТ=100 Вт/кв. м* П*К1*К2*К3*К4*К5*К6*К7, где

КТ — количество тепла, необходимого для конкретного помещения;
П — площадь комнаты, кв. м;
К1 — коэффициент, учитывающий остекление оконных проемов:

  • для окон с обычным двойным остеклением — 1,27;
  • для окон с двойным стеклопакетом — 1,0;
  • для окон с тройным стеклопакетом — 0,85.

К2 — коэффициент теплоизоляции стен:

  • низкая степень теплоизоляции — 1,27;
  • хорошая теплоизоляция (кладка в два кирпича или слой утеплителя) — 1,0;
  • высокая степень теплоизоляции — 0,85.

К3 — соотношение площади окон и пола в помещении:

К4 — коэффициент, позволяющий учесть среднюю температуру воздуха в самую холодную неделю года:

  • для -35 градусов — 1,5;
  • для -25 градусов — 1,3;
  • для -20 градусов — 1,1;
  • для -15 градусов — 0,9;
  • для -10 градусов — 0,7.

К5 — корректирует потребность в тепле с учетом количества наружных стен:

  • одна стена— 1,1;
  • две стены— 1,2;
  • три стены— 1,3;
  • четыре стены— 1,4.

К6 — учет типа помещения, которое расположено выше:

  • холодный чердак — 1,0;
  • отапливаемый чердак — 0,9;
  • отапливаемое жилое помещение — 0,8

К7 — коэффициент, учитывающий высоту потолков:

  • при 2,5 м — 1,0;
  • при 3,0 м — 1,05;
  • при 3,5 м — 1,1;
  • при 4,0 м — 1,15;
  • при 4,5 м — 1,2.

Остается полученный результат разделить на значение теплоотдачи одной секции радиатора и полученный результат округлить до целого числа.

При расчёте количества секций необходимо учесть и потери тепла. В доме тепло может уходить в довольно значительном количестве через стены и примыкания, пол и подвал, окна, кровлю, систему естественной вентиляции.

Причём можно и сэкономить, если утеплить откосы окон и дверей или лоджию, убрав по 1-2 секции, полотенцесушители и плита в кухне также позволяют убрать одну секцию радиатора. Использование камина и системы теплых полов, правильное утепление стен и пола сведет теплопотери к минимуму и также позволит уменьшить размер батареи.

Теплопотери обязательно нужно учесть при расчётах

Количество секций может меняться в зависимости от режима работы отопительной системы, а также от места расположения батарей и подключения системы в отопительный контур.

В частных домах используется автономное отопление, эта система эффективнее централизованной, которая применяется в многоквартирных домах.

Способ подключения радиаторов также влияет на показатели теплоотдачи. Диагональный способ, когда подача воды происходит сверху, считается самым экономичным, а боковое подключение создает потери 22%.

Количество секций может зависеть от режима системы отопления и способа подключения радиаторов

Для однотрубных систем конечный результат также подлежит коррекции. Если двухтрубные радиаторы получают теплоноситель одной температуры, то однотрубная система работает по-другому, и каждая последующая секция получает остывшую воду. В таком случае сначала делают расчёт для двухтрубной системы, а топом увеличивают количество секций с учетом тепловых потерь.

Схема расчёта однотрубной системы отопления представлена ниже.

В случае с однотрубной системой следующие друг за другом секции получают остывшую воду

Если на входе мы имеем 15 кВт, то на выходе остается 12 кВт, значит потеряно 3 кВт.

Для комнаты с шестью батареями потери составят в среднем около 20%, что создаст необходимость добавления двух секций на батарею. Последняя батарея при таком расчёте должна быть огромных размеров, для решения проблемы применяют монтаж запорной арматуры и подключение через байпас для регулировки теплоотдачи.

Некоторые производители предлагают более простой способ получить ответ. На их сайтах можно найти удобный калькулятор, специально предназначенный для того чтобы сделать данные вычисления. Чтобы воспользоваться программой, нужно ввести необходимые значения в соответствующие поля, после чего будет выдан точный результат. Или же можно воспользоваться специальной программой.

Такой расчёт количества радиаторов отопления включает практически все нюансы и базируется на довольно точном определении потребности помещения в тепловой энергии.

Корректировки позволяют сэкономить на покупке лишних секций и оплате счетов за отопление, обеспечат на долгие годы экономичную и эффективную работу системы отопления, а также позволяют создать комфортную и уютную атмосферу тепла в доме или квартире.

Материал актуализирован 29.03.2018

При планировании капитального ремонта в вашем доме или же квартире, а так же при планировке постройки нового дома необходимо произвести расчет мощности радиаторов отопления. Это позволит вам определить количество радиаторов, способных обеспечить теплом ваш дом в самые лютые морозы. Для проведения расчетов необходимо узнать необходимые параметры, такие как размер помещений и мощность радиатора, заявленной производителем в прилагаемой технической документации. Форма радиатора, материал из которого он выполнен, и уровень теплоотдачи в данных расчетах не учитываются. Зачастую количество радиаторов равно количеству оконных проемов в помещении, поэтому, рассчитываемая мощность разделяется на общее количество оконных проемов, так можно определить величину одного радиатора.

Следует помнить, что не нужно производить расчет для всей квартиры, ведь каждая комната имеет свою отопительную систему и требует к себе индивидуальный подход. Так если у вас угловая комната, то к полученной величине мощности необходимо прибавить еще около двадцати процентов. Такое же количество нужно прибавить, если ваша система отопления работает с перебоями или имеет другие недостатки эффективности.

Расчет мощности радиаторов отопления может осуществляться тремя способами:

Согласно строительным нормами и другими правилами необходимо затрачивать 100Вт мощности вашего радиатора на 1метр квадратный жилплощади. В таком случае необходимые расчеты производятся при использовании формулы:

С*100/Р=К , где

К– мощность одной секции вашей радиаторной батареи, согласно заявленной в ее характеристике;

С– площадь помещения. Она равна произведению длины комнаты на ее ширину.

К примеру, комната имеет 4 метра в длину и 3.5 в ширину. В таком случае ее площадь равна:4*3.5=14 метров квадратных.

Мощность, выбранной вами одной секции батареи заявлена производителем в 160 Вт. Получаем:

14*100/160=8.75. полученную цифру необходимо округлить и получается что для такого помещения потребуется 9 секций радиатора отопления. Если же это угловая комната, то 9*1.2=10.8, округляется до 11. А если ваша система теплоснабжения недостаточно эффективна, то еще раз добавляем 20 процентов от первоначального числа: 9*20/100=1.8 округляется до 2.

Итого: 11+2=13. Для угловой комнаты площадью 14 метров квадратных, если система отопления работает с кратковременными перебоями понадобиться приобрести 13 секций батарей.

Примерный расчет – сколько секций батареи на квадратный метр

Он базируется на том, что радиаторы отопления при серийном производстве имеют определенные размеры. Если помещение имеет высоту потолка равную 2.5 метра, то на площадь в 1.8 метров квадратных потребуется лишь одна секция радиатора.

Подсчет количества секций радиатора для комнаты с площадью в 14 метров квадратных равен:

14/1.8=7.8, округляется до 8. Так для помещения с высотой до потолка в 2.5м понадобится восемь секций радиатора. Следует учитывать, что этот способ не подходит, если у отопительного прибора малая мощность (менее 60Вт) ввиду большой погрешности.

Объемный или для нестандартных помещений

Такой расчет применяется для помещений с высокими или очень низкими потолками. Здесь расчет ведется из данных о том, что для обогрева одного метра кубического помещения необходима мощность в 41ВТ. Для этого применяется формула:

К=О*41 , где:

К- необходимое количество секций радиатора,

О-объем помещения, он равен произведению высоты на ширину и на длину комнаты.

Если комната имеет высоту-3.0м; длину – 4.0м и ширину – 3.5м, то объем помещения равен:

3.0*4.0*3.5=42 метра кубических.

Расчитывается общая потребность в тепловой энергии данной комнаты:

42*41=1722Вт, учитывая, сто мощность одной секции составляет 160Вт,можно расчитать необходимое их количество путем деления общей потребности в мощности на мощность одной секции: 1722/160=10.8, округляется до 11 секций.

Если выбраны радиаторы, которые не делятся на секции, от общее число нужно поделить на мощность одного радиатора.

Округлять полученные данные лучше в большую сторону, так как производители иногда завышают заявленную мощность.

При длительном проживании в доме многие люди сталкиваются с необходимостью замены системы отопления. Некоторые владельцы квартир в определённый момент решают выполнить замену изношенного радиатора отопления. Чтобы после выполнения необходимых мероприятий в доме была обеспечена теплая атмосфера, необходимо правильно подойти к задаче расчета отопления для дома по площади помещения. От этого во многом зависит эффективность работы системы отопления. Чтобы обеспечить это, нужно правильно произвести расчет количества секций устанавливаемых радиаторов. В этом случае теплоотдача от них будет оптимальной.

