Ток смертельный для человека: Сила тока, смертельная для человека

Содержание

Сила тока, смертельная для человека

    Смертельным для человека является ток силой 0,1 а и выше. Ток силой 0,05—0,10 а очень опасен, при воздействии на человека вызывает обморочное состояние уже нри силе тока 0,03 а человек не может отор- [c.339]

    В связи с этим в ряде случаев даже ток осветительной сети может оказаться смертельным для человека, так как сила тока при прохождении через тело человека может достигнуть (согласно закону Ома) [c.137]

    Переменный ток оказывает более сильное действие, чем постоянный. Применяемый в промышленности переменный ТОК средней частоты представляет для человека определенную опасность уже при силе тока 0,01 А, а поражение током силой 0,1 А и более приводит к смертельному исходу. [c.202]


    В сухих помещениях опасным для человека считается напряжение выше 36 В. Смертельной является сила тока 0,1 А, а ток 0,05 А вызывает судорожное сокращение мышц, не позволяющее человеку оторваться от источника поражающего напряжения.
[c.103]

    Действие статического электричества на человека смертельной опасности не представляет, поскольку сила тока составляет небольшую величину. Искровый разряд статического электричества человек ощущает как тол- [c.104]

    Опасным для человека является переменный ток промышленной частоты более 15 мА, при котором человек не может самостоятельно освободиться от источника тока. Ток в 50 мА вызывает тяжелое поражение, а ток в 100 мА, воздействующий более 1—2 с, является смертельно опасным. При поражении человека постоянным током опасной считается сила тока 20—25 мА, так как пострадавший не может самостоятельно освободиться от источника тока. 

[c.34]

    Ток такой силы для человека является смертельно опасным. [c.14]

    Действие статического электричества на человека смертельной опасности не представляет, поскольку сила тока невелика. Искровой разряд статического электричества человек ощущает как толчок или судорогу. При внезапном уколе возможен испуг и вследствие рефлекторных движений человек может сделать непроизвольно движения, приводящие к падению с высоты, попаданию в неогражденные части машин и др. Имеются также сведения, что длительное воздействие статического электричества неблагоприятно отражается на здоровье работающего, на его психофизиологическом состоянии. Вредно влияет на состояние человека также электрическое поле, возникающее при статической электризации 

[c.192]

    Согласно закону Ома, при расчетном сопротивлении тела человека 1000 Ом и напряжении осветительной сети 220 В сила тока составит 220 мА, т. е. при такой силе тока возможен смертельный исход. [c.41]

    Наиболее опасным является переменный ток низкой частоты (в том числе частотой 50 Гц). При силе переменного тока до 0,015 А опасности для человека нет, но уже при силе более 0,015 А возможны тяжелые последствия. За величину отпускающей силы тока принята величина 0,01 А, токи силой 0,09—0,1 А и выше являются смертельными.

[c.77]

    Степень тяжести поражения определяется величиной тока, протекающего через тело человека. Ток силой 0,05 а является уже опасным, а ток силой 0,1 а — смертельным. [c.34]

    Ток такой силы смертельно опасен для человека. [c.16]

    Сила электрического тока, проходящего через тело человека, является основным фактором, определяющим исход поражения. Человек ощущает действие переменного тока промышленной частоты при его величине около 1 мА. При такой силе тока появляется раздражение чувствительных нервных окончаний в местах прикосновения к токоведущей части. При силе тока 8—10 мА раздражение распространяется более глубоко, но человек может самостоятельно освободиться от действия тока при силе тока 10—15 мА возникает локальная судорога и человек не может разжать пальцы руки, в которой зажата токоведущая часть. При силе тока 25—50 мА и частоте 50 Гц, помимо судорожного сокращения мышц конечностей, возникают судороги дыхательных мышц, в результате которы может наступить смерть от удушья.

Сила тока 100 мА и более считается смертельной. При такой силе тока и частоте 50—60 Гц происходит беспорядочное сокращение сердечных мышц (фибрилляция сердца). Кратковременное (до 1—2 с) действие больших токов (более 5 А) не вызывает фибрилляции сердца. При такой силе тока сердечная мышца резко сокращается и остается в таком состоянии до отключения тока, после чего продолжает работать. [c.11]


    Следует всегда помнить, что действие электрического тока на человеческий организм зависит от многих факторов. Большое значение при этом имеет частота тока, время прохождения его через тело человека, величина участка пораженного тела, а также состояние организма человека. В настоящее время установлено, что прохождение электрического тока силой более 100 мА через тело человека, как правило, приводит к смертельному исходу. Ток силой 50—100 мА вызывает потерю сознания, а менее 50 мА — сокращение мышц, так что иногда пострадавший не в состоянии разжать руки и освободиться от токонесущих поверхностей самостоятельно.
[c.9]

    Электрический ток силой более 0,1 а при напряжении до 1000 в представляет, как правило, смертельную опасность для человека. Если человеку в этом случае не оказать немедленную помощь, то спустя 6—8 мин его уже нельзя будет спасти. При поражении электрическим током нарушается деятельность жизненно важных центров и органов человека центральной нервной системы, сердечнососудистой системы и дыхания. 

[c.286]

    Электрический ток, проходя через тело человека, может вызвать тяжелые травмы, а иногда и смерть. Степень поражения электрическим током определяется его силой, характером пути прохождения тока через тело человека, длительностью его прохождения, его частотой и индивидуальными свойствами человека. Наиболее опасен ток промышленной частоты. Токи высокой частоты не вызывают электрического шока, но при длительном прохождении могут привести к чрезмерному нагреванию илн ожогу отдельных частей тела. При силе тока промышленной частоты 0,05 А, проходящего через человека, возможен смертельный исход, а при силе тока 0,1 Л и более неизбежен смертельный исход.

Наиболее опасные поражения возникают при прохождении тока через сердце и мозг. [c.461]

    Электрофоретическое оборудование обычно работает во влажной атмосфере, причем величины напряжения и силы тока, как правило, превышают безопасные пределы. Неправильное обращение с приборами уже привело к нескольким несчастным случаям со смертельным исходом. Омическое сопротивление человеческого тела, обычно составляющее 10 —10″ Ом, существенно зависит от физиологического состояния человека и влажности кожи. Для человека опасен даже ток силой 10 мА, так как при поражении током пострадавший обычно не может сам отсоединиться от проводника. Ток силой более 25 мА вызывает серьезные повреждения в организме —остановку сердца, паралич дыхательных мышц, ожоги и т. д., которые могут привести к смерти. Учитывая, что сопротивление тела 10 Ом, напряжение всего лишь в 100 В способно привести к несчастному случаю в результате уменьшения сопротивления вследствие шока, сопровождающегося потоотделением и (или) повреждением кожи, опасно даже меньшее напряжение.

Таким образом, приборы для электрофореза и изоэлектрического фокусирования, являющиеся источниками электрического тока, могут представлять опасность для жизни. Если источники питания стабилизованы, то опасность возрастает, так как напряжение во время разъединения проводов или разрыва проводящих соединений в электрофоретической камере увеличивается. При работе на приборе для дискретного электрофореза в полиакриламидном геле, который обычно снабжен стабилизованным источником питания, риск часто недооценивают. 
[c.327]

    Опасным для организма человека является ток силой более 15 мА, при котором трудно самостоятельно оторваться от электродов, и смертельным — 100 мА и более. [c.206]

    Высокое напряжение. Наибольшую опасность представляют искровые генераторы, дающие на выходе напряжение до 20 кв при довольно большой мощности. Разряд конденсаторов колебательного контура, заряженных до этого напряжения, через человека может привести к смертельному исходу.

Генераторы, выпускаемые промышленностью (например, вся серия генераторов ИГ), снабжены целым рядом защитных устройств дверцы шкафа, в котором расположены все приборы, имеют блокировку, отключающую питание при открывании шкафа вывод сделан специальным высоковольтным кабелем, корпус снабжен клеммой для заземления. При работе следует строго соблюдать правила обращения, предусмотренные инструкцией, в частности не включать генератор, не присоединенный к хорошему заземлению. Ни в коем случае нельзя для заземления пользоваться трубами водопроводной и отопительной систем. Если лаборатория не оборудована специальными заземленными шинами, то заземление нужно сделать, руководствуясь разработанными для этого правилами техники безопасности при работе с высоким напряжением. Этими же правилами следует руководствоваться при проектировании и эксплуатации нестандартных высоковольтных генераторов, монтируемых для тех или иных задач силами лаборатории. Применение ограждений из заземленных металлических сеток, специального высоковольтного кабеля, устройство блокировок, отключающих питающее напрян и разряжающих конденсаторы,— все эти меры должны неукоснительно соблюдаться.
Меньшую опасность представляют источники высокочастотного напряжения для питания газоразрядных трубок, несмотря на то что напряжение соответствующих генераторов достигает 3—5 кв. Замыкание такого генератора через тело обычно никаких вредных последствий, кроме легкого кожного ожога, не дает. Это объясняется скин-эффектом — распространением высокочастотного тока только в тонком поверхностном слое проводника. Наоборот, источники постоянного тока напряжением около 1000 б, применяемые, например, для питания трубок с полым катодом, представляют довольно значительную опасность. Правда, мощность этих источников обычно невелика, что снижает их опасность, если в высоковольтную цепь не включены конденсаторы большой емкости. [c.50]


    В трехфазной сети с глухозаземленной нейтралью (рис. 1,в) сила тока, проходящего через человека, определяется фазным напряжением, сопротивлением тела человека и сопротивлением заземления нейтрали / о-Так как чел больше Яо, в этом случае опасность поражения человека электрическим током увеличивается по сравнению с опасностью в предыдущем случае. Однако при однофазном прикосновении, когда другая фаза замыкается на землю (аварийный режим), человек оказывается под полным линейным напряжением, и сила тока может оказаться смертельной. [c.44]

    Степень опасности от электрического удара зависит от силы тока, протекающего через тело человека. Сила тока в свою очередь зависит от величины приложенного напряжения и от сопротивления человеческого тела, на которое сильно влияет загрязненность и влажность кожи. Сопротивление человеческого тела колеблется от нескольких дe яtкoв тысяч до нескольких сотен омов. Поэтому при неблагоприятном случае напряжение в несколько десятков вольт может оказаться опасным. На одном из магниевых заводов был случай со смертельным исходом от напряжения 60 в. Имеет значение продолжительность воздействия тока на организм человека, частота переменного тока и индивидуальные особенности организма. [c.232]

    Можно ли считать, что протекание тока силой ме нее 6 мА через организм человека вполне безопасно Ни в коем случае Пороговые значения неотпускающе го тока определяются экспериментально — при этом испытуемый держит электрод в руке На практике элек трическая цепь далеко не всегда возникает по схеме ладонь—ладонь или ладонь—ноги Вполне вероятны и в действительности происходят поражения при ко topыx ток проходит через тыльную часть руки, пред плечье или голень В то же время на теле человека, в том числе на тыльной части рук, имеются чувствитель ные к току (активные) места Образование электриче ских цепей с участием этих уязвимых мест, приводит к тяжелым поражениям и смерти даже при очень ма лых токах Важно что смерть наступает и в тех слу чаях когда путь тока не лежит через жизненно важные органы — сердце, легкие мозг Зарегистрированы по ражения со смертельным исходом при напряжении 220 В и ниже, когда с токоведущими частями сопри касалась только одна рука и путь тока проходил от тыльной стороны руки к ладойи или даже с одной сто роны пальца на другую [32] [c. 99]


Сила тока, смертельная для человека — Справочник химика 21

Справочник химика 21

Химия и химическая технология

Сила тока, смертельная для человека

    Смертельным для человека является ток силой 0,1 а и выше. Ток силой 0,05—0,10 а очень опасен, при воздействии на человека вызывает обморочное состояние уже нри силе тока 0,03 а человек не может отор- [c.339]

    В связи с этим в ряде случаев даже ток осветительной сети может оказаться смертельным для человека, так как сила тока при прохождении через тело человека может достигнуть (согласно закону Ома) [c.137]


    В сухих помещениях опасным для человека считается напряжение выше 36 В. Смертельной является сила тока 0,1 А, а ток 0,05 А вызывает судорожное сокращение мышц. не позволяющее человеку оторваться от источника поражающего напряжения. [c.103]

    Опасным для человека является переменный ток промышленной частоты более 15 мА, при котором человек не может самостоятельно освободиться от источника тока. Ток в 50 мА вызывает тяжелое поражение, а ток в 100 мА, воздействующий более 1—2 с, является смертельно опасным. При поражении человека постоянным током опасной считается сила тока 20—25 мА, так как пострадавший не может самостоятельно освободиться от источника тока. [c.34]

    Ток такой силы для человека является смертельно опасным. [c.14]

    Действие статического электричества на человека смертельной опасности не представляет, поскольку сила тока невелика. Искровой разряд статического электричества человек ощущает как толчок или судорогу. При внезапном уколе возможен испуг и вследствие рефлекторных движений человек может сделать непроизвольно движения, приводящие к падению с высоты, попаданию в неогражденные части машин и др. Имеются также сведения, что длительное воздействие статического электричества неблагоприятно отражается на здоровье работающего, на его психофизиологическом состоянии. Вредно влияет на состояние человека также электрическое поле. возникающее при статической электризации [c. 192]

    Согласно закону Ома, при расчетном сопротивлении тела человека 1000 Ом и напряжении осветительной сети 220 В сила тока составит 220 мА, т. е. при такой силе тока возможен смертельный исход. [c.41]

    Наиболее опасным является переменный ток низкой частоты (в том числе частотой 50 Гц). При силе переменного тока до 0,015 А опасности для человека нет, но уже при силе более 0,015 А возможны тяжелые последствия. За величину отпускающей силы тока принята величина 0,01 А, токи силой 0,09—0,1 А и выше являются смертельными. [c.77]


    Ток такой силы смертельно опасен для человека. [c.16]

    Сила электрического тока. проходящего через тело человека. является основным фактором. определяющим исход поражения. Человек ощущает действие переменного тока промышленной частоты при его величине около 1 мА. При такой силе тока появляется раздражение чувствительных нервных окончаний в местах прикосновения к токоведущей части. При силе тока 8—10 мА раздражение распространяется более глубоко, но человек может самостоятельно освободиться от действия тока при силе тока 10—15 мА возникает локальная судорога и человек не может разжать пальцы руки, в которой зажата токоведущая часть. При силе тока 25—50 мА и частоте 50 Гц, помимо судорожного сокращения мышц конечностей, возникают судороги дыхательных мышц, в результате которы может наступить смерть от удушья. Сила тока 100 мА и более считается смертельной. При такой силе тока и частоте 50—60 Гц происходит беспорядочное сокращение сердечных мышц (фибрилляция сердца ). Кратковременное (до 1—2 с) действие больших токов (более 5 А) не вызывает фибрилляции сердца. При такой силе тока сердечная мышца резко сокращается и остается в таком состоянии до отключения тока, после чего продолжает работать. [c.11]

    Электрический ток силой более 0,1 а при напряжении до 1000 в представляет, как правило, смертельную опасность для человека. Если человеку в этом случае не оказать немедленную помощь, то спустя 6—8 мин его уже нельзя будет спасти. При поражении электрическим током нарушается деятельность жизненно важных центров и органов человека центральной нервной системы. сердечнососудистой системы и дыхания. [c.286]

    Электрический ток, проходя через тело человека. может вызвать тяжелые травмы, а иногда и смерть. Степень поражения электрическим током определяется его силой, характером пути прохождения тока через тело человека. длительностью его прохождения, его частотой и индивидуальными свойствами человека. Наиболее опасен ток промышленной частоты. Токи высокой частоты не вызывают электрического шока, но при длительном прохождении могут привести к чрезмерному нагреванию илн ожогу отдельных частей тела. При силе тока промышленной частоты 0,05 А, проходящего через человека. возможен смертельный исход, а при силе тока 0,1 Л и более неизбежен смертельный исход. Наиболее опасные поражения возникают при прохождении тока через сердце и мозг. [c.461]


    Электрофоретическое оборудование обычно работает во влажной атмосфере, причем величины напряжения и силы тока. как правило, превышают безопасные пределы. Неправильное обращение с приборами уже привело к нескольким несчастным случаям со смертельным исходом. Омическое сопротивление человеческого тела. обычно составляющее 10 —10″ Ом, существенно зависит от физиологического состояния человека и влажности кожи. Для человека опасен даже ток силой 10 мА, так как при поражении током пострадавший обычно не может сам отсоединиться от проводника. Ток силой более 25 мА вызывает серьезные повреждения в организме —остановку сердца. паралич дыхательных мышц, ожоги и т. д. которые могут привести к смерти. Учитывая, что сопротивление тела 10 Ом, напряжение всего лишь в 100 В способно привести к несчастному случаю в результате уменьшения сопротивления вследствие шока, сопровождающегося потоотделением и (или) повреждением кожи. опасно даже меньшее напряжение. Таким образом. приборы для электрофореза и изоэлектрического фокусирования. являющиеся источниками электрического тока. могут представлять опасность для жизни. Если источники питания стабилизованы, то опасность возрастает, так как напряжение во время разъединения проводов или разрыва проводящих соединений в электрофоретической камере увеличивается. При работе на приборе для дискретного электрофореза в полиакриламидном геле. который обычно снабжен стабилизованным источником питания. риск часто недооценивают. [c.327]

    Опасным для организма человека является ток силой более 15 мА, при котором трудно самостоятельно оторваться от электродов, и смертельным — 100 мА и более. [c.206]

    Высокое напряжение. Наибольшую опасность представляют искровые генераторы. дающие на выходе напряжение до 20 кв при довольно большой мощности. Разряд конденсаторов колебательного контура. заряженных до этого напряжения, через человека может привести к смертельному исходу. Генераторы, выпускаемые промышленностью (например, вся серия генераторов ИГ), снабжены целым рядом защитных устройств дверцы шкафа, в котором расположены все приборы, имеют блокировку, отключающую питание при открывании шкафа вывод сделан специальным высоковольтным кабелем. корпус снабжен клеммой для заземления. При работе следует строго соблюдать правила обращения. предусмотренные инструкцией, в частности не включать генератор, не присоединенный к хорошему заземлению. Ни в коем случае нельзя для заземления пользоваться трубами водопроводной и отопительной систем. Если лаборатория не оборудована специальными заземленными шинами, то заземление нужно сделать, руководствуясь разработанными для этого правилами техники безопасности при работе с высоким напряжением. Этими же правилами следует руководствоваться при проектировании и эксплуатации нестандартных высоковольтных генераторов, монтируемых для тех или иных задач силами лаборатории. Применение ограждений из заземленных металлических сеток, специального высоковольтного кабеля. устройство блокировок, отключающих питающее напрян Смотреть страницы где упоминается термин Сила тока, смертельная для человека. [c.9]    [c.30]    Меры электробезопасности в химической промышленности (1983) — [ c.16 ]

ПОИСК

http://chem21.info

В Помощь Молодому Офицеру — Воздействие электрического тока на организм человека. Электробезопасность

Опытные электрики говорят: «Главная опасность тока в том, что он невидим!»

Электрический ток при действии на человеческий организм может вызывать тяжелые последствия, вплоть до смертельного исхода. Установлено, что токи в 50 — 100 мА опасны для жизни человека, а токи свыше 100 мА смертельны. Это о токах, которые проходят через человека.

Величина тока, который проходит через организм человека, зависит не только от напряжения, под которое попал человек, но и от сопротивления его тела.

Тело человека обычно имеет сопротивление от 100 кОм до 200 кОм. Однако, если человек прикасается к источнику напряжения не в одной точке, а на площади (например при работе неизолированным монтажным инструментом), если кожа человека оказалась влажной, то общее сопротивление тела может уменьшиться до 1 кОм. В таких условиях напряжение даже в 40 В может оказаться  смертельным.

Человека поражает не напряжение, а ток. Наиболее опасным является переменный ток промышленной частоты 50 гц. Постоянный ток не так опасен.

По характеру влияния на человека различают ощутимый, неотпускающий и смертельный ток.

Ощутимый ток — электрический ток, который человек начинает чувствовать: это  примерно около 1. 1 мА при переменном токе частотой 50 Гц и около 6 мА при постоянном токе.

Действие ограничивается при переменном токе слабым зудом и легким пощипыванием или покалыванием, а при постоянном токе — ощущением нагрева кожи на участке, который касается   токоведущих частей.

Неотпускающий ток — ток, который вызывает при прохождении через тело человека судорожные сокращения мышц руки, в которой зажат проводник, а его наименьшее значение называется пороговым неотпускающим током. При переменном токе (50гц) величина этого тока находится в пределах 20-25 мА.

При постоянном токе неотпускающих токов собственно говоря, нет, поскольку при определенных значениях тока человек может самостоятельно разжать руку, в которой зажатый проводник и таким образом оторваться от токоведущих частей. Однако, в момент отрыва возникают болезненные сокращения мышц, аналогичные по характеру и болевым ощущением тем, которые наблюдаются при переменном токе. Сила тока составляет приблизительно 50-80 мА.

Смертельный ток — переменный (50 Гц) ток 50 мА и более, проходя через тело человека по пути рука — рука или рука — нога, действует как раздражитель на мышцы сердца. Это опасно, поскольку через 1-3 сек. с момента замыкания круга может наступить фибрилляция или остановка сердца. При этом прекращается кровообращение и соответственно в организме возникает недостаток кислорода; это, в свою очередь, быстро приводит к прекращению дыхания, то есть наступает смерть.

При частоте 50 Гц смертельным током является ток  от 50 мА.

При постоянном токе средним значениям порогового смертельного тока следует считать 300 мА.

Существует документ ПМБЭ (правила  и меры безопасности при работе с электрическими установками).

Военнослужащие, которые работают с такими установками, знают правила. Для тех, кто не очень связан с ними можно посмотреть документ ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ И ИСПЫТАНИЮ СРЕДСТВ ЗАЩИТЫ, ИСПОЛЬЗУЕМЫХ В ЭЛЕКТРОУСТАНОВКАХ. Приказ Минэнерго России 2003 года № 261Открыть документ и скачать его Здесь и о защитных поясах, и о респираторах – все, с чем приходится работать электрикам.

И совет опытного электрика

Сегодня на работе старый электрик учил молодого:

— Если силовой кабель лежит на земле, а ты не знаешь, под напругой он или нет, подходи медленно, широкими шагами.

— Учили ж маленькими.

— Маленькими это сваливать оттуда, когда тебя напруга врасплох застала, а приближаться надо широкими, чтобы раньше разницу потенциалов почуять, пока слабая. Если яйца задрожали и нос зачесался, ну, или наоборот, значит там тебе не рады, вот тогда вали мелкими и не отсвечивай.

При работе с электроустановками лучше посмотреть сайт http://www.znaytovar.ru/gost/2/POT_R_O1400000598_Polozhenie_R.html.