Если количество секций будет недостаточным, то необходимый прогрев комнаты никогда не произойдет. А по причине недостаточного количества секций в радиаторе возникнет большой расход тепла, что негативным образом отразится на бюджете владельца квартиры. Определить потребность конкретного помещения в отоплении можно, если произвести простые расчеты. А для того чтобы они казались точными, при их выполнении необходимо принимать во внимание целый ряд дополнительных параметров.

Для того чтобы правильно рассчитать радиаторы отопления для определенного помещения, необходимо, прежде всего, принимать во внимание площадь комнаты. Самый простой способ — ориентироваться на сантехнические нормы, согласно которым для отопления 1 кв. м. требуется 100 Ватт мощности радиатора отопления. Следует не забывать и о том, что этот метод может использоваться для помещений, у которых высота потолков стандартная, то есть, варьируется от 2,5 до 2,7 метра. Выполнение расчетов с использованием этого метода позволяет получить несколько завышенные результаты. Помимо этого при его использовании во внимание не принимаются следующие особенности:

  • число окон и тип пакетов, установленных в помещении;
  • количество наружных стен, расположенных в помещении;
  • материалы изготовления стен и их толщина;
  • тип и толщина используемого утеплителя.

Тепло, которое для создания комфортной атмосферы в помещении должны давать радиаторы: для получения оптимальных расчетов необходимо взять площадь помещения и умножить ее на тепловую мощность радиатора.

Скажем, если комната имеет площадь 18 кв. м., то для неё потребуется батарея мощностью 1800 ватт.

18 кв. м. х 100 Вт = 1800 Вт.

Полученный результат необходимо разделить на количество тепла, которое в течение часа выделяет одна секция радиатора отопления. Если в паспорте изделия указывают, что этот показатель равен 170 Вт, то далее расчеты будут такими:

1800 Вт / 170 Вт = 10,59.

Полученный результат необходимо округлить до целого. В результате получаем 11. Это означает, что в помещение с такой площадью оптимальным решением будет установка радиатора отопления с одиннадцатью секциями.

Следует сказать, что подобный метод отлично подходит только помещений, которые получают тепло от централизованной магистрали, где циркулирует теплоноситель с температурой 70 градусов Цельсия.

Существует еще один способ, который по своей простоте превосходит предыдущие. Применять его можно для расчета количества отопления в квартирах панельных домов. При его использовании учитывается то, что одна секция в состоянии обогреть площадь 1,8 кв. м., то есть, при выполнении расчетов площадь помещения следует разделить на 1,8. Если комната имеет площадь 25 кв. м., то для обеспечения оптимального отопления потребуется 14 секций в радиаторе.

25 кв. м. / 1,8 кв. м. = 13,89.

Однако у такого метода расчета имеется один нюанс. Его нельзя использовать для приборов пониженной и повышенной мощности. То есть, для тех радиаторов, у которых отдача одной секции варьируется в диапазоне от 120 до 200 Вт.

Метод расчета отопления для комнат с высокими потолками

Если в помещении потолки имеют высоту более 3 метров, то применение перечисленных выше способов не дает возможности правильно рассчитать потребность в отоплении. В таких случаях необходимо использовать формулу, которая учитывает объем помещения. В соответствии с нормативами СНиП, для обогрева одного кубического метра объема помещения требуется 41 Ватт тепла.

Отталкиваясь от этого, для обогрева помещения, площадь которого составляет 24 кв. м., а высота потолков не менее 3 метров, расчеты будут следующие:

24 кв. м. х 3 м = 72 куб. м. В результате получаем общий объем помещения.

72 куб. м. х 41 Вт = 2952 Вт. Полученный результат — суммарная мощность радиатора, который обеспечит оптимальный обогрев комнаты.

Теперь необходимо рассчитать количество секций в батарее для комнаты такой площади. В том случае если в паспорте к изделию указано, что теплоотдача одной секции составляет 180 Вт, при расчетах необходимо общую мощность батареи разделить на это число.

В итоге получаем 16,4. Потом результат нужно округлить. В результате имеем 17 секций. Батареи с таким количеством секций вполне хватит для создания теплой атмосферы в комнате площадью 72 м 3 . Выполнив несложные вычисления, получаем нужные нам данные.

Выполнив расчет, следует провести корректировку полученного результата, принимая во внимание особенности комнаты. Они должны учитываться следующим образом:

  • для комнаты, являющейся угловой, с одним окном при расчетах к полученной мощности батареи необходимо добавить 20% дополнительно;
  • если в помещении имеется два окна, то должна быть выполнена корректировка в сторону увеличения на 30%;
  • в случаях, когда монтаж радиатора выполняется в нише под окном, его теплоотдача несколько снижается. Поэтому необходимо добавить к его мощности 5%;
  • в комнате, в которой окна выходят на северную сторону, к мощности батареи необходимо дополнительно добавить 10%;
  • украшая батарею в своей комнате специальным экраном, следует знать, что он крадет у радиатора некоторое количество тепловой энергии. Поэтому дополнительно необходимо прибавить к радиатору 15%.

В помещении, для которого производится расчет потребности в отоплении, может быть и другая специфика. Важными становятся следующие показатели:

  • температура циркулирующего в радиаторах отопления теплоносителя не должна быть ниже 70 градусов. Если уровень температуры меньше, то число секций в приборе отопления необходимо увеличить;
  • в том случае, если между двумя помещениями дверь отсутствует, следует выполнить расчет их общей площади, а потом рассчитать количество радиаторов, необходимых для оптимального обогрева;
  • в помещениях, в которых на окнах установлены стеклопакеты, потери тепла сведены к минимуму. Поэтому при выборе радиатора отопления можно устанавливать изделие с меньшим количеством секций.

Каждый знает, что каждая климатическая зона имеет свои потребности в обогреве. Поэтому при разработке проекта необходимо принимать во внимание эти показатели.

У каждой климатической зоны имеются свои коэффициенты, которые необходимо использовать при расчетах.

Для средней полосы России этот коэффициент равен 1. Поэтому он не используется при расчетах.

В северных и восточных регионах страны коэффициент равен 1,6.

В южной части страны этот показатель варьируется от 0,7 до 0,9.

При выполнении расчетов необходимо на этот коэффициент умножить тепловую мощность. А потом на теплоотдачу одной секции разделить полученный результат.

Расчет отопления в помещении очень важен для обеспечения теплой атмосферы в жилище в зимнее время. Больших сложностей с выполнением расчетов обычно не возникает. Поэтому каждый владелец может осуществить их самостоятельно, не прибегая к услугам специалистов. Достаточно найти формулы, которые используются для расчетов.

В этом случае можно сэкономить на приобретении радиатора, так как вы будете избавлены от необходимости платить за ненужные секции. Установив их на кухне или в гостиной, в вашем жилище будет царить комфортная атмосфера. Если вы неуверены в точности своих расчетов, из-за которых вы не подберете оптимальный вариант, то следует обратиться к профессионалам. Они правильно произведут расчеты, а после качественно выполнят установку новых радиаторов отопления или грамотно проведут монтаж системы отопления.

Расчет количества секций радиаторов отопления: по площади и объему

Рассчитать нужную площадь поверхности отопительного прибора, т.е. его размер и количество секций, исходя из объема или площади помещения, типа радиатора и схемы подключения к трубам.

Формулы позволяют получать результат разной степени точности, поскольку учитывают различное количество параметров.

Содержание:

Для жилых помещений вычисляют необходимое количество приборов и мощность каждого.

Средние стандартные значения мощности секции радиаторов из разных материалов:

  • Стальные – 110-150- Вт
  • Чугунные – 160 Вт;
  • Биметаллические – 180 Вт;
  • Алюминиевые – 200 Вт.

Количество самих приборов обычно соответствует количеству окон в помещении, возможна установка дополнительных радиаторов на глухие холодные стены.

Все расчеты необходимой мощности отопительных приборов основаны на строительных нормах, принятых на сегодняшний день:

Например, площадь комнаты 25 метров, 25 умножаем на 100 (Вт). Получается 2500 Вт, или 2,5 кВт.

Стальной радиатор обладает небольшой мощностью

Полученную величину делим на мощность одной секции выбранной модели радиатора, допустим она равна 150 Вт.

Таким образом, 2500 / 150, получается 16,7. Результат округляется в большую сторону, поэтому 17. Значит для отопления такой комнаты потребуется 17 секций радиатора.