6 опасностей электричества

В современном мире невозможно представить нашу жизнь без электроэнергии. Большинство устройств и приборов, окружающих нас, в той или иной мере зависят в своей работе от наличия электропитания, а без освещения наших квартир и домов уже невозможно даже представить современную жизнь. Однако, как и любая энергия, помимо созидания, электричество несет и определенные опасности, о которых будет идти речь в этой статье.

 

Итак, таких опасностями являются: короткое замыкание (или просто КЗ, как его часто называют), перегрузка электрической сети, перенапряжение, повышение напряжения в сети выше нормального уровня, поражение человека электрическим током, пожар. Расскажем о каждом явлении подробнее.

 

Короткое замыкание (КЗ) можно представить в виде ситуации, когда проводники провода или кабеля электрической сети замыкаются друг на друга. Такая авария сопровождается появлением токов, которые могут достигать сотен и даже тысяч ампер и является одним из самых разрушительных явлений. Основным последствием КЗ является нагрев всех элементов электрической сети, что может привести к выходу их из строя и даже разрушению, но все же главной опасностью является риск возникновения пожара. Именно поэтому в электрической сети важно иметь защитные устройства, которые не только вовремя обнаружат КЗ, но и гарантировано и максимально быстро отключат его до того, как последствия станут необратимыми.

 

Перегрузка электрической сети еще один из типов аварии в электрической сети, при котором ток в цепи превышает допустимый для элементов электрической сети. Это не менее опасное явление, т.к. не смотря на меньшие токи, является более длительным и может привести нагреву электрических конструкций и в конечном итоге, к пожару. К сожалению, перегрузка является одним из самых распространенных явлений и возникает она, как правило, по вине самих людей. Многим знакома ситуация, когда не хватает розеток в доме. Поступают в этом случае просто – применяют устройства типа удлинители с несколькими гнездами, но при этом не учитывается, что суммарный потребляемый ток на данном участке электрической цепи может превысить допустимый, скажем для розетки, к которой подключен удлинитель. Результат предсказуем – розетка начнет нагреваться и, если данный участок цепи не отключить, в итоге воспламениться, что может привести к пожару. Именно по этому, защита от перегрузки обязательно нужна в электрической сети.

 

В данный момент функции защиты от перегрузки и КЗ выполняют устройства, называемые автоматическими выключателями. Это компактные устройства, сочетающие защитные свойства с рядом дополнительных функций. Например, в автоматических выключателях серии Acti 9 от Schneider Electric, можно с помощью дополнительных контактов, контролировать состояние включено/выключено и своевременно обнаружить момент аварийного отключения. Это удобно, если речь идет о загородном доме. Хозяин бесспорно будет чувствовать себя гораздо спокойнее за сохранность своего имущества, имей он возможность удаленно контролировать ситуацию.

 

Однако, короткими замыканиями и перегрузками опасности электричества не ограничиваются. Еще более серьезной опасностью является поражение человека электрическим током. В этом случае речь идет уже о сохранении жизни и здоровья нашего и наших близких, особенно детей и вопрос этот требует самого пристального внимания.

 

Давайте разберемся, что может стать причиной поражения электрическим током. Возможны несколько вариантов: когда опасный потенциал попадает на корпус устройства в результате повреждения. Например, в изоляции провода внутри стиральной машины появилась трещина, и небольшой электрический ток «утекает» на металлический корпус, на котором из-за этого появляется опасное напряжение или когда человек по неосторожности касается частей под напряжением. Не стоит сбрасывать со счетов и тот случай, когда ребенок из любопытства засовывает в розетку посторонние предметы – такое тоже увы не редкость…

 

Что же происходит, когда человек попадает под действие электрического тока? Этот вопрос достаточно изучен и подробно изложен во многих источниках. Нужно сказать только одно – протекание тока через организм человека СМЕРТЕЛЬНО ОПАСНО и с большой долей вероятности может привести к летальному исходу. Поэтому, устройства, способные защитить от поражения электрическим током ОБЯЗАТЕЛЬНО должны быть установлены в каждом электрическом щите, особенно там, где присутствуют дети! И эти устройства называются Выключателями Дифференциального Тока (часто употребляемое название – устройство защитного отключения — УЗО).

 

Что же такое УЗО и как оно защищает нас? По сути это выключатель, который сравнивает ток на входе и на выходе одной электрической цепи. Если токи равны или разница минимальная, значит электрическая цепь и присоединенный к ней прибор исправны, если же разница превышает заданное значение, называемое уставкой срабатывания – УЗО отключается, обесточивая электрическую цепь. Величина уставки отключения для УЗО очень мала и составляет 10 или 30 мА (миллиАмпер и тысячных долей Ампера), данные токи являются безопасными для человека, и в сочетании с быстротой отключения УЗО обеспечивается гарантированная защита жизни и здоровья человека. Это объясняет требование обязательного применения УЗО для защиты розеток в т. ч. в жилых домах, электрических цепей во влажных помещениях (санузлы и ванные комнаты, сауны, бани и т.п.).

 

Но только защитой от поражения электрическим током роль УЗО не ограничивается, отдельно стоит отметить способность УЗО защищать от возникновения пожара. Дело в том, что появляющаяся «утечка» тока около 300 мА (миллиАмпер) способна вызвать нагрев и возгорание элементов строительных конструкций. В этом случае знакомый нам автоматический выключатель не отключится, т.к. ток все-таки мал, а вот УЗО как раз способно обнаружить и защитить от такой опасности. УЗО с уставкой срабатывания 100 и 300 мА (их называют иногда противопожарными) устанавливаются в начале электрической цепи и дополняют защиту от токов КЗ и перегрузки, а также защиту от поражения током. Такие устройства не используются для защиты от поражения током!

 

Итак, мы обеспечили защиту людей от опасностей, которые таит в себе электрическая энергия, но как быть с окружающей нас техникой? Ведь каждый владелец хотел бы, что бы любимый ноутбук или телевизор работали безотказно долгие годы. Давайте рассмотрим, какие же риски существуют для бытовой техники.

 

Одной из частых причин выхода бытовых электрических устройств из строя является повышение напряжения выше допустимых значений. Статистика неумолима – сообщения о сгоревших холодильниках, телевизорах и другой технике появляются периодически и причина, как правило, колебания напряжения. В чем же причина таких явлений? Для понимания причин повышения напряжения, стоит сказать несколько слов о том, какие же напряжения действуют в 3-х фазной электрической сети.

 

Итак, в 3-х фазной сети действуют 2 вида напряжения: линейное – напряжение между двумя фазами и фазное, это напряжение между фазой и рабочим нулевым проводником, (его еще часто называют «нулем» или «нейтралью»). Соответственно, линейное напряжение равно 380 В, фазное — 220 В. В бытовой электросети мы используем фазное напряжение, но при обрыве нулевого проводника (так называемом «обрыве нуля») это напряжение может достигать 1,73* фазного напряжения, или 380 В. Таким образом, подключенные к сети устройства в этом момент окажутся под напряжением, на которые не расчитаны и будут выведены из строя или, что еще хуже, загорятся и могут вызвать пожар.

 

Защитить оборудование в доме от подобной опасности может устройство, называемое реле напряжения. Это компактный защитный элемент сети, который устанавливается в электрическом щитке и контролирует напряжение в сети. Как только напряжение превышает заданный порог, устройство отключает участок сети, но само при этом остается включенным. После того, как напряжение вновь станет нормальным, реле напряжения снова включит питание. Таким образом реле напряжения позволяет защитить от повреждения подключенное оборудование.

 

Еще одним опасным для бытового оборудования фактором являются так называемые перенапряжения, причиной которых являются грозовые разряды и внутренние процессы электрических сетей. Обычно этот вид опасности незаслуженно забывают при установке защитного оборудования в электрическом щите, а между тем, перенапряжения, вызванные грозовыми разрядами часто являются причиной не только сбоев в работе электрического и, особенно, электронного оборудования, но и выводят это оборудование из строя, что требует от владельцев дорогостоящего ремонта. Какова же причина подобных явлений? Ответ лежит в школьном курсе физики. Представим здание, электроснабжение которого осуществляется по воздушной линии электропередач (ВЛ). Во время грозы разряд молнии распространяет вокруг себя электромагнитные колебания, которые наводят в проводниках ВЛ напряжение. Далее по проводам   наведенное напряжение попадает в сеть нашего дома и воздействует на подключенное к сети оборудование. Учитывая, что напряжение разряда молнии может достигать миллиона вольт, в сети наводится напряжение, порой достигающее нескольких тысяч вольт и имеющее длительность тысячные доли секунды. Конечно же, оборудование, особенно имеющее в своем составе электронные блоки, не в состоянии без последствий выдержать такие перенапряжения. В лучшем случае это вызовет сбой в работе, но чаще всего при таких воздействиях речь идет о выходе оборудования из строя. Однако и от таких опасностей можно защититься с помощью Устройств Защиты от импульсных перенапряжений (УЗИП) или как их еще называют ограничителей перенапряжений (ОПН). Установленные в электрическом щите, они способны ограничить импульс перенапряжения до безопасных значений, тем самым защитив оборудование, подключенное к сети. Современные УЗИП способны защитить электрическую сеть дома даже если разряд молнии ударит прямо в провод линии электропередач. Такие устройства есть в линейке УЗИП Acti 9, производимых Schneider Electric.

 

Итак, мы рассмотрели все виды опасностей, которые могут подстерегать нас при пользовании электрической энергией. Однако, если правильно выбрать и установить защитные устройства, то можно защитить наш дом и нас самих и сделать его безопасным и комфортным.


Смертельное поражение постоянным электрическим током низкого напряжения

Первый случай летального исхода от поражения электрическим током произошел 133 года назад [1]. По отчетным данным БСМЭ РФ, количество смертельных случаев от воздействия электрическим током за последние 5 лет составило: в 2007 г. — 1720, в 2008 г. — 1396, в 2009 г. — 1162, в 2010 г. — 1278, в 2011 г. — 1234. Число экспертиз смертельного поражения электрическим током в практике экспертных подразделений СПб ГБУЗ «Бюро судебно-медицинской экспертизы» в 2007 г. — 24, в 2008 г. — 19, в 2009 г. — 19, в 2010 г. — 14, в 2011 г. — 16. Наряду с поражением «бытовым» переменным током (220 В) встречаются случаи смертельных исходов при поражении постоянным током так называемого «безопасного» напряжения (12 В). Анализ специальной литературы показывает, что смертельные исходы при малом напряжении (10—24 В) достаточно редко встречаются в экспертной практике [2, 3]. Все подобные случаи индивидуальны и порой вызывают значительные затруднения в ходе экспертного исследования.

Удельное объемное сопротивление кожи составляет от 3 до 20 кОм [4, 5]. Согласно ГОСТ 12.1.038—82 «Электробезопасность. Предельно допустимые значения напряжений прикосновения и токов» напряжения  прикосновения  и  токи,  протекающие  через  тело человека  при  нормальном (неаварийном) режиме электроустановки,  не должны превышать следующих значений:

— переменный ток, частота 50 Гц, напряжение не более 2 В, величина (сила) тока не более 0,3 мА;

— переменный ток, частота 400 Гц, напряжение не более 3 В, величина (сила) тока не более 0,4 мА;

— постоянный ток, напряжение не более 8 В, величина (сила) тока не более 1,0 мА [6].

С уменьшением длительности воздействия значение допустимых для человека токов существенно увеличивается, так, при сокращении времени воздействия с 1 до 0,1 с допустимая сила тока возрастает в 16 раз. Кроме того, кратковременное воздействие электрического тока уменьшает опасность поражения человека благодаря некоторым особенностям работы его сердца. Продолжительность одного периода кардиоцикла составляет 0,75—0,85 с. В каждом кардиоцикле наблюдается период систолы, когда желудочки сердца сокращаются и выталкивают кровь в артериальные сосуды (на электрокардиограмме (ЭКГ) он соответствует пику QRS). Фаза окончания сокращения желудочков и перехода их в расслабленное состояние (на ЭКГ соответствует периоду Т) сменяется периодом диастолы, когда желудочки вновь наполняются кровью. Установлено, что сердце наиболее чувствительно к воздействию электрического тока во время Т-фазы кардиоцикла. Для того чтобы возникла фибрилляция сердца, необходимо совпадение по времени воздействия тока с Т-фазой, продолжительность которой равна 0,15—0,2 с. При условии сокращения длительности воздействия электрического тока вероятность такого совпадения становится меньше, а следовательно, уменьшается опасность фибрилляции сердца. В случае несовпадения времени прохождения электрического тока через человека с длительностью Т-фазы его кардиоцикла токи, значительно превышающие пороговые значения (по силе и напряжению), не вызовут фибрилляцию сердца.

К.А. Ажибаев [7] выделяет 4 типа танатогенеза при поражении техническим электричеством: сердечный, дыхательный, смешанный и отдельно — смерть от электрического шока.

В генезе смерти от электрического шока в случае его воздействия на область шеи имеют место сразу несколько основных механизмов: угнетение функции продолговатого мозга, раздражение блуждающего нерва, фибрилляция желудочков сердца и тетанический спазм дыхательных мышц [2].

По мнению В.Е. Манойлова [8], анализ случаев поражения электрическим током показывает, что летальные исходы при низком напряжении (12—36 В) не столь уж редки. Однако в доступной литературе описание таких случаев наступления смерти практически отсутствует.

В связи с этим приводим следующий случай из нашей экспертной практики.

Летом 2012 г. на территории гаражно-строительного кооператива Санкт-Петербурга у одного из гаражей был обнаружен труп гр-на А., 57 лет. Труп лежал на спине, у левого переднего колеса легкового автомобиля «Ford Taurus», припаркованного рядом с гаражом. Капот машины был открыт, аккумуляторная батарея с оголенными клеммами располагалась с левой стороны подкапотного пространства. Прибывшим врачом скорой медицинской помощи была зафиксирована «смерть до прибытия от неизвестной причины».

Труп мужчины с надетой на шею серебряной цепочкой был доставлен на секционное исследование. В морге каких-либо повреждений на одежде не выявлено. При этом на коже задней и обеих боковых поверхностей шеи в ее средней трети была выявлена черная полоса ожога в виде петли длиной 34 см, шириной от 0,8 до 1 см, с четкими несколько приподнятыми краями, неровным, плотным, черным дном, на котором четко определялись поперечные плотноватые неправильно-овальные углубления размером 0,8×0,4 см в виде рельефа звеньев цепочки (рис. 1, на цв.вклейке).Рисунок 1. Полосовидное повреждение на шее трупа (термический ожог) от воздействия постоянного электрического тока. Каких-либо других повреждений, изменений или особенностей, которые могли возникнуть в результате воздействия электрического тока (электрометки), при наружном исследовании трупа не выявлено.

При секционном исследовании трупа обнаружена морфологическая картина быстро наступившей смерти. При исследовании сердца (масса 420 г, размер 15×13×5,5 см) было установлено, что околосердечная сумка цела, не напряжена, содержит следы прозрачной, желтоватой жидкости. Из полостей сердца и крупных кровеносных сосудов выделяется жидкая темно-красная кровь с рыхлыми и тусклыми свертками. Поверхность сердца с умеренно выраженной жировой тканью по ходу сосудов, под его наружной оболочкой определяются единичные, точечные, темно-красные кровоизлияния. Венечные артерии с гладкой, плотноватой стенкой. Внутренняя оболочка сердца гладкая, прозрачная; клапаны и хордальные нити тонкие, слабоэластичные, желтоватые. В сосочковых мышцах задней стенки левого желудочка выявлены темно-красные кровоизлияния, занимающие окружность по основанию створок клапанов сердца: двустворчатого 11 см, трехстворчатого 13 см, аортального 5,5 см, легочного ствола 6,2 см. Полости сердца были расширены за счет переполнения правых отделов жидкой, темно-красной кровью. Толщина мышцы правого желудочка 0,5 см, левого — 1,9 см, межжелудочковой перегородки — 1,2 см.

По проведении судебно-медицинского исследования трупа с применением лабораторных методов была диагностирована смерть гр-на А. в результате поражения техническим электричеством.

При судебно-гистологическом исследовании ожогового участка кожи с задней поверхности шеи были установлены характерные микроморфологические признаки электрометки и термического воздействия (очаговая отслойка эпидермиса, сотовидные пустоты в роговом слое эпидермиса, вытягивание клеток и их ядер в базальном и шиповатом слоях с образованием щеткообразных фигур, наложение аморфных частиц черного и бурого цвета на поверхности кожи, метахромазия, базофилия, переориентация коллагеновых волокон дермы, полнокровие сосудов дермы). Здесь же определялись кровоизлияния в мягких тканях шеи без клеточной реакции.

При судебно-гистологическом исследовании сердечной мышцы установлен склероз некоторых интрамуральных артерий миокарда, периваскулярный кардиосклероз, очаговая гипертрофия кардиомиоцитов с их фрагментацией и дистрофическими изменениями, отек и очаговый липоматоз стромы, неравномерное кровенаполнение сосудов миокарда.

При медико-криминалистическом исследовании полосовидного повреждения шеи установлено, что кожный покров вне зоны повреждения (по периферии лоскута) розовато-сероватый, с сохраненной надкожицей, без изменений и посторонних наложений. Повреждение в виде четко ограниченного черного полосовидного участка кожи (длиной 270 мм и шириной 8—10—24 мм) продольно занимает весь участок кожного лоскута. Ближе к левому концу кожного лоскута внешние контуры повреждения менее отчетливые. Возвышающиеся валикообразные и уплотненные верхний и нижний края ожогового участка выражены одинаково хорошо, имеют желтовато-коричневый цвет, с участками отслоения надкожицы неправильной овальной формы размером до 15×8 мм, с сухим темно-красным дном на уровне окружающей кожи. По краям повреждения определяются обрывки смещенного и собранного в складки эпидермиса. Западающее и плотное дно ожоговой поверхности имеет коричневато-черный цвет, с микротрещинами и хорошо выраженным рельефом, состоящим из двух рядов четко ограниченных однотипных неправильно-овальных углублений размером 5×4 мм, располагающихся относительно друг друга в шахматном порядке (рис. 2, на цв. вклейке).Рисунок 2. Отображение звеньев цепочки в области повреждения кожи шеи. Дно указанных углублений со следами выраженного термического воздействия в виде обугливания и почернения с интенсивным налетом черного аморфного мелкодисперсного вещества (копоти). На остальном протяжении полосовидного участка, в том числе по его краям, выявлены слабовыраженные пылевидные отложения копоти в виде серо-черного аморфного мелкодисперсного черного вещества (рис. 3, на цв. вклейке).Рисунок 3. Отложение копоти на дне повреждения кожи шеи. Окружающая ожог кожа на вид не изменена, волосы на ней не опалены. С внутренней стороны участка кожи в проекции полосовидного повреждения выявлены очаговые темно-красные кровоизлияния в подкожную клетчатку.

При исследовании методом эмиссионного спектрального анализа участка кожи с повреждением шеи и контрольного участка кожи в области ожога выявлено наличие серебра и повышенное содержание меди (относительно контрольного участка кожи).

При медико-криминалистическом исследовании цепочки с крестиком, снятой с шеи трупа, установлено, что оба изделия изготовлены из белого блестящего металла, не притягивающегося магнитом. Цепочка образована ленточным плетением звеньев, имеющих одинаковую форму и размер (рис. 4, на цв. вклейке).Рисунок 4. Звенья цепочки, снятой с шеи трупа. Длина ее 64 см (с застегнутым замком, в сложенном пополам состоянии — 32 см). Звенья цепочки сложной конфигурации размером 8×5,5×2,5 мм образованы двойным переплетением кольцевидных элементов. В зоне замка цепочки имеется заводская маркировка с обозначением пробы изделия: 925. На цепочку надет свободно перемещающийся фигурный металлический крестик размером 40×30×4 мм. На застежке крестика также имеются заводские клеймо и маркировка с обозначением пробы изделия: 925. Наличие на цепочке и крестике вышеуказанных заводских маркировок дает основание полагать, что оба изделия изготовлены из серебра пробы 925. Общая масса цепочки с крестиком 34 г.

При осмотре цепочки невооруженным глазом и при микроскопическом исследовании в 135 мм от ее замка по одной из плоских сторон на протяжении 280 мм выявлены слабо различимые нарушения поверхностных слоев звеньев в виде микроскопических неровностей, бугристостей, раковин и каверн со сглаженными краями. Здесь же определяются наложения микрочастиц биологического происхождения, а именно плотно фиксированных обрывков эпидермиса в виде тонких частично обугленных чешуек. Поверхность звеньев цепочки на описываемом участке покрыта тонким налетом плохо снимающегося аморфного мелкодисперсного вещества серо-черного цвета (копоть).

В результате медико-криминалистического исследования сделан вывод о том, что представленное полосовидное повреждение (ожог кожи) шеи является электрометкой. Основным металлом токонесущего проводника, причинившего данное повреждение, являлось серебро. Следовательно, проводником, непосредственно контактировавшим с кожей шеи в момент поражения гр-на А. электрическим током, была серебряная цепочка.

Таким образом, приведенный пример демонстрирует возможность не только наступления смертельного исхода при поражении электрическим током низкого напряжения (12 В), но и экспертные возможности при исследовании подобных случаев.

Электробезопасность

Памятка
по электробезопасности для школьников

Дорогие ребята!