Округление можно произвести в меньшую сторону, если речь идет о помещениях с маленькими тепло потерями или дополнительными источниками тепла, например кухня.

Это очень грубый и округленный расчет, поскольку здесь не учитываются никакие дополнительные параметры:

  • Толщина и материал стен здания;
  • Тип утеплителя и толщина его слоя;
  • Количество наружных стен в помещении;
  • Количество окон в помещении;
  • Наличие и тип стеклопакетов;
  • Климатическая зона, диапазон температур.
  • К результату следует прибавить 20%, если в комнате есть балкон или эркерное окно;
  • Если в комнате два полноценных оконных проема или две наружные стены(угловое расположение), то к этой полученной величине следует прибавить 30%.
  • Если планируется монтаж декоративных экранов для радиаторов или загородок, прибавляют еще 10-15%.
  • Установленные качественные стеклопакеты позволят отнять от итога 10-15%.
  • Понижение температуры теплоносителя на 10 градусов (норма +70) потребует увеличения количества секций или мощности радиатора на 18%.
  • Особенности системы отопления — если теплоноситель подается через нижнее отверстие, а выходит через верхнее, то радиатор недодает около 7-10% мощности.
  • Для того, чтобы сделать некоторый запас мощности, на случай нетипичного похолодания и проч. принято добавлять к итоговому результату 15%.
  • Для средней полосы России коэффициент не используется (он принят за 1).
  • Для северных и восточных регионов применяют коэффициент 1,6.
  • Южные регионы 0,7- 0,9, в зависимости от минимальных и среднегодовых температур.

Таким образом, чтобы сделать поправку на климатическую зону, нужно полученный результат тепловой мощности умножить на необходимый коэффициент.

Автор статьи: Борис Купинов

Здравствуйте. Меня зовут Борис. Я уже более 7 лет работаю прорабом в строительной компании. Я считаю, что в настоящее время являюсь профессионалом в своей области и хочу помочь всем посетителям сайта решать разнообразные вопросы. Все материалы для сайта собраны и тщательно переработаны с целью донести как можно доступнее всю нужную информацию. Перед применением описанного на сайте желательна консультация с профессионалами.

✔ Обо мне ✉ Обратная связь Оцените статью: Оценка 3.1 проголосовавших: 38

Сколько БТЕ нужно для обогрева дома, магазина, гаража и многого другого! | Ферреллгаз

Обогреватель какого размера мне нужен для обогрева дома, гаража или рабочего места? Казалось бы, относительно простой и понятный вопрос. Однако ответ далеко не прост — требуется глубокое погружение в науку об энергии, пространственной геометрии, климатологии и строительных технологиях.

Ответ на распространенный вопрос «Сколько БТЕ мне нужно для отопления дома?» начинается с понимания производства энергии и британской тепловой единицы.Одна БТЕ — это количество энергии, необходимое для повышения температуры одного фунта воды на 1 градус по Фаренгейту. Сама мера очень мала, но это базовый расчет, на котором строится использование энергии. В 2018 году Соединенные Штаты использовали примерно 101,3 квадриллиона БТЕ энергии.

Расчет количества БТЕ, необходимого для обогрева помещения

С точки зрения систем отопления и охлаждения, основной расчет заключается в том, сколько вы хотите добавить или удалить из воздуха внутри здания.Это может зависеть от ряда других переменных, таких как квадратные метры и климат, но отправной точкой является то, на сколько градусов вы хотите изменить внутреннюю температуру, и сколько БТЕ требуется для этого. Существуют калькуляторы, которые помогут домовладельцам рассчитать квартиру нужного размера, но есть и некоторые практические правила, которым можно следовать. Например, для помещения площадью 300 квадратных футов обычно требуется 7000 БТЕ для поддержания комфортной температуры, а для помещения площадью 1000 квадратных футов требуется 18000 БТЕ.

Простая формула для определения потребности в отоплении: 

(желаемое изменение температуры) x (кубические футы пространства) x 0,133 = требуемые БТЕ в час.

Какие факторы могут повлиять на ваши потребности в отоплении?

1. Климат и погода

Климат также играет роль в определении ваших энергетических потребностей. В более теплом климате в южной части Соединенных Штатов, считающейся зоной 1 или 2, требуется 30-40 БТЕ на квадратный фут.В средней части страны — зонах 3 и 4 — требуется от 40 до 45 БТЕ на квадратный фут, в то время как в северных районах зоны 5 требуется до 60 БТЕ на квадратный фут. Проще говоря, чем холоднее или теплее наружный воздух, тем больше энергии вам потребуется для изменения внутренней температуры здания. Как только вы узнаете свою климатическую зону и соответствующие требования BTU для вашего региона, вы сможете найти общий номер для своего дома. Например, в зоне 3–4, где обычно требуется 40–45 БТЕ на квадратный фут, вы можете определить, что для дома площадью 2500 квадратных футов потребуется печь мощностью от 100 000 до 112 000 БТЕ.

2. Средняя квадратная и кубатура

Еще одним параметром, определяющим ваши потребности в энергии, является пространство – как в квадратных футах, так и в кубических футах. Естественно, чем больше пространство, тем больше потребность, но важно не впадать в отношение «чем больше, тем лучше». Приобретение крупногабаритного обогревателя или кондиционера создает другой набор проблем , таких как нагрузка на компрессоры, которые часто включаются и выключаются, чрезмерный шум и общее снижение эффективности.

Используя приведенную выше формулу, рабочее пространство площадью 1000 квадратных футов с высотой потолков 8 футов означает, что вы будете обогревать 8000 кубических футов помещения. Если температура снаружи 30°F, а вы хотите, чтобы в вашем гараже было 70°F, желаемое изменение температуры составляет 40°F. Эти два числа, умноженные на 0,133, показывают, что вам потребуется чуть более 42 500 БТЕ в час, чтобы поддерживать температуру на рабочем месте в 70 градусов.

Поскольку пропан — это чистое и эффективное топливо, которое содержит более чем в два раза больше энергии, чем природный газ, это естественный выбор для систем отопления в любом климате.Например, печь на природном газе мощностью 100 000 БТЕ сжигает около 97 кубических футов газа в час, в то время как пропановая печь того же размера сжигает 40 кубических футов газа в час. Чем выше рейтинг эффективности вашего обогревателя или кондиционера, это означает, что большая часть используемой энергии направляется на отопление или охлаждение.

3. Строительные материалы и качество

Также на этот расчет влияет качество и тип строительного материала, а также возраст дома.Дополнительные окна, которые пропускают больше солнечного света или холодного воздуха, меняют расчет, как и использование изоляции по всему дому. В старых домах со сквозняками или с плохой изоляцией потребуется дополнительная мощность обогрева. Кондиционеры в домах с несколькими окнами, выходящими на юг, также потребуют повышенной мощности для охлаждения воздуха, нагретого солнечным светом.

Установщики должны измерить весь дом, принимая во внимание планировку комнат, расположение окон, потенциальную тень, изоляцию и данные о климате, чтобы получить правильные расчеты нагрузки на отопление и охлаждение для определения системы отопления или охлаждения соответствующего размера.

Свяжитесь с Ferrellgas для получения информации о ваших потребностях в отоплении

Несмотря на то, что нет простого ответа на вопрос о системе отопления или охлаждения нужного размера для вашего дома, магазина или гаража, рассмотрев несколько простых элементов и расчетов, легко определить правильный блок для вашей конструкции. Знание небольшого количества информации о вашем здании, вашем климате и ваших потребностях в отоплении и охлаждении может помочь вам найти решение, которое обеспечит вам и вашей семье комфорт в любое время года.

Чтобы узнать, какие растворы пропана лучше всего подходят для обогрева вашего помещения, свяжитесь с местным офисом Ferrellgas, где наши специалисты могут назвать вам выгодную цену на пропан и определить, какие варианты лучше всего подходят для вашего дома, бизнеса или фермы. .

Уравнения охлаждения и нагрева

Явная теплота

Явная теплота в процессе нагревания или охлаждения воздуха (теплопроизводительность или холодопроизводительность) может быть рассчитана в единицах СИ как DT (1)

, где S H S S S = Разумное тепло (кВт)

C P = Удельное тепло воздуха (1.006 KJ / KG O C)

ρ = Плотность воздуха (1.202 кг / м 3 )

q = поток объема воздуха (M 3 / S)

dt = разница температур ( o c)

или в имперских единицах как

H S = 1,08 Q DT (1b)

, где

H S = разумное тепло (BTU / HR)

q = поток объема воздуха (CFM, кубические ножки в минуту)

DT = разница температур ( O F)

Пример — Воздух для обогрева, явная теплота

Метрические единицы

Воздушный поток 1 м 3 нагревается от 0 до 20 o C .Используя (1) Разумное тепло, добавленное к воздуху, можно рассчитать как

H S = (1,006 кДж / кг O C) (1.202 кг / м 3 ) ( 1 м 3 / S ) ((20 o C) — (0 O C))

= 24.2 (кВт)

Императорские единицы

расход 1 куб. фут/мин нагревается от 32 до 52 o F .Используя (1b) , физическое тепло, добавленное к воздуху, может быть рассчитано как

ч с = 1,08 (1 куб.