На уроках ОБЖ для вас пройдут занятия по вопросам предупреждения травматизма на объектах энергетики. Просим вас отнестись к ним как можно внимательней. Главная причина электротравматизма детей – это банальное незнание основных правил обращения с электрическим током.
Серьезную угрозу здоровью и жизни людей представляет электрический ток напряжением 50 вольт и выше. Дома и на улице нас окружают провода и электрооборудование, находящиеся под напряжением 220 вольт и выше. Ток, который протекает в бытовой электросети, во много раз превышает смертельный. При этом у человека нет органов чувств, которые могли бы помочь ему определить, под напряжением находится оборудование или нет.
Чтобы не попасть под напряжение, ПОМНИТЕ:
Запрещается находиться вблизи территории подстанции. Нельзя близко подходить к трансформаторным подстанциям. Оборудование здесь находится под высоким напряжением 10 тысяч вольт (10000 вольт) и выше. По этой же причине старайтесь не касаться железобетонных опор линий электропередачи.
Смертельно опасно прикасаться к любым провисшим или оборванным проводам, подходить ближе, чем на 8-10 метров к лежащим на земле оборванным проводам воздушных линий электропередачи. Угрозу жизни представляют не только свисающие или оборванные провода электросетей, но и провода линий радиотелефонной связи, которые могут соприкасаться (схлестываться) с проводами воздушных линий электросетей. Большую опасность представляют провода воздушных линий и ответвлений от них к постройкам, расположенные в кроне деревьев или кустарников. Если же вы заметили этот провод слишком поздно, постарайтесь отойти от него на расстояние 8-10 метров, не отрывая ступни от земли и не создавая разрыва между стопами (пятка шагающей ноги, не отрываясь от земли, приставляется к носку другой ноги).
Смертельно опасно играть, раскачивая деревья вблизи линии электропередач. Сырое дерево служит проводником электрического тока. Большую опасность представляют провода воздушных линий, расположенные в кроне деревьев или кустарников. Нельзя вскрывать крышки на опорах освещения. Нельзя на опорах ВЛ ломать арматуру и рвать провода»спусков».
Запрещается разводить костры под проводами линий электропередач, проникать в технические подвалы жилых домов, где находятся провода и коммуникации. Ни в коем случае не стоит запускать «воздушных змеев» вблизи воздушных линий электропередач, играть в спортивные игры, забрасывать удочки, магнитную ленту, проволоку и т.д.
Крайне опасно
— делать набросы на провода;
— влезать на опоры линий электропередач;
— подходить и брать в руки оборванные провода;
— открывать лестничные электрощитки и вводные силовые щиты в зданиях и т.п.
Как правило, на электроустановках нанесены предупредительные специальные знаки или укреплены соответствующие плакаты. Все эти плакаты предупреждают человека об опасности поражения электрическим током, и пренебрегать ими, а тем более снимать и срывать их недопустимо. Для предупреждения об опасности поражения электрическим током Для предупреждения об опасности подъема по конструкциям, при котором возможно приближение к токоведущим частям, находящимся под напряжением Для предупреждения об опасности поражения электрическим током
При обнаружении обрыва проводов, искрения, повреждения опор, изоляторов, незакрытых или поврежденных дверей трансформаторных подстанций или электрических щитов, обнаружении сорванных знаков или плакатов во избежание несчастных случаев необходимо незамедлительно сообщить  взрослым.
Нельзя разбивать изоляторы, заходить в трансформаторные подстанции, открывать лестничные электрощиты и вводные щиты, находящихся в подъездах домов. Эти шалости могут привести к тому, что без электроэнергии могут остаться сотни и тысячи людей. Но что самое страшное — этими действиями вы подвергаете свою жизнь смертельной опасности.
Действующие электроустановки не место для игр и развлечений.
Порой кажется, что беда может произойти с кем угодно,
только не с нами. Это обманчивое впечатление! Будьте осторожны!
Берегите свою жизнь и жизнь своих друзей 

 

С начала июля от удара электротоком в Липецке пострадало шесть человек

Три случая закончились трагически. Во вторник 10 августа в районе Сокола при попытке спрыгнуть с железнодорожного моста в реку Воронеж смертельный удар электротоком получил молодой липчанин. Трагическую гибель не дожившего считанные дни до 17-летия юноши, констатировали приехавшие к месту происшествия медики.

К сожалению, это не первый в нынешнем году случай, когда несовершеннолетние искатели приключений, рискуют жизнью, пренебрегая правилами безопасности и просто здравым смыслом. В феврале 14-летний подросток получил мощный удар током от контактной сети на крыше железнодорожного вагона в районе Дачного. 

Между тем, число сообщений о пострадавших от электротока горожанах в последнее время заметно увеличилось. По информации, поступившей в управление по делам ГО и ЧС Липецка, только в июле их было пять. Из них 4 –  несчастные случаи при производстве строительно-монтажных и ремонтных работ, в результате которых два человека погибли – электрик в подвале многоквартирного дома и мужчина, занимавшийся очисткой скважины в частном секторе.

Несколько раз с начала года помощь по единому номеру службы спасения «112» вызывали к малышам, заинтересовавшимся розеткой и схватившимся за оголённый провод в квартире. 

По утверждению специалистов, удар током относится к наиболее опасным бытовым и производственным несчастным случаям и всегда сопряжен с большой смертностью. Даже кажущиеся незначительными ожоги могут повредить мышцы, кости и внутренние органы, нарушить работу сердца, привести к остановке дыхания. Об этом важно помнить всем взрослым, и, тем более, родителям, которые должны разъяснять правила безопасного поведения своим детям. 

Как показывает практика, источниками поражения электрическим током являются неисправное электрооборудование на предприятиях и бытовые электроприборы, оборвавшиеся провода высоковольтных линий, несоблюдение техники безопасности при работе с электрооборудованием. Поэтому, прежде чем приступить к работам, связанным с напряжением, прежде всего, убедитесь в соблюдении мер безопасности. 

Чтобы предупредить потенциальные риски для ребёнка:

— следите, чтобы розетки были прочно закреплены в стене. Используйте электрозаглушки.

— Проверьте целостность изоляции электропроводов.

— Избегайте пользоваться удлинителями.

— Следите за исправностью бытовых приборов и за тем, чтобы на них не попадала вода.

— Не разрешайте детям в возрасте до 8 лет самостоятельно включать электроприборы, вставлять электрическую вилку в розетку.

— Разъясните ребенку, что нельзя трогать какие-либо провода, даже если они не имеют повреждений. Категорически запретите подходить к электрораспределительным станциям, трансформаторным будкам, электрощитовым.

— Проведите профилактическую беседу с подростками о риске опасных развлечений.

Если избежать несчастного случая не удалось, не прикасайтесь к пострадавшему сразу же: вероятно, он еще находится под действием электрического тока, а, значит, дотронувшись, вы также можете попасть под удар. Если есть возможность, отключите источник электроэнергии (выверните пробки, выключите рубильник). Если это невозможно, отодвиньте источник тока от себя и пострадавшего сухим, непроводящим ток предметом (веткой, деревянной палкой). 

Если необходимо оттащить пострадавшего от провода электросети, надо при этом помнить, что тело человека, через которое прошел ток, проводит ток так же, как и электропровод. Поэтому голыми руками до него дотрагиваться не следует. Лучше надеть резиновые перчатки или обернуть руки сухой шелковой материей.

Всех пострадавших от удара током следует как можно быстрее госпитализировать.

Если вы стали свидетелем или участником происшествия, не медля сообщите о случившемся по номеру «112».

Безопасность и охрана труда в сфере электротехники (пособие для учащихся)

Тяжесть поражения электрическим током зависит от количества электрического сила тока и время, в течение которого ток проходит через тело. Для например, 1/10 ампера (ампера) электричества проходит через тело за всего 2 секунды достаточно, чтобы вызвать смерть. Величина внутреннего тока человек может выдержать и при этом быть в состоянии контролировать мышцы руки и рука может быть меньше 10 миллиампер (миллиампер или мА).Токи выше 10 мА могут парализовать или «заморозить» мышцы. Когда это «замораживание» случается, человек уже не в состоянии освободить инструмент, проволоку или другой предмет. На самом деле наэлектризованный объект может удерживаться еще крепче, в результате чего при длительном воздействии ударного тока. По этой причине ручные инструменты которые вызывают шок, могут быть очень опасны. Если вы не можете отпустить инструмент, ток проходит через ваше тело в течение более длительного времени, что может привести к к параличу дыхания (мышцы, контролирующие дыхание, не могут двигаться).Вы перестаете дышать на какое-то время. Люди перестают дышать, когда поражены током от напряжения до 49 вольт. Обычно требуется около 30 мА тока, чтобы вызвать паралич дыхания.

Токи более 75 мА вызывают фибрилляцию желудочков (очень быструю, неэффективное сердцебиение). Это состояние приведет к смерти в течение нескольких минут. если для спасения жертвы не используется специальное устройство, называемое дефибриллятором. Паралич сердца возникает при силе тока 4 ампера, что означает, что сердце не работает при все. Ткань сжигают токами более 5 ампер. 2

В таблице показано, что обычно происходит для диапазона токов (длительный во-вторых) при типичном бытовом напряжении. Более длительное время экспозиции увеличивает опасность для пострадавшего от удара. Например, ток 100 мА подается на 3 секунды так же опасны, как ток 900 мА, приложенный за долю секунды (0,03 секунды). Мышечная структура человека также составляет разница.Люди с меньшим количеством мышечной ткани обычно страдают текущие уровни. Даже низкое напряжение может быть чрезвычайно опасным, потому что Степень поражения зависит не только от силы тока, но и от время, в течение которого тело находится в контакте с цепью.

НИЗКИЙ НАПРЯЖЕНИЕ НЕ ОЗНАЧАЕТ НИЗКИЙ ОПАСНОСТЬ!


Дефибриллятор используется
  • ампер (ампер) — единица измерения силы тока
  • миллиампер (миллиампер или мА) — 1/1000 ампера
  • шокирующий ток — электрический ток, проходящий через часть тела
  • Вы будет больно больше, если вы не можете отпустить инструмент, дающий шок.
  • чем дольше шок, тем больше травма.
  • Высокий напряжения вызывают дополнительные травмы!
  • Высшее напряжения могут вызвать большие токи и более сильные удары.
  • Некоторые травмы от поражения электрическим током не видны.

  • Эффекты электрического тока* на тело 3

    Текущий Реакция
    1 мА Просто обморок покалывание
    5 мА Легкий шок чувствовала. Тревожно, но не больно. Большинство людей могут «отпустить». Однако сильные непроизвольные движения могут стать причиной травм.
    6-25 мА (женщины)† Болезненный шок. Мышечный контроль утрачен. Это диапазон, где «замораживание токи».«Отпустить» может быть невозможно.
    9-30 мА (мужчины)
    50-150 миллиампер Чрезвычайно болевой шок, остановка дыхания (остановка дыхания), выраженная мышечная сокращения. Мышцы-сгибатели могут вызывать удержание; мышцы-разгибатели может вызвать интенсивное отталкивание. Возможна смерть.
    1000- 4300 мА (1–4,3 А) Желудочковый возникает фибрилляция (насосная деятельность сердца неритмична). Мышцы договор; происходит повреждение нерва. Вероятна смерть.
    10 000 миллиампер (10 ампер) Остановка сердца и возникают сильные ожоги.Смерть вероятна.
    15 000 миллиампер (15 ампер) Минимальный ток перегрузки при котором типичный предохранитель или автоматический выключатель размыкает цепь!
    *Эффекты рассчитаны на напряжение менее 600 вольт. Более высокие напряжения также вызвать сильные ожоги. † Различия в содержании мышц и жира влияют на тяжесть шока.

    Иногда высокая напряжения приводят к дополнительным травмам. Высокое напряжение может привести к сильному мышечные сокращения. Вы можете потерять равновесие и упасть, что может привести к травме или даже смерти, если вы упадете в механизмы, которые могут раздавить ты. Высокое напряжение также может вызвать сильные ожоги (как показано на стр. 9 и 10).

    При напряжении 600 вольт ток через тело может достигать 4 ампер, вызывает поражение внутренних органов, таких как сердце.Высокое напряжение также производить ожоги. Кроме того, внутренние кровеносные сосуды могут закупориться. нервы в области точки контакта могут быть повреждены. Мышечные сокращения могут вызвать переломы костей либо от самих сокращений, либо от падений.

    Сильный удар может причинить гораздо больше вреда телу, чем это видно. Человек может страдать внутренним кровотечением и разрушением тканей, нервов, и мышцы.Иногда скрытые травмы, вызванные поражением электрическим током привести к отсроченной смерти. Шок часто является лишь началом цепочки событий. Даже если электрический ток слишком мал, чтобы причинить травму, ваша реакция на удар может привести к падению, что приведет к синякам, переломы костей или даже смерть.

    Продолжительность шока сильно влияет на степень повреждения. Если шок кратковременный, он может быть только болезненным.Более длинный шок (продолжительностью несколько секунд) может быть смертельным, если уровень ток достаточно высок, чтобы вызвать фибрилляцию желудочков сердца. Это не так много тока, когда вы понимаете, что небольшая дрель использует В 30 раз больше тока, чем то, что убьет. При относительно больших токах смерть неизбежна, если шок достаточно продолжительный. Однако, если шок короткий и сердце не повреждено, нормальное сердцебиение может возобновить, если контакт с электрическим током устранен.(Этот тип выздоровление встречается редко).