    = 21,6 (БТЕ/ч)

Таблица явной тепловой нагрузки и требуемого объема воздуха

Явная тепловая нагрузка и требуемый объем воздуха для поддержания постоянной температуры при различных перепадах температур между подпиточным воздухом и комнатным воздухом:

Латентное тепло

Латентное тепло из-за влаги в воздухе может быть рассчитана в Si-единицы как:

H L = ρ H мы Q DW кг (2)

где

ч л = скрытая теплота (кВт)

ρ = плотность воздуха (1.202 кг/м 3 )

q = объемный расход воздуха (м 3 /с)

ч we = скрытая теплота испарения атмосферного воздуха кг дюйм/Дж при ат. давление и 20 o C)

dw кг = разница коэффициента влажности (кг воды/кг сухого воздуха)

Скрытая теплота испарения воды может быть рассчитана как 2,2 т (2А)

, где

T = температура испарения ( o C)

или для имперских единиц:

H л = 0.68 q dw gr (2b) (2b)

или

H L = 4840 Q DW LB (2C)

где

H L = скрытая теплота (БТЕ/ч)

q = объемный расход воздуха (куб. футов в минуту, куб. футов в минуту)

dw гр = разница влажности воздуха/фунтов сухого воздуха (зерна)

DW LB = разница соотношения влажности (LB Water / LB сухой воздух)

Пример — охлаждающий воздух, латентная тепловая мощность

метрические единицы

воздушный поток 1 м 3 охлаждается с 30 до 10 o C .Относительная влажность воздуха составляет 70% в начале и 100% в конце процесса охлаждения.

Из диаграммы Молье мы оцениваем содержание воды в горячем воздухе как 0,0187 кг воды/кг сухого воздуха, и содержание воды в холодном воздухе как 0,0075 кг воды/кг сухого воздуха .

Используя (2) , можно рассчитать скрытую теплоту, отводимую от воздуха, как

ч л = (1.202 кг/м 3 ( 2454 кДж/кг ) ( 1 м 3 ) (( 0,0187 кг воды/кг сухого воздуха) 3 (0,7 0,71 кг воды/кг сухого воздуха) Сухой воздух ))

= 34,3 (кВт) = 34,3 (кВт)

Императорские единицы

Воздушный поток 1 CFM охлаждается от 52 до 32 o F . Относительная влажность воздуха составляет 70% в начале и 100% в конце процесса охлаждения.

Из психрометрической диаграммы мы оцениваем содержание воды в горячем воздухе как 45 гран воды/фунт сухого воздуха , и содержание воды в холодном воздухе как 27 гран воды/фунт сухого воздуха .

Используя (2b) , скрытую теплоту, удаляемую из воздуха, можно рассчитать как ( 27 гран воды/фунт сухого воздуха ))      

    = 12.2 (БТЕ/час)

Таблица скрытой тепловой нагрузки и требуемого объема воздуха

Скрытая тепловая нагрузка – увлажнение и осушение – и требуемый объем воздуха для поддержания постоянной температуры при различных перепадах температур между поступающим воздухом и воздухом в помещении указаны в Диаграмма ниже:

Общее тепло — скрытое и разумное тепло

Общее тепло

Общее тепло из-за температуры и влаги может быть выражена в единицах Si AS:

H T = ρ Q DH (3)

где

ч t = общее количество тепла (кВт)

q = объемный расход воздуха (м 3 /с)

= плотность воздуха (1.202 кг / м 3 )

DH = Enthalpy Разница (KJ / KG)

или — в имперских единицах:

H T = 4,5 Q DH (3B)

Где

H T = Total Heat (BTU / HR)

Q = поток объема воздуха (CFM, кубические ножки в минуту)

DH = Enthalpy Разница (BTU / lb сухой воздух)

Общее тепло можно также выражено как:

H T = S H S S + H L

= 1.08 q dt + 0,68 q dw gr (4) (4) (4)

Пример — Охлаждение или отопительный воздух, общая тепло

Метрические единицы

Воздушный поток 1 м 3 / S охлаждается от 30 до 10 или C . Относительная влажность воздуха составляет 70% в начале и 100% в конце процесса охлаждения.

Из диаграммы Молье мы оцениваем энтальпию воды в горячем воздухе как 77 кДж/кг сухого воздуха, и энтальпию в холодном воздухе как 28 кДж/кг сухого воздуха .

Использование (3) Общая разумная и скрытая тепла, удаленная из воздуха, может быть рассчитана как

H T = (1,202 кг / м 3 ) ( 1 м 3 / S ) (( 77 KJ / KG сухой воздух ) — (28 KJ / KG сухой воздух ))

= 58.9 (кВт)

Императорские единицы

1 cfm охлаждается от 52 до 32 o F .Относительная влажность воздуха составляет 70% в начале и 100% в конце процесса охлаждения.

Из психрометрической диаграммы мы оцениваем энтальпию воды в горячем воздухе как 19 БТЕ /фунт сухого воздуха , , а энтальпию в холодном воздухе как 13,5 БТЕ /фунт сухого воздуха .

Используя (3b) , общее явное и скрытое тепло, удаляемое из воздуха, можно рассчитать как

ч t = 4.5 (1 CFM) (( 19 BTU / LB сухого воздуха ) — ( 13,5 BTU / LB сухого воздуха ))

= 24,8 (BTU / HR)

SHR — разумное отношение тепла

разумное отношение тепла может быть выражено как

SHR = H S / H T T (6)

, где

SHR = Разумное теплосъемное отношение

H S = разумное тепло

H T = Общая тепловая (разумная и скрытая)

Системы воздушного отопления

Системы воздушного отопления могут быть экономически эффективными, если они могут быть сделать простым или если они могут быть объединены с системой вентиляции.Но — учтите, что из-за низкой удельной теплоемкости воздуха использование воздуха в целях обогрева очень ограничено. Большие тепловые нагрузки требуют больших объемов воздуха, что приводит к огромным воздуховодам и вентиляторам. Транспортировка огромных объемов воздуха требует много энергии.

Требуемый объем воздуха в системе воздушного отопления

Требуемый расход воздуха в системе воздушного отопления можно рассчитать как )) (1)

9004

, где

L = скорость потока воздуха (M 3 / S)

q = Потеря тепла, покрытая системой воздушного отопления (кВт)

C p = удельная теплоемкость воздуха — 1.005 (KJ / KG O C)

ρ = Плотность воздуха — 1.2 (кг / м 3 )

T H = температура нагрева воздуха ( o C)

t r = комнатная температура ( o C)

Как правило, температура приточного воздушного отопления должна находиться в диапазоне 40-50 o C . Расход воздуха должен быть в диапазоне 1-3 умноженного на объема помещения.

Уравнение (1) выражено в имперских единицах:

 L = Q / (1.08 (T H — T R — T R )) (2)

где

Q = Тепло (BTU / HR)

L = Объем воздуха (CFM)

T H = температура нагрева воздуха ( o f)

T R = комнатная температура ( o f)

F)

F)

F)

F)

онлайн-калькулятор воздушного отопления

Воздушное отопление — температура Диаграмма

Приведенные ниже диаграммы рассчитаны на основе приведенных выше уравнений и могут использоваться для оценки количества тепла, необходимого для повышения температуры в воздушных потоках.

Единицы SI —
кВт, M 3 / S и O C O C O C C

Императорские единицы —
BTU / H, CFM и O F

  • 1 м 3 /с = 3600 м3/ч = 35,32 фута 3 /с = 2118,9 фута 3 /мин (куб. футов/мин)
  • 1 кВт (кДж/ч/с) = 459,9 ккал. h
  • T( o C) = 5/9[T( o F) — 32]
потери
20 кВт нагревается воздухом с максимальной температурой 50 o C .Комнатная температура 20 o C . Требуемый расход воздуха можно рассчитать как

л = (20 кВт) / ((1,005 кДж/кг o Кл) (1,2 кг/м 3 ) ((50 o Кл) — ( 20 o C)))

    = 0,55 м 3

Требуемый расход воздуха из электропечи – имперские единицы

Требуемый расход воздуха из электрической печи

L куб. футов в минуту = P w 3.42 / 1.08 DT (3)

, где CFM = Требуемый воздушный поток (CFM)

P W = электроэнергия (WATTS)

dt = разница температур ( o F)

Как рассчитать кондиционирование помещения

Зима медленно, но верно подходит к концу. время, чтобы сосредоточить наше внимание на наших системах кондиционирования воздуха.Какая форма твой в? Не пора ли вам инвестировать в замену?

Если вам пора обновиться, вы, вероятно, захотите просто купите самую большую и лучшую систему, которую вы можете себе позволить, и получите ее установили быстро, да? Мы действительно хотим призвать вас замедлиться и однако подумайте о последствиях этого. Врываюсь в кондиционер покупка может привести вас не только к тому, что вы приобретете не ту модель кондиционера для вашего конкретного дома, но неправильный размер , что будет иметь серьезные последствия для эффективности техники и домашнего уюта.

Чтобы правильно определить размер системы, наши специалисты должны делать то, что называется расчетом охлаждающей нагрузки. «Подождите», — подумал я. ты собирался рассказать мне как рассчитать кондиционирование помещения?»

На самом деле это довольно сложная работа, и дело не только в комнату, для которой мы должны рассчитать нагрузку, но весь ваш дом . При расчете учитывается ряд факторов. В том числе:

Дневное время вашего дома приток тепла: Сколько тепла накапливается в вашем доме день?

Ваш дом ориентация: Смотрим в какую сторону смотрит ваш дом.Это играет большую роль в вашем дневном притоке тепла! Дом с большим количеством окон, выходящих на южную сторону, будет нагреваться намного больше. чем без.

Уровни изоляции в вашем доме: Многие люди думают о том, чтобы сохранить тепло в своих домах зимой, когда дело доходит до изоляции. Но цель изоляции состоит в том, чтобы предотвратить передачу тепла, а это означает, что изоляция так же важна для сохранения тепла в вашем доме летом, как и зимой.

План этажа вашего дома: Открытые планы этажей будут получать и распределять охлажденный воздух иначе, чем в доме с множеством закрытых комнат и стен.

Количество и типы двери и окна в вашем жилом помещении: Закрытие утепленной двери в вашем дом будет иметь совсем другое влияние закрытия неизолированного дверь в ваше жилое пространство, когда речь идет о сохранении охлажденного воздуха. Типы Окна у вас тоже имеют значение, когда дело доходит до сохранения тепла.

Количество этажей в вашем доме: Теплый воздух поднимается вверх! Имеет значение мощность вашего кондиционера. является. Маломощный кондиционер, то есть слишком маленький для вашего пространство — не сможет адекватно охладить двухэтажный дом по своему вкусу потому что он, скорее всего, получит и первую историю холодно, никогда не достигая желаемой температуры наверху.

Площадь ваш дом: Большинство домовладельцев считают, что это единственный фактор для определения размера воздуха. кондиционер.Они часто удивляются, когда узнают, насколько включает в себя профессиональный расчет охлаждающей нагрузки.

Когда вы будете готовы присмотреться к вашему следующему кондиционеру установки, пожалуйста, не стесняйтесь обращаться к нашей команде.

Свяжитесь с Dayco Systems для получения профессиональных услуг по кондиционированию воздуха в Кеннесо, штат Джорджия, уже сегодня!

Теги: Кондиционер, Kennesaw
Понедельник, 1 марта 2021 г., 11:00 | Категории: Кондиционер |

Расчет холодильной нагрузки — холодильная камера

Расчет холодильной нагрузки

Расчет холодильной нагрузки для холодильных камер.В этой статье мы рассмотрим, как рассчитать холодопроизводительность холодильной камеры. Сначала мы рассмотрим источники тепла, а затем рассмотрим рабочий пример того, как выполнить расчет охлаждающей нагрузки холодильной камеры на упрощенном примере. Прокрутите вниз, чтобы посмотреть обучающее видео.

Хотите бесплатное программное обеспечение для расчета холодильных камер?
Загрузите Coolselector®2 бесплатно -> Нажмите здесь
С помощью Danfoss вы можете строить экологичные и эффективные холодильные камеры. Их широкий ассортимент продукции и ведущий на рынке опыт применения позволяют вам думать наперед и соблюдать будущие нормативы по хладагентам и энергетике.Будьте экологичными и опередите конкурентов без ущерба для производительности
.

Узнайте больше о решениях для холодильных камер здесь

Что такое холодильная камера?

Холодильная камера используется для хранения скоропортящихся продуктов, таких как мясо и овощи, чтобы замедлить их порчу и сохранить их свежими как можно дольше. Тепло ускоряет их порчу, поэтому продукты охлаждаются за счет отвода тепла.

Для отвода тепла мы используем холодильную систему, которая позволяет точно и автоматически регулировать температуру, чтобы сохранить товар как можно дольше.

Система охлаждения – Холодильная камера

Чтобы отвести тепло, нам нужно знать, какая будет нагрузка на охлаждение. Холодопроизводительность меняется в течение дня, поэтому в большинстве случаев рассчитывается средняя холодопроизводительность и холодопроизводительность.

Источники тепла для холодильных камер

Откуда берется все тепло, которое нам нужно отводить?

Нагрузка передачи

Обычно 5–15 % приходится на нагрузку передачи. Это тепловая энергия, передаваемая через крышу, стены и пол в холодильную камеру.Тепло всегда течет от горячего к холодному, и внутренняя часть холодной комнаты, очевидно, намного холоднее, чем ее окружение, поэтому тепло всегда пытается проникнуть в пространство из-за этой разницы температур. Если холодильная камера подвергается воздействию прямых солнечных лучей, то теплопередача будет выше, поэтому необходимо будет применить дополнительную поправку, чтобы учесть это.

Загрузка продукта

Затем у нас есть нагрузки продукта, на которые обычно приходится 55-75% нагрузки на охлаждение. Это объясняет тепло, которое вводится в холодильную камеру при поступлении новых продуктов.Это также энергия, необходимая для охлаждения, замораживания и дальнейшего охлаждения после замораживания. Если вы просто охлаждаете продукты, вам нужно учитывать только явную тепловую нагрузку. Если вы замораживаете продукт, вам необходимо учитывать скрытую теплоту, поскольку происходит фазовый переход. В течение этого времени энергия используется, но вы не увидите изменения температуры, пока продукт переходит из состояния жидкости в состояние льда. Для дальнейшего охлаждения этой пищи ниже точки замерзания требуется дополнительная энергия, что опять-таки является ощутимым теплом.Вам также необходимо учитывать упаковку, поскольку она также будет охлаждаться. Наконец, если вы охлаждаете фрукты и овощи, то эти продукты являются живыми, и они будут выделять некоторое количество тепла, поэтому вам также необходимо учитывать его удаление.

Внутренняя нагрузка

Следующее, что нужно учитывать, это внутренние нагрузки, которые составляют около 10-20%. Это тепло, выделяемое людьми, работающими в холодильной камере, освещением и оборудованием, таким как вилочные погрузчики и т. д. Поэтому для этого вам необходимо учитывать, какое оборудование будет использоваться сотрудниками для перемещения продуктов в а вне магазина сколько тепла будут отдавать они и оборудование и суточная продолжительность.

Загрузка оборудования

Затем нам необходимо рассмотреть холодильное оборудование в помещении, на которое будет приходиться около 1-10% от общей холодильной нагрузки. Для этого нам нужно знать мощность двигателей вентиляторов и оценить, как долго они будут работать в течение каждого дня, затем мы также хотим учесть тепло, передаваемое в помещение при размораживании испарителя.

Инфильтрационная тепловая нагрузка

Последнее, что нам нужно учитывать, это инфильтрация, которая снова добавляет 1-10% к охлаждающей нагрузке. Это происходит, когда дверь открывается, поэтому происходит передача тепла в пространство через воздух.Еще одно соображение — вентиляция. Фрукты и овощи выделяют углекислый газ, поэтому в некоторых магазинах потребуется вентилятор, этот воздух необходимо охлаждать, поэтому вы должны учитывать это, если он используется.

Расчет холодопроизводительности – пример работы холодильной камеры

Рассмотрим упрощенный пример расчета холодопроизводительности холодильной камеры. Теперь, если вы делаете это для реального примера, я рекомендую вам использовать программное обеспечение для проектирования, такое как приложение Danfoss coolselector, для скорости и точности.Скачать здесь -> http://bit.ly/2Ars6yF

Нагрузка передачи

  • Размеры нашего холодильного склада: 6 м в длину, 5 м в ширину и 4 м в высоту.
  • Окружающий воздух 30 ° C при относительной влажности 50 %, воздух внутри помещения 1 ° C при относительной влажности 95 %
  • Стены, крыша и пол изолированы полиуретаном толщиной 80 мм со значением U 0,28 Вт. /м 2 .K
  • Температура грунта 10 ° C.