    Сумма тока прохождение через тело также влияет на серьезность электрического шок. Большие напряжения производят большие токи. Значит, есть большее опасность от высшего
    напряжения. Сопротивление препятствует току. Чем ниже сопротивление (или импеданс в цепях переменного тока), тем больше будет ток. Сухая кожа может иметь сопротивление 100 000 Ом и более.мокрый
    кожа может иметь сопротивление всего 1000 Ом. Влажные условия работы или сломанная кожа резко снизит сопротивление. Низкое сопротивление влажной кожи позволяет току легче проходить в тело и давать большее потрясение. Когда к точке контакта приложено большее усилие или когда площадь контакта больше, сопротивление ниже, что приводит к более сильному потрясения.

    Электродрели используйте в 30 раз больше тока, чем то, что убьет.

    Путь электрический ток через тело влияет на тяжесть шока. Наиболее опасны токи через сердце или нервную систему. Если вы коснетесь головой провода под напряжением, ваша нервная система будет поврежден. Прикосновение к токоведущим частям одной рукой — во время вы заземлены с другой стороны тела — это вызовет электрические разряды. ток пройти через грудь, возможно, повредив сердце и легкие.

  • Чем больше ток, тем сильнее шок!
  • Серьезность удара зависит от напряжения, силы тока и сопротивления.
  • сопротивление- способность материала уменьшать или останавливать электрический ток
  • Ом- единица измерения электрического сопротивления
  • Нижний сопротивление вызывает большие токи.
  • Токи через грудь очень опасны.

  • Мужчина сервисный техник прибыл на дом к клиенту для выполнения предзимнее обслуживание масляной печи. После этого клиент ушел дом и вернулся через 90 минут.Она заметила службу грузовик все еще стоял на подъездной дорожке. Еще через 2 часа клиент вошел в подполье с фонариком, чтобы найти техника но не мог его видеть. Затем она позвонила владельцу компании. кто пришел в дом. Он обыскал подполье и нашел техники на животе, опираясь на локти перед печь. Помощник окружного коронера был вызван и объявлен техник погиб на месте происшествия.Пострадавший получил электрические ожоги на голове и правом локте.

    После инцидента место осмотрел электрик. Переключатель выключатель, который якобы контролировал подачу электроэнергии в печь находился в положении «выключено». Электрик описал проводка как «случайная и запутанная».

    Две недели спустя окружной инспектор по электротехнике провел еще один осмотр. Он обнаружил, что неправильное подключение тумблера позволял подавать питание на печь, даже когда переключатель был в положении положение «выключено».Владелец компании заявил, что жертва была очень тщательным работником. Возможно, потерпевший совершил больше обслуживания печи, чем у предыдущих техников, подвергая сам к электрику
    опасность.

    Эту смерть можно было предотвратить!

    • жертва должна была проверить цепь, чтобы убедиться, что она обесточена.
    • Работодатели должны обеспечить работников соответствующим оборудованием и обучением.Использование защитного снаряжения должно быть требованием работы. В В этом случае простой тестер цепи мог спасти жертву. жизнь.
    • Жилой электропроводка должна удовлетворять требованиям Национального электротехнического кодекса (NEC). Несмотря на то что NEC не имеет обратной силы, все домовладельцы должны убедиться их системы безопасны.

    NEC N национальный E Электрическая C Ода—
    исчерпывающий перечень методов защиты работников и оборудования от опасностей, связанных с электричеством, таких как пожар и поражение электрическим током
    Электрика ожог руки и руки

    Были случаях сильного ожога руки или ноги электрическим током высокого напряжения. ток до отрыва, и пострадавший не получает удар током.В этих случаях ток проходит только через часть лимба до он выходит из тела в другой проводник. Следовательно, текущий не проходит через область грудной клетки и не может привести к смерти, хотя жертва сильно изуродована. Если ток проходит через грудь, человек будет почти
    обязательно ударит током. Большое количество тяжелых электротравм связаны с переходом тока от рук к ногам.Такой путь предполагает и сердце, и легкие. Этот тип шока часто приводит к летальному исходу.

    Рука с ожогом третьей степени от ЛЭП.

    Сводка Раздела 2

    Опасность поражения электрическим током зависит от •••

    количества ударного тока через тело,
    продолжительность тока разряда через тело, и
    путь ударного тока через тело.

    Сколько вольт или ампер может убить человека?

    Людей убивает не напряжение, а ток. Люди умирали уже при 42 вольтах. Время также является фактором. Ток силой 0,1 ампера всего за 2 секунды может быть смертельным. Поскольку напряжение = ток х сопротивление, ток зависит от сопротивления тела. Внутреннее сопротивление между ушами составляет всего 100 Ом, а при измерении от пальца до ноги оно составляет около 500 Ом.

    Электрошок часто изображают в физкультурных комедиях, и сюжет развивается как обычно: главный герой комикса случайно попадает на провод, не зная о сильном токе, протекающем по нему.Он получает смертельный шок, который приводит к стереотипному шимми, обуглившемуся лицу и волосам, которые заканчиваются, как зонтик, повернутый ветром внутрь.

    Вопрос, почему это смертельное происшествие воспринимается как юмористическое, настораживает… интересно, но настораживает. Достоверный ответ можно найти здесь. Однако в данный момент этот дискурс неактуален. Что нас беспокоит, так это то, почему мы вовсе не нечувствительны к электричеству и какая его часть на самом деле убьет нас.


    Рекомендуемое видео для вас:


    Почему высокое напряжение считается опасным?

    Это, конечно, необходимые знания для обеспечения безопасности.На электрических платах и ​​генераторах мы находим предупредительные надписи с общим символом опасности: человеческий череп, парящий над двумя скрещенными костями.

    Этот символ сопровождается рейтингом этой машины, который подчеркивает высокое напряжение, при котором она работает, и дает вам понять, что вы, вероятно, умрете при контакте с ней. Использование напряжения задало нам психологический тренд.

    Теперь мы считаем, что 10 000 вольт более смертоносны, чем 100 вольт. Однако это верно лишь отчасти.

    Поражение электрическим током часто может произойти при бытовом напряжении 110 вольт, а в некоторых случаях даже при 42 вольт!

    Конечно, чем больше напряжение, тем больше ток, но нас убивает не калибр, а пуля. Каким бы ни было напряжение, истинной причиной смерти является ток, проталкиваемый через тело.

    По той же причине не убивают током птиц, лежащих на проводах. (Кредиты: palickam/Shutterstock)

    Однако мы не должны полностью отказываться от напряжения, потому что без напряжения или разности потенциалов не было бы тока вообще.Таким образом, если вы висите на проводе, это не приведет к поражению электрическим током, если только вы не коснетесь земли . Подвешивание на проводе образует эквипотенциал с проводом, тогда как прикосновение к земле немедленно создает разность потенциалов, которая пропускает через жертву огромный ток.

    Так сколько электричества нас убьет?

    Поражение электрическим током: сколько электричества убьет вас?

    Ток силой 10 мА или 0,01 А является сильным ударом, но не смертельным. По мере приближения к 100 мА или 0.1 А, начинаются мышечные сокращения. Крайне важно осознавать, что из-за низкого сопротивления сердца для нас достаточно тока всего в 10 мА.

    Но ток никогда не достигает сердца, так как сопротивление нашей кожи выше и поэтому полностью поглощает этот ток. Если бы этот слабый ток каким-либо образом достиг сердца, это почти наверняка было бы фатальным.

    Когда сила тока превышает 1000 мА или 1 А, сокращения мышц усиливаются до такой степени, что мы не можем отпустить провод.Это упорство, по иронии судьбы, является следствием мышечного паралича.

    В этот момент в сердце возникает фибрилляция желудочков, нескоординированные, прерывистые подергивания желудочков, вызывающие неэффективные сердечные сокращения, которые могут привести к смерти, если не будет вызвана немедленная помощь.

    Дальнейшее увеличение силы тока до 2000 мА или 2А приводит к ожогам и потере сознания. Мышечные сокращения, вызванные ударом, теперь настолько сильны, что сердце сжимается в зажимы.Воздействие такого количества тока может привести к страшным внутренним ожогам, а зажимы — к остановке сердца. Возможна смерть.

    Зажимной механизм, однако, спроектирован так, чтобы быть на удивление прибыльным, поскольку он защищает сердце от фибрилляции желудочков. Шансы на выживание невелики, но их можно компенсировать при немедленной медицинской помощи пострадавшему. Дефибрилляторы — это медицинские устройства, используемые врачами для спасения пострадавших от шока.

    Эффекты можно резюмировать в табличной форме следующим образом:

    Почему мы не чувствительны к току?

    Хотя для протекания тока требуется определенное напряжение, количество тока, протекающего в наше тело, зависит от того, насколько тело проницаемо для тока или просто от его сопротивления.Сопротивление току меняется в зависимости от состояния кожи – сухой она или влажной. Он оценивается в 1000 Ом для влажной кожи и более 500 000 Ом для сухой кожи.

    Сопротивление также зависит от точки контакта. Внутреннее сопротивление между ушами составляет всего 100 Ом, а при измерении от пальца до стопы оно составляет около 500 Ом. Из-за этого конечного сопротивления мы не чувствительны к току.

    Другим важным фактором является время. Степень испытания зависит от того, как долго тело подвергается воздействию определенного тока.Например, ток в одну десятую ампера может быть смертельным всего за 2 секунды.

    Как насчет того, чтобы ответить на несколько вопросов об электричестве?

    Можете ли вы ответить на три вопроса, основанных на статье, которую вы только что прочитали?

    Начать викторину

    Ваш ответ:

    Правильный ответ:

    Далее

    Вы получили {{SCORE_CORRECT}} из {{SCORE_TOTAL}}

    Повторная викторина

    Предлагаемая литература

    Электробезопасность: фатальный ток

    Электробезопасность: фатальный ток

    Как ни странно, большинство смертельных поражений электрическим током случаются с людьми, которые должен знать лучше.Вот некоторые электромедицинские факты, которые должны сделать дважды подумаешь, прежде чем воспользоваться последним шансом.

    Это течение убивает

    На первый взгляд может показаться, что удар в 10 000 вольт более смертелен. чем 100 вольт. Но это не так! Люди пострадали от удара током приборы, использующие обычные домашние токи 110 вольт и электрические аппарат в промышленности, использующий всего лишь 42 вольта постоянного тока. Реальность мерой силы удара является сила тока (ампер) принудительно хоть телом, а не напряжением.Любое электрическое устройство, используемое по цепи домовой электропроводки может при определенных условиях передавать роковой ток.

    В то время как любой ток свыше 10 миллиампер (0,01 ампер) способен шока от болезненного до тяжелого, токами от 100 до 200 мА (от 0,1 до 0,2 А) смертельны. Токи свыше 200 миллиампер (0,2 ампера), вызывающие сильные ожоги и бессознательное состояние, обычно не приводят к смерти, если пострадавшему дать немедленную внимание. Реанимация, состоящая из искусственного дыхания, будет обычно оживляют жертву.

    С практической точки зрения, после того, как человек нокаутирован поражение электрическим током невозможно определить, сколько тока прошло через жизненно важные органы его тела. Искусственное дыхание должно быть применяется немедленно, если дыхание остановилось.

    Физиологические последствия поражения электрическим током

    На диаграмме показаны физиологические эффекты различных токи. Обратите внимание, что напряжение не является рассмотрение. Хотя для создания тока требуется напряжение поток, величина ударного тока будет варьироваться в зависимости от на сопротивление тела между точками контакта.

    Как показано на диаграмме, шок является относительно более сильным по мере роста тока. При токах выше 10 миллиампер мышечные сокращения настолько сильны, что пострадавший не может отпустить провод, который шокирует его. При таких низких значениях, как 20 миллиампер, дыхание становится затрудненным, в конце концов полностью прекращается даже при значениях ниже 75 миллиампер.

    Когда сила тока приближается к 100 миллиампер, желудочковая возникает фибрилляция сердца — некоординированная подергивание стенок желудочков сердца, приводящее к смерти.

    Выше 200 миллиампер мышечные сокращения настолько тяжелая, что сердце насильственно зажимается во время шок. Это пережатие предохраняет сердце от проникновения в фибрилляции желудочков и шансы пострадавшего на выживаемость хорошая.

    Опасность — низкое напряжение

    Общеизвестно, что жертвы высокого напряжения шок обычно лучше реагируют на искусственное дыхание легко, что жертвы шока низкого напряжения. То причиной может быть милосердное сжатие сердца, вследствие к высокой плотности тока, связанной с высокой напряжения.Однако, чтобы эти детали не были неверно истолкованы, единственное разумный вывод, который можно сделать, состоит в том, что 75 вольт так же смертелен как 750 вольт.

    Фактическое сопротивление тела изменяется в зависимости от точек контакт и состояние кожи (влажная или сухая). Между ушами, для например, внутреннее сопротивление (за вычетом сопротивления кожи) составляет всего 100 Ом, а с рук на ноги ближе к 500 Ом. Сопротивление кожи может варьироваться от 1000 Ом для влажной кожи до более 500 000 Ом для сухой кожи.

    Совет ассоциаций подрядчиков по электротехнике штата Нью-Джерси, Inc.
    Bulletin VOL. 2, НЕТ. 13
    Февраль 1987 г.
    Представлено Полом Джовинаццо

    Предоставлено Элмвуд Электрик Инк.

    Смертельный удар электрическим током: какое напряжение вызывает смерть?

    Вопрос с подвохом. Само по себе напряжение не является единственным фактором, влияющим на тяжесть поражения электрическим током. Ток, обычно измеряемый в амперах, также является важной частью уравнения наряду с другими второстепенными факторами.

    Напряжение — это мера давления или силы электрического тока, проходящего через проводник, тогда как ток — это скорее показатель скорости электрического потока. Это поток тока, проходящий через тело, который зажимает сердце или вызывает его фибрилляцию, что может привести к смерти.

    Таким образом, вопрос действительно должен звучать так:  Сколько тока требуется, чтобы кого-то убить?

    Ответ очень маленький. Ток всего в 0,007 ампер (7 мА) через сердце в течение трех секунд достаточен для смерти.0,1 ампер (100 мА), проходящий через тело, почти наверняка будет смертельным.

    Однако сила тока при поражении электрическим током определяется напряжением и сопротивлением цепи. Человеческому телу присуще высокое сопротивление электрическому току, что означает, что без достаточного напряжения опасное количество тока не может пройти через тело и вызвать травму или смерть. Согласно грубому эмпирическому правилу, более пятидесяти вольт достаточно, чтобы пропустить через тело потенциально смертельный ток.

    Другими факторами, которые могут определить тяжесть поражения электрическим током, являются продолжительность поражения электрическим током и место его попадания в тело. Например, удар током от одной руки через грудь к другой руке намного опаснее, чем удар между двумя пальцами ног.

    Вот несколько примеров:

    • Удар статическим электричеством может быть 20 000 вольт или более, но при очень низком токе и в течение очень короткого времени: безвреден
    • Батарея 9 В имеет недостаточное напряжение для передачи тока опасного уровня через тело: безвредно
    • Точка питания 240 В переменного тока находится под опасным напряжением и более чем способна управлять очень опасным током: потенциально смертельно опасно
    • Удар молнии может иметь напряжение в миллиард вольт и обеспечивать чрезвычайно высокий ток (около 30 000 ампер): потенциально смертелен

    Что убивает — ток или напряжение и почему? Ампер против вольт

    Что фатально, напряжение или ток и почему?

    Плохая жена или девушка не убьют вас, но напряжение и ток с некоторой скоростью сделают это легко. Вот почему никто не должен играть с электричеством (мощностью, напряжением и током), так как это наш друг, но и злейший враг. Если мы дадим ему шанс, он никогда не промахнется любой ценой.

    Прежде чем мы углубимся в детали, я задам еще один вопрос. Если я убью тебя ножом (не волнуйся, не убью, но не гарантирую), будешь винить нож или меня? Другой способ, что убийца, пуля или порох?. Связано с темой, Что убийца, ток или напряжение?

    Чтобы узнать точную причину, мы должны знать разницу между током и напряжением.Как объяснялось в предыдущем посте, напряжение является причиной, а ток — следствием.

    • Напряжение: — это разность потенциалов (сила типа а) между двумя точками, которая вызывает протекание тока в цепи. Это сила, необходимая для перемещения количества энергии из одной точки в другую.
    • Ток: — это скорость потока заряда (электронов) между двумя точками, вызванная напряжением. Напряжение является основной причиной, по которой электроны проталкиваются через проводник или замкнутую электрическую цепь.

    По теме: Переменный или постоянный ток — что опаснее и почему?

    Чтобы узнать, что является фатальным, напряжение или ток? Давайте посмотрим на следующие формулы.

    • V = I x R                  … (Закон Ома)
    • P = V x I                  … (мощность в цепях постоянного тока)
    • P = V x I x Cosθ      … (Мощность в однофазных цепях переменного тока)

    Где:

    • В = напряжение в вольтах
    • I = ток в амперах
    • R = Сопротивление в Омах
    • P = мощность в ваттах
    • Cosθ = коэффициент мощности

    Поскольку первая формула (или закон Ома) показывает, что напряжение должно протекать через ток в проводящем материале, имеющем некоторое сопротивление, так как почти все материалы имеют некоторое сопротивление потоку электронов через него.

    С другой стороны, при I = V / R ток прямо пропорционален напряжению, а при P = VI ток обратно пропорционален напряжению?

    Логика этого сценария заключается в том, что некоторые величины остаются неизменными в первом случае, а парадеры изменяются во втором случае. Предположим, что сопротивление постоянное, тогда:

    • Если мощность источника постоянна, ток будет уменьшаться при увеличении напряжения.
    • Если мощность источника увеличивается, напряжение и ток увеличиваются, т.е.е. мощность переменная.

    Сообщение по теме: Что происходит, когда линия переменного тока касается линии постоянного тока?

    Таким образом, основной причиной является напряжение и ток, поскольку эффект является убийцей с определенной скоростью в течение определенного периода. Ток убьет вас, но требуется некоторое количество напряжения, чтобы этот ток протекал по телу, разрушая сопротивление человеческого тела. Другими словами, для надлежащего поражения электрическим током в человеческом теле должна пройти достаточная мощность.

    Короче говоря, высокое напряжение в несколько микроампер не причиняет человеческому организму ничего, как при подаче высокого напряжения на электронно-лучевую трубку в традиционном телевизоре или при высоком статическом напряжении в гребенке. с другой стороны, сильный ток с сотой долей ампера с десятью, двадцатью или тридцатью или более ничего не делает для человеческого тела, как электросварочный аппарат, поскольку величины напряжения недостаточно, чтобы протолкнуть такой уровень сильного тока в человеческом теле, поскольку существует путь с наименьшим сопротивлением по сравнению с внутренним сопротивлением человеческого тела. Другим примером является автомобильный аккумулятор с высокой силой тока при низком уровне напряжения (12 В постоянного тока), но если мы затянем оба провода, он не будет поражен электрическим током. Следовательно, достаточное напряжение сотой доли при достаточном токе может привести к поражению человека электрическим током, потому что человеческому телу, подобно резистору, требуется достаточная мощность для пропускания тока.

    Имейте в виду, что воздействие электрического тока на тело человека зависит от:

    • Значение тока
    • Значение напряжения
    • Время прохождения тока через человеческое тело
    • Частота питания (50Гц/60Гц и более/низкая)
    • Путь тока (сухой, мокрый и т. д.)
    • Способность человека реагировать (нервная система)

    Следующие уровни напряжения считаются безопасными.

    Напряжение переменного тока

    • 25 В (влажные места)
    • 50 В (сухие места)

    Напряжение постоянного тока

    В следующих таблицах показаны различные значения переменного и постоянного тока в мА и их влияние на организм человека. Имейте в виду, что это среднее значение, которое не должно быть одинаковым для всех, поскольку оно зависит от разных факторов.

    Переменный ток в мА (50 Гц) Постоянный ток в мА Воздействие на организм человека
    0.5 – 1,5 0,4 Восприятие
    1,3 4 – 15 Сюрприз
    3 – 22 15 – 88 Поехали (Рефлекторное действие)
    22 – 40 80 – 160 Мышечное торможение
    40 – 100 160 – 300 Респираторный блок
    Более 100 Более 300 Обычно со смертельным исходом
    Опасность поражения электрическим током и воздействие на организм человека

    Вывод о путанице, что опасно, ток или напряжение?: Убивает ток, а не напряжение. Но напряжение должно управлять током. т.е. Амперы ответственны за поражение электрическим током, а не вольты.

    Предупреждение : Опасны как переменные, так и постоянные напряжения и токи. Не прикасайтесь к токоведущим проводам. В случае поражения электрическим током и опасного воздействия постарайтесь отключить электропитание и оттолкнуть тело пострадавшего от источника (помните, что перед этим следует должным образом изолироваться). В случае ремонта или устранения неисправностей вызывайте только профессионального и лицензированного электрика.В экстренных случаях обратитесь за медицинской помощью в местные органы власти как можно скорее.

    Убивают ли вас ампер или вольт?

    АБ Наука о знаниях и трудоустройстве 8, 9 (пересмотрено в 2009 г.) 9 Раздел D: Электрические принципы и технологии

    АБ Наука 1-6 (1996) 5 Тема B: Механизмы, использующие электричество

    АБ Наука 7-8-9 (2003 г., обновлено в 2014 г.) 9 Раздел D: Электрические принципы и технологии

    до н. э Физика 11 (июнь 2018 г.) 11 Большая идея: Энергия существует в различных формах, сохраняется и способна выполнять работу.

    до н.э Естествознание 9 класс (июнь 2016 г.) 9 Большая идея: Электрический ток — это поток электрического заряда.