Обратите внимание, что производитель должен сообщить вам значение u для изоляционных панелей, если нет, то вам нужно будет рассчитать это.

Для расчета нагрузки передачи мы будем использовать формулу

Q = U x A x (температура на выходе – температура на входе) x 24 ÷ 1000.

  • Q= тепловая нагрузка кВтч/сутки
  • U = значение теплоизоляции U (это значение нам уже известно) (Вт/м 2 .K)
  • A = площадь поверхности стен крыши и пола (рассчитаем это ) (m 2 )
  • Temp in = температура воздуха внутри помещения ( ° C)
  • Temp out = температура наружного воздуха ( ° C)
  • 24 = часов в сутки
  • 1000 = преобразование ватт в кВт.

Рассчитать «A» довольно просто, это просто размер каждой внутренней стены, так что вставьте числа, чтобы найти площадь каждой стены, крыши и пола.

сторона 1 = 6 м х 4 м = 24 м 2
сторона 2 = 6 м х 4 м = 24 м 2
сторона 3 = 5 м х 4 м = 20 м 2
сторона 4 = 5 м х 4 м = 20 м 2
кровли = 5 м x 6 м = 30 м 2
Пол = 5 м x 6 м = 30 м 2

Затем мы можем запустить эти числа в формулу, которую мы видели ранее, вам нужно будет рассчитать пол отдельно от стен и крыши, так как разница температур под полом отличается, поэтому теплопередача будет другой.

Стены и крыша

Q = U x A x (температура на выходе – температура на входе) x 24 ÷ 1000
Q = 0,28 Вт/м 2 .K x 113 м 2 x (30°C – 1°C) x 24 ÷ 1000
Q = 22 кВтч/день

[113 м 2 = 24 м 2 + 24 м 2 + 20 м 2 + 20 м 2 + 30 м 2 + 30 м 2 + 30 м 2 ]

Этаж

Q = U x A x (температура на выходе – температура на входе) x 24 ÷ 1000
Q = 0,28 Вт/м 2 .K x 30 м 2 x (10°C – 1°C) x 24 ÷ 1000
Q = 1.8 кВтч/день

Если пол не утеплен, вам потребуется использовать другую формулу, основанную на эмпирических данных .

Общий дневной прирост теплопередачи = 22 кВтч/день + 1,8 кВтч/день = 23,8 кВтч/день

Помните, что если ваша холодильная камера находится под прямыми солнечными лучами, вам также необходимо учитывать энергию солнца.

Загрузка продукта – Замена продукта

Далее мы рассчитаем холодопроизводительность при обмене продуктов, которая представляет собой тепло, поступающее в холодильную камеру от новых продуктов, которые имеют более высокую температуру.

В этом примере мы будем хранить яблоки, мы можем найти удельную теплоемкость яблок, но помните, что если вы замораживаете продукты, то продукты будут иметь различную удельную теплоемкость при охлаждении, замораживании и переохлаждении, поэтому вы Нам нужно будет учесть это и рассчитать отдельно, но в этом примере мы просто охлаждаем.

Ежедневно поступает 4000 кг новых яблок с температурой 5°C и удельной теплоемкостью 3,65 кДж/кг°C.

Затем мы можем использовать формулу

Q = m x Cp x (ввод температуры – сохранение температуры) / 3600.

  • Q = кВтч/день
  • CP = удельная теплоемкость продукта (кДж/кг.°C)
  • m = масса новых продуктов каждый день (кг)
  • Temp enter = температура продуктов на входе ( °C)
  • Температура хранения = температура в хранилище (°C)
  • 3600 = перевести кДж в кВтч.

Расчет

Q = mx Cp x (температура на входе – температура на складе) / 3600
Q = 4000 кг x 3,65 кДж/кг·°C x (5°C – 1°C) / 3600.
Q = 16 кВтч/день

Загрузка продукта – Дыхание продукта

Далее мы вычисляем дыхание продукта, это тепло, выделяемое живыми продуктами, такими как фрукты и овощи.Они будут генерировать тепло, поскольку они все еще живы, поэтому мы охлаждаем их, чтобы замедлить их износ и сохранить их дольше.

Для этого примера я использовал 1,9 кДж/кг в день в качестве среднего, но эта скорость меняется со временем и в зависимости от температуры. В этом примере мы используем эмпирическое значение только для упрощения расчетов, поскольку эта охлаждающая нагрузка не считается критической. Если вам нужно рассчитать критическую нагрузку, вы должны использовать большую точность. В этом примере в магазине хранится 20 000 кг яблок.

Для расчета воспользуемся формулой

Q = m x соотв. / 3600

  • Q = кВтч/день
  • m = масса продукта при хранении (кг)
  • resp = теплота дыхания продукта (1,9 кДж/кг)
  • 3600 = перевод кДж в кВтч.

Q = m x соотв. / 3600
Q = 20 000 кг x 1,9 кДж/кг / 3600
Q = 10,5 кВтч/день

Для раздела продукта мы суммируем обмен продукта 16 кВтч/день и дыхательную нагрузку 10.5 кВтч/день, чтобы получить общую нагрузку продукта 26,5 кВтч/день.

Внутренняя тепловая нагрузка – Люди

Далее мы рассчитаем внутренние нагрузки от людей, работающих в холодильной камере, так как люди выделяют тепло и нам нужно это учитывать.

Предположим, что 2 человека работают в магазине по 4 часа в день, и мы можем посмотреть вверх и увидеть, что при этой температуре они будут выделять внутри около 270 Вт тепла в час.

Мы будем использовать формулу:

Q = люди x время x тепло / 1000

  • Q = кВтч/день
  • человек = количество людей внутри
  • время = продолжительность времени, которое они проводят внутри каждый день на человека (часы)
  • тепло = потери тепла на человека в час (Ватт)
  • 1000 просто конвертирует ватт сколько кВт

Расчет:

Q = люди x время x тепло / 1000
Q = 2 x 4 часа x 270 Вт / 1000
Q = 2.16 кВтч/сутки

Внутренняя тепловая нагрузка – Освещение

Затем мы можем рассчитать тепло, выделяемое освещением, это довольно просто сделать, и мы можем использовать формулу

Q= лампы x время x мощность / 1000

  • Q = кВтч/день,
  • ламп = количество ламп в холодильной камере
  • время = количество часов использования в день
  • мощность = номинальная мощность ламп
  • 1000 = преобразование ватт в кВт.

Если у нас есть 3 лампы по 100 Вт каждая, работающие 4 часа в день, расчет будет следующим:

Q= лампы x время x мощность/1000
Q= 3 x 4 часа x 100 Вт/1000
Q= 1.2кВтч/день

Для общей внутренней нагрузки мы просто суммируем нагрузку людей (2,16 кВтч/день) и нагрузку освещения (1,2кВтч/день), чтобы получить значение 3,36кВтч/день.

Нагрузка оборудования – двигатели вентиляторов

Теперь мы можем рассчитать тепловыделение двигателей вентиляторов испарителя. Для этого мы можем использовать формулу:

Q = вентиляторы x время x мощность / 1000

  • Q = кВтч/день
  • вентиляторы = количество вентиляторов
  • время = часы ежедневной работы вентилятора (часы)
  • мощность = номинальная мощность двигателей вентиляторов (Ватт)
  • 1000 = перевести ватты в кВт.

В этом испарителе для холодильной камеры мы будем использовать 3 вентилятора мощностью 200 Вт каждый и предполагаем, что они будут работать 14 часов в день.

Расчет:

Q = вентиляторы x время x мощность / 1000
Q = 3 x 14 часов x 200 Вт / 1000
Q = 8,4 кВтч/день

Нагрузка оборудования – двигатели вентиляторов

Теперь рассчитаем тепловую нагрузку, вызванную разморозкой испарителя. Для расчета воспользуемся формулой:

.

Q = мощность x время x циклы x эффективность

  • Q = кВтч/день,
  • мощность = номинальная мощность нагревательного элемента (кВт)
  • время = время работы оттаивания (часы)
  • циклы = сколько раз в день будет выполняться цикл оттаивания
  • эффективность = сколько % тепла будет передано в помещение.

В этом примере в нашей холодильной камере используется электрический нагревательный элемент мощностью 1,2 кВт, он работает по 30 минут 3 раза в день, и, по оценкам, 30% всей потребляемой энергии просто передается в холодильную камеру.

Q = мощность x время x циклы x эффективность
Q = 1,2 кВт x 0,5 часа x 3 x 0,3
Q = 0,54 кВтч/день

Тогда общая нагрузка на оборудование равна тепловой нагрузке вентилятора (8,4 кВтч/день) плюс тепловая нагрузка размораживания (0,54 кВтч/день), что, таким образом, равно 8,94 кВтч/день

Инфильтрационная нагрузка

Теперь нам нужно рассчитать тепловую нагрузку от инфильтрации воздуха.Я собираюсь использовать упрощенное уравнение, но в зависимости от того, насколько критичен ваш расчет, вам может понадобиться использовать другие, более подробные формулы для достижения большей точности. Мы будем использовать формулу:

Q = изменения x объем x энергия x (температура на выходе – температура на входе) / 3600

  • Q = кВтч/день
  • changes = количество изменений объема в день
  • volume = объем холодильной камеры
  • energy = энергия на кубический метр на градус Цельсия
  • Temp out – температура воздуха снаружи
  • Temp in – это температура воздуха внутри
  • 3600, которую нужно просто перевести из кДж в кВтч.

По нашим оценкам, будет происходить 5 объемных воздухообменов в день из-за открытой двери, объем рассчитан на 120 м 3 , каждый кубический метр свежего воздуха обеспечивает 2 кДж/°C, воздух снаружи 30°C, а воздух внутри 1°C

Q = изменения x объем x энергия x (температура на выходе – температура на входе) / 3600
Q = 5 x 120 м 3 x 2 кДж/°C x (30°C – 1°C) / 3600
Q = 9,67 кВтч/ день

Общая холодопроизводительность

Для расчета общей нагрузки на охлаждение мы просто просуммируем все рассчитанные значения.

Нагрузка на передачу: 23.8 кВтч/день
Нагрузка продукта: 26,5 кВтч/день
Внутренняя нагрузка: 3,36 кВтч/день
Нагрузка оборудования: 8,94 кВтч/день
Инфильтрационная нагрузка: 9,67 кВтч/день
Итого = 72,27 кВтч/день

Коэффициент безопасности

Затем мы также должны применить коэффициент безопасности к расчету, чтобы учесть ошибки и отклонения от проекта. Обычно для этого к расчету добавляют от 10 до 30 процентов, в этом примере я выбрал 20 %, так что просто умножьте охлаждающую нагрузку на коэффициент безопасности, равный 1.2, чтобы получить нашу общую холодопроизводительность 86,7 кВтч/день

Расчет холодопроизводительности

Последнее, что нам нужно сделать, это рассчитать холодопроизводительность, чтобы справиться с этой нагрузкой. Обычный подход состоит в том, чтобы усреднить общую ежедневную холодопроизводительность по времени работы холодильной установки. Для этого я рассчитываю, что устройство будет работать 14 часов в день, что довольно типично для такого размера и типа магазина. Таким образом, наша общая холодильная нагрузка в 86,7 кВтч/день, разделенная на 14 часов, означает, что наша холодильная установка должна иметь мощность 6.2кВт, чтобы удовлетворить эту охлаждающую нагрузку.

Калькулятор размера помещения для электрообогрева

Конструкция электрического обогрева

Наша простая таблица размеров помещений с электрообогревом идеально подходит для расчета количества обогревателей, необходимых для обогрева одной или двух комнат. Если вам нужно:

  • Проект отопления всего дома
  • Таблица размеров помещений в старом здании с плохой изоляцией
  • Таблица размеров помещений для новостроек с очень хорошей изоляцией

Мы рекомендуем вам загрузить нашу форму запроса на проектирование системы отопления. После заполнения отправьте ее по электронной почте на адрес [email protected], мы предоставим точный проект отопления в течение 14 рабочих дней. Для нескольких свойств, пожалуйста, отправьте нам чертежи в масштабе вместе с любыми требованиями к строительству. Если вам нужна дополнительная помощь или руководство, позвоните нам по телефону 0203 994 5470 или воспользуйтесь нашей контактной формой.

Какой тип обогревателя?

Накопительные обогреватели

 идеально подходят для гостиных, столовых, гостиных, коридоров, лестничных площадок, офисов или кабинетов. Рекомендуемая температура для столовых и жилых комнат – 21 ℃, а для офисов и кабинетов – 18 ℃. Для расчета офисных помещений загрузите наше руководство по отоплению.Мы настоятельно рекомендуем накопительные нагреватели Dimplex Quantum из-за максимальной эффективности. Наши самые продаваемые накопительные нагреватели — линейка Dimplex XLE.

Электрические радиаторы и панельные обогреватели идеально подходят для спален, а также используются в ванных комнатах, подсобных помещениях, столовых, гостиных, офисах, кабинетах, зимних садах, коридорах и лестничных площадках. В приведенных ниже таблицах указаны размеры помещений для спален, где рекомендуемая температура составляет 18℃ (также применимо для офиса). Для других типов помещений загрузите наше подробное руководство по отоплению.Мы настоятельно рекомендуем электрические радиаторы Dimplex QRAD и панельные обогреватели Dimplex PLXE, которые являются нашими самыми продаваемыми моделями.

Как рассчитать размер обогревателя для комнаты?

Наш калькулятор электрического отопления на самом деле работает в обратном порядке, а не измеряет, как быстро тепло накапливается в помещении, мы измеряем, как быстро тепло уходит из помещения (известное как теплопотери), тогда можно фактически определить правильный размер или количество электрических нагревателей. что потребуется для обогрева помещения.Определив площадь пола, конструкцию стен и количество наружных стен, мы можем определить общее количество киловатт, необходимое для обогрева помещения (принимаем стандартную высоту потолка 2,4 м). Если у вас есть какие-либо отклонения, пожалуйста, свяжитесь с нами для дизайна. Расчеты в наших таблицах помогут вам подобрать любой обогреватель прямого действия, такой как панельный обогреватель, конвекторный обогреватель, электрический радиатор или современный накопительный обогреватель с номинальной мощностью.

Пожалуйста, выберите тип стены помещения из приведенных ниже вариантов, чтобы найти правильную таблицу размеров отопления:

Гостиные с изолированными полыми стенами
Гостиные с полыми стенами
Гостиные со сплошными стенами

Спальни с изолированными полыми стенами
Спальни с полыми стенами
Спальни со сплошными стенами

Кухни с изолированными полыми стенами
Кухни с полыми стенами
Кухни со сплошными стенами

Коммерческое отопление, включая офисы с изолированными полыми стенами
Коммерческое отопление, включая офисы с полыми стенами
Коммерческое отопление, включая офисы со сплошными стенами

 

Гостиные с изолированными полыми стенами
  • Полые изолированные стены
  • Высота потолка 2.4М
  • Комнатная температура 21℃
Площадь этажа Количество наружных стен
м2 1 2 3
12 1,12 кВт 1,28 кВт 1,68 кВт
16 1,36 кВт 1,60 кВт 1,92 кВт
20 1.68 кВт 1,92 кВт 2,32 кВт
24 2,08 кВт 2,32 кВт 2,64 кВт
28 2,16 кВт 2,48 кВт 2,96 кВт
32 2,40 кВт 2,72 кВт 3,20 кВт

 

Гостиные с полыми стенами
  • Полые стенки
  • Высота потолка 2.4М
  • Комнатная температура 21℃
Площадь этажа Количество наружных стен
м2 1 2 3
12 1,60 кВт 1,92 кВт 2,48 кВт
16 1,84 кВт 2,32 кВт 2,88 кВт
20 2.32 кВт 2,72 кВт 3,44 кВт
24 2,64 кВт 3,12 кВт 3,76 кВт
28 2,96 кВт 3,44 кВт 4,24 кВт
32 3,28 кВт 3,76 кВт 4,72 кВт

 

Гостиные со сплошными стенами
  • Сплошные стены
  • Высота потолка 2.4М
  • Комнатная температура 21℃
Площадь этажа Количество наружных стен
м2 1 2 3
12 1,84 кВт 2,16 кВт 2,88 кВт
16 2,08 кВт 2,48 кВт 3,20 кВт
20 2.64 кВт 3,12 кВт 3,92 кВт
24 2,96 кВт 3,44 кВт 4,32 кВт
28 3,28 кВт 3,92 кВт 4,80 кВт
32 3,52 кВт 4,32 кВт 5,28 кВт

 

Спальни с изолированными полыми стенами
  • Полые изолированные стены
  • Высота потолка 2.4М
  • Комнатная температура 18℃
Площадь этажа Количество наружных стен
м2 1 2 3
8 0,8 кВт 0,9 кВт 1,4 кВт
12 0,8 кВт 1,4 кВт 1,8 кВт
16 0.9 кВт 1,6 кВт 2,1 кВт
20 1,0 кВт 1,8 кВт 2,4 кВт
24 1,0 кВт 1,9 кВт 2,5 кВт

 

Спальни с полыми стенами
  • Полые стенки
  • Высота потолков 2,4м
  • Комнатная температура 18℃
Площадь этажа Количество наружных стен
м2 1 2 3
8 0.8 кВт 1,0 кВт 1,4 кВт
12 0,9 кВт 1,4 кВт 1,8 кВт
16 1,0 кВт 1,7 кВт 2,1 кВт
20 1,2 кВт 2,0 ​​кВт 2,4 кВт
24 1,2 кВт 2,1 кВт 2.5 кВт

 

Спальни со сплошными стенами
  • Сплошные стены
  • Высота потолков 2,4м
  • Комнатная температура 18℃
Площадь этажа Количество наружных стен
м2 1 2 3
8 0,8 кВт 1.3 кВт 1,7 кВт
12 0,9 кВт 1,8 кВт 2,3 кВт
16 1,2 кВт 2,1 кВт 2,7 кВт
20 1,4 кВт 2,2 кВт 3,1 кВт
24 1,5 кВт 2,3 кВт 3,4 кВт

 

Кухни с изолированными полыми стенами

 

Для всех кухонь с изоляцией полых стен предпочтителен прямой нагрев.