    МБ Наука 6 класс (2000) 6 Кластер 3: Электричество

    МБ Старший 1 Наука (2000) 9 Кластер 3: Природа электричества

    Нидерланды Наука 6 класс (2018) 6 Блок 3: Электричество

    NS Наука 6 (2019) 6 Физические науки: электричество

    NT Учебная программа K-6 по науке и технологиям (СЗТ, 2004 г.) 6 Энергия и управление: электричество

    NT Наука о знаниях и трудоустройстве 9 (Альберта, редакция 2009 г.) 9 Раздел D: Электрические принципы и технологии

    NT Наука 9 (Альберта, 2003 г., обновлено в 2014 г.) 9 Раздел D: Электрические принципы и технологии

    НУ Учебная программа K-6 по науке и технологиям (СЗТ, 2004 г.) 6 Энергия и управление: электричество

    НУ Наука о знаниях и трудоустройстве 9 (Альберта, редакция 2009 г. ) 9 Раздел D: Электрические принципы и технологии

    НУ Наука 9 (Альберта, 2003 г., обновлено в 2014 г.) 9 Раздел D: Электрические принципы и технологии

    НА Наука и техника, 1-8 классы (2007) 6 Электричество и электрические устройства

    НА Прикладные науки 9 класса (SNC1P) 9 Цепь E: электрические приложения

    НА Наука, 12 класс, рабочее место (SNC4E) 12 Направление E: Электричество дома и на работе

    ЧП Наука 6 класс (2012) 6 Физические науки: электричество

    ЧП Естествознание, 9 класс (пересмотрено в 2018 г.) 9 Знание контента: CK 3

    КК Прикладная наука и технологии Раздел IV Материальный мир

    КК Экологические науки и технологии Раздел IV Материальный мир

    КК Наука и техника, элементарный Элементарный цикл 3 Материальный мир

    КК Наука и окружающая среда Раздел IV Материальный мир

    СК Наука 6 класс (2009) 6 Физические науки — Понимание электричества (EL)

    ЮТ Science Grade 9 (Британская Колумбия, июнь 2016 г. ) 9 Большая идея: Электрический ток — это поток электрического заряда.

    ЭЛЕКТРОБЕЗОПАСНОСТЬ – Прикладное промышленное электричество

    Важность электробезопасности

    С помощью этого урока я надеюсь избежать распространенной ошибки, встречающейся в учебниках по электронике, когда либо игнорируется, либо недостаточно подробно освещается предмет электробезопасности. Я предполагаю, что у тех, кто читает эту книгу, есть хотя бы мимолетный интерес к реальной работе с электричеством, и поэтому тема безопасности имеет первостепенное значение.

    Еще одним преимуществом включения подробного урока по электробезопасности является практический контекст, который он устанавливает для основных понятий напряжения, тока, сопротивления и проектирования цепей.Чем более актуальной может быть техническая тема, тем больше вероятность того, что студент обратит внимание и поймет. А что может быть более актуальным, чем применение для вашей личной безопасности? Кроме того, с учетом того, что электричество является повседневным явлением в современной жизни, почти каждый может понять иллюстрации, приведенные в таком уроке. Вы когда-нибудь задумывались, почему птиц не бьет током, когда они отдыхают на линиях электропередач? Читайте дальше и узнайте!

    Физиологические эффекты электричества

    Большинство из нас сталкивались с той или иной формой «электрического шока», когда электричество причиняет нашему телу боль или травму.Если нам повезет, степень этого опыта ограничивается покалыванием или толчками боли из-за накопления статического электричества, разряжающегося через наши тела. Когда мы работаем с электрическими цепями, способными подавать большую мощность на нагрузки, поражение электрическим током становится гораздо более серьезной проблемой, а боль — наименее значимым результатом удара.

    Поскольку электрический ток проходит через материал, любое противодействие току (сопротивление) приводит к рассеянию энергии, обычно в виде тепла.Это самый простой и простой для понимания эффект электричества на живую ткань: ток заставляет ее нагреваться. Если количество выделяемого тепла достаточно, ткань может быть сожжена. Эффект физиологический, такой же, как повреждение, вызванное открытым пламенем или другим высокотемпературным источником тепла, за исключением того, что электричество способно прожигать ткани глубоко под кожей жертвы, даже обжигая внутренние органы.

    Влияние электрического тока на нервную систему

    Еще одно воздействие электрического тока на организм, пожалуй, самое значительное с точки зрения опасности, касается нервной системы.Под «нервной системой» я подразумеваю сеть особых клеток в организме, называемых нервными клетками или нейронами, которые обрабатывают и проводят множество сигналов, отвечающих за регуляцию многих функций организма. Головной мозг, спинной мозг и сенсорные/моторные органы в организме функционируют вместе, чтобы позволить ему ощущать, двигаться, реагировать, думать и запоминать.

    Нервные клетки взаимодействуют друг с другом, действуя как «преобразователи», создавая электрические сигналы (очень небольшие напряжения и токи) в ответ на ввод определенных химических соединений, называемых нейротрансмиттерами , и высвобождая эти нейротрансмиттеры при стимуляции электрическими сигналами. Если через живое существо (человека или иное) провести электрический ток достаточной силы, его эффект будет состоять в том, чтобы преобладать над крошечными электрическими импульсами, обычно генерируемыми нейронами, перегружая нервную систему и препятствуя рефлекторным и волевым сигналам в способности передаваться. привести в действие мышцы. Мышцы, спровоцированные внешним (ударным) током, будут непроизвольно сокращаться, и пострадавший ничего не может с этим поделать.

    Эта проблема особенно опасна, если пострадавший касается руками проводника под напряжением.Мышцы предплечья, отвечающие за сгибание пальцев, как правило, развиты лучше, чем мышцы, отвечающие за разгибание пальцев, и поэтому, если обе группы мышц попытаются сократиться из-за электрического тока, проходящего через руку человека, «сгибающие» мышцы будут побеждать, сжимая их. пальцы в кулак. Если проводник, подающий ток к пострадавшему, обращен к ладони его или ее руки, это сжимающее действие заставит руку крепко схватиться за провод, что ухудшит ситуацию, обеспечив отличный контакт с проводом. Жертва будет совершенно не в состоянии отпустить провод.

    В медицине это состояние непроизвольного сокращения мышц называется столбняк . Электрики, знакомые с этим эффектом поражения электрическим током, часто называют обездвиженную жертву поражения электрическим током «застывшей на цепи». Столбняк, вызванный шоком, может быть прерван только путем остановки тока через пострадавшего.

    Даже когда ток остановлен, жертва может некоторое время не восстанавливать произвольный контроль над своими мышцами, так как химический состав нейротрансмиттеров пришел в беспорядок.Этот принцип был применен в устройствах «электрошокового оружия», таких как электрошокеры, которые основаны на принципе мгновенного поражения жертвы импульсом высокого напряжения, подаваемым между двумя электродами. Удачный удар током временно (на несколько минут) обездвиживает пострадавшего.

    Однако электрический ток способен воздействовать не только на скелетные мышцы жертвы шока. Мышца диафрагмы, управляющая легкими, и сердце, которое само по себе является мышцей, также могут быть «заморожены» в состоянии столбняка электрическим током. Даже слишком слабые токи, чтобы вызвать столбняк, часто способны искажать сигналы нервных клеток настолько, что сердце не может нормально биться, вызывая состояние, известное как фибрилляция . Фибрилляционное сердце трепещет, а не бьется, и неэффективно перекачивает кровь к жизненно важным органам тела. В любом случае смерть от удушья и/или остановки сердца обязательно наступит в результате достаточно сильного электрического тока через тело. По иронии судьбы, медицинский персонал использует сильный разряд электрического тока, приложенный к груди пострадавшего, чтобы «запустить» фибрилляционное сердце и привести его к нормальному ритму.

    Эта последняя деталь приводит нас к еще одной опасности поражения электрическим током, характерной для систем общественного питания. Хотя наше первоначальное исследование электрических цепей будет сосредоточено почти исключительно на постоянном токе (постоянный ток или электричество, которое движется в непрерывном направлении в цепи), современные энергосистемы используют переменный ток или переменный ток. Технические причины такого предпочтения переменного тока в энергосистемах не имеют отношения к этому обсуждению, но особые опасности каждого вида электроэнергии очень важны для темы безопасности.

    Воздействие переменного тока на организм во многом зависит от частоты. Низкочастотный (от 50 до 60 Гц) переменный ток используется в домашних хозяйствах США (60 Гц) и Европы (50 Гц); он может быть опаснее высокочастотного переменного тока и в 3-5 раз опаснее постоянного тока того же напряжения и силы тока. Низкочастотный переменный ток вызывает продолжительное сокращение мышц (тетания), которое может приморозить руку к источнику тока, продлевая воздействие. Постоянный ток чаще всего вызывает одиночное судорожное сокращение, которое часто отталкивает жертву от источника тока.

    Переменная природа

    переменного тока имеет большую тенденцию приводить нейроны кардиостимулятора сердца в состояние фибрилляции, тогда как постоянный ток имеет тенденцию просто останавливать сердце. Как только ток разряда остановлен, «замороженное» сердце имеет больше шансов восстановить нормальную картину сокращений, чем сердце с фибрилляцией. Вот почему «дефибрилляционное» оборудование, используемое медиками скорой помощи, работает: импульс тока, подаваемый дефибриллятором, имеет постоянный ток, который останавливает фибрилляцию и дает сердцу шанс восстановиться.

    В любом случае электрические токи, достаточно сильные для того, чтобы вызвать непроизвольное сокращение мышц, опасны, и их следует избегать любой ценой. В следующем разделе мы рассмотрим, как такие токи обычно входят в тело и выходят из него, а также рассмотрим меры предосторожности против таких явлений.

    • Электрический ток способен вызывать глубокие и тяжелые ожоги тела из-за рассеивания мощности на электрическом сопротивлении тела.
    • Столбняк — это состояние, при котором мышцы непроизвольно сокращаются из-за прохождения внешнего электрического тока через тело.Когда непроизвольное сокращение мышц, контролирующих пальцы, приводит к тому, что жертва не может отпустить проводник под напряжением, говорят, что жертва «застыла в цепи».
    • Диафрагма (легкое) и сердечная мышца одинаково подвержены воздействию электрического тока. Даже токи, слишком слабые, чтобы вызвать столбняк, могут быть достаточно сильными, чтобы воздействовать на нейроны кардиостимулятора сердца, заставляя сердце трепетать, а не сильно биться.
    • Постоянный ток (DC) с большей вероятностью вызовет мышечный столбняк, чем переменный ток (AC), в результате чего постоянный ток с большей вероятностью может «заморозить» пострадавшего в сценарии шока.Тем не менее, переменный ток с большей вероятностью вызовет фибрилляцию сердца пострадавшего, что является более опасным состоянием для пострадавшего после того, как ток разряда был остановлен.

     

    Электричество требует полного пути (цепи) для непрерывного протекания. Вот почему удар, полученный от статического электричества, является только мгновенным толчком: течение тока обязательно кратковременно, когда статические заряды уравниваются между двумя объектами. Такие разряды самоограниченной продолжительности редко бывают опасными.

    Без двух контактных точек на корпусе для входа и выхода тока, соответственно, нет опасности поражения электрическим током. Вот почему птицы могут безопасно отдыхать на высоковольтных линиях электропередач, не получая ударов током: они соприкасаются с цепью только в одной точке.

    Рисунок 1.1

    Для того чтобы ток протекал по проводнику, должно присутствовать напряжение, которое мотивирует его. Напряжение, как вы должны помнить, всегда относительно между двумя точками . Не существует такого понятия, как напряжение «включено» или «в» одной точке цепи, поэтому птица, контактирующая с одной точкой в ​​​​вышеприведенной цепи, не имеет напряжения, приложенного к ее телу, чтобы установить ток через нее.Да, несмотря на то, что они опираются на две ножки , обе ножки касаются одного и того же провода, что делает их электрически общими . С точки зрения электричества, обе ноги птицы касаются одной и той же точки, поэтому между ними нет напряжения, которое могло бы стимулировать ток через тело птицы.

    Это может привести к мысли, что невозможно получить удар током, коснувшись только одного провода. Как и птицы, если мы обязательно коснемся только одного провода за раз, мы будем в безопасности, верно? К сожалению, это неправильно.В отличие от птиц, люди обычно стоят на земле, когда касаются «живого» провода. Много раз одна сторона энергосистемы будет преднамеренно соединена с заземлением, поэтому