 

Кухни с полыми стенами

  • Сплошные стены
  • Высота потолков 2,4м
  • Комнатная температура 18℃
Площадь этажа Количество наружных стен
м2 1 2 3
10 1,12 кВт 1,6 кВт 1,92 кВт
12 1.36 кВт 1,84 кВт 2,32 кВт
14 1,6 кВт 2,08 кВт 2,48 кВт
16 1,68 кВт 2,32 кВт 2,72 кВт

 

Кухни со сплошными стенами
  • Сплошные стены
  • Высота потолков 2,4м
  • Комнатная температура 18℃
Площадь этажа Количество наружных стен
м2 1 2 3
10 1.28 кВт 1,68 кВт 2,32 кВт
12 1,52 кВт 2,16 кВт 2,64 кВт
14 1,68 кВт 2,40 кВт 2,88 кВт
16 1,92 кВт 2,64 кВт 3,12 кВт

 

Коммерческое отопление, включая офисы с изолированными полыми стенами
  • Сплошные стены
  • Потолок высотой 3м
  • Минимальная изоляция крыши 75 мм
  • Комнатная температура 21℃
Площадь этажа Количество наружных стен
м2 1 2 3
15 1.68 кВт 2,08 кВт 2,64 кВт
20 2,08 кВт 2,56 кВт 3,12 кВт
25 2,40 кВт 3,04 кВт 3,60 кВт
30 2,88 кВт 3,52 кВт 4,16 кВт
40 3,92 кВт 4,48 кВт 5.36 кВт
50 4,48 кВт 5,28 кВт 6,08 кВт

 

Коммерческое отопление, включая офисы с полыми стенами
  • Сплошные стены
  • Потолок высотой 3м
  • Минимальная изоляция крыши 75 мм
  • Комнатная температура 21℃
Площадь этажа  Количество наружных стен
м2 1 2 3
15 2.00 кВт 2,56 кВт 3,52 кВт
20 2,40 кВт 3,12 кВт 4,00 кВт
25 2,72 кВт 3,68 кВт 4,56 кВт
30 3,36 кВт 4,24 кВт 5,20 кВт
40 4,40 кВт 5,36 кВт 6.72 кВт
50 4,95 кВт 6,24 кВт 7,44 кВт

 

Коммерческое отопление, включая офисы со сплошными стенами
  • Сплошные стены
  • Потолок высотой 3м
  • Минимальная изоляция крыши 75 мм
  • Комнатная температура 21℃
Площадь этажа Количество наружных стен
м2 1 2 3
15 2.16 кВт 2,96 кВт 4,08 кВт
20 2,64 кВт 3,52 кВт 4,48 кВт
25 2,96 кВт 4,08 кВт 5,20 кВт
30 3,52 кВт 4,72 кВт 5,84 кВт
40 4,80 кВт 5,92 кВт 7.68 кВт
50 5,28 кВт 6,80 кВт 8,40 кВт

 

Если вам нужна дополнительная помощь или руководство, позвоните нашей команде профессионалов по телефону 0203 994 5470, напишите нам по электронной почте [email protected] или воспользуйтесь нашей контактной формой.

Расчет БТЕ на квадратный фут

Британская тепловая единица , или BTU, является основной единицей измерения тепла в имперской системе.Одна БТЕ — это количество тепла, необходимое для повышения температуры одного фунта воды на один градус по Фаренгейту. Когда вы сможете определить, сколько БТЕ на квадратный фут площади требуется комнате, вы сможете выбрать нагревательное устройство с нужной теплопроизводительностью для вашего дома.

Фотография Яна Калаба

Определение объема нагрева

Первый шаг в расчете необходимых вам БТЕ – это подсчет площади вашей комнаты. Некоторые общие формы комнат в доме: прямоугольные , треугольные , круглые и множественные формы .

  • Прямоугольные комнаты – Измерьте длину и ширину комнаты в футах и ​​умножьте оба числа, чтобы получить площадь в квадратных футах.
  • Треугольные комнаты – Измерьте длину и ширину комнаты в футах, умножьте оба числа и разделите произведение на 2, чтобы получить площадь в квадратных футах.
  • Круглые комнаты – Измерьте радиус комнаты (расстояние от центра до края). Умножьте радиус на себя, а затем на ? чтобы получить свои квадратные метры.Если в комнате есть полукруглая часть, найдите квадратные метры, как если бы это был обычный круг, а затем разделите на два.
  • Комнаты с несколькими формами – Разделите комнату на несколько форм, найдите площадь каждой отдельной формы, а затем просуммируйте площади.

БТЕ нагревательных или охлаждающих устройств, таких как электрические камины или кондиционеры, сообщается как «БТЕ», но это сокращение для БТЕ в час. Чтобы определить количество БТЕ на квадратный фут, необходимое для обогрева помещения, просто умножьте площадь на 20 БТЕ на квадратный фут. Например, если площадь комнаты составляет 1000 квадратных футов, для ее обогрева потребуется 20 000 БТЕ .

Хотя этот метод прост, он не принимает во внимание изоляцию, возраст или климат вашего дома.

Другие факторы, влияющие на теплопроизводительность

Теплопроизводительность помещения — это количество БТЕ, необходимое для его надлежащего обогрева. Расчет теплоемкости помещения включает в себя применение эффектов возраста дома, изоляции и климата, в котором он находится.

  • Возраст и теплоизоляция. Из-за пересмотра строительных норм и правил новые здания обычно лучше изолированы, чем старые. В результате этого им требуется меньше БТЕ в час на квадратный фут.
  • Климат. В более теплом климате для надлежащего обогрева дома требуется меньше БТЕ (30–35 БТЕ), в то время как в более холодном климате для обеспечения достаточного тепла требуется больше БТЕ (50–60 БТЕ).

© STL Stores Inc.

Пример 1)

На рисунке ниже комната в правом нижнем углу имеет размеры 12 футов 4 дюйма на 18 футов 4 дюйма, или 12.3 фута х 18,3 фута. Если вы посчитаете квадратные метры комнаты, она составит около 225 квадратных футов.

План этажа предоставлен Dhlinva . Нажмите, чтобы увеличить.

Допустим, комната, которую вы пытаетесь обогреть, находится в новом доме в Сан-Диего: коэффициент нагрева комнаты будет около 30 БТЕ на квадратный фут, поскольку это должна быть изолированная комната в более теплом климате. Если вы умножите коэффициент нагрева на квадратные метры, вы получите около 6750 БТЕ в час.

Эффективность нагревательных устройств

Тепловые устройства оцениваются по количеству БТЕ, которые вы получаете, а не по количеству БТЕ, которые они генерируют.Какая часть произведенного входного тепла доходит до вас в виде выходного тепла , также известна как КПД нагревательного устройства. Этот КПД выражается в процентах, обычно как отношение выходного тепла к подводимому теплу.

Эффективность такого устройства, как современный электрический камин, оценивается в 80 или 90 процентов. Чтобы применить это к вашей тепловой мощности, разделите тепловую мощность помещения на КПД устройства. В приведенном выше примере 6750 БТЕ в час, разделенные на 0.9 составляет 7500 БТЕ в час. Имея эту информацию, мы теперь можем видеть, что для правильного обогрева комнаты вам понадобится камин с мощностью 7500 БТЕ в час.

44,5-дюймовый трансформируемый электрический камин Carrington Faux Slate — бесплатная доставка и налог с продаж не взимается*

Приобретение отопительных приборов

Камин — это больше, чем эстетическое дополнение вашего дома; это функциональный предмет мебели, который согреет вас и вашу семью.

Leave Comment

Ваш адрес email не будет опубликован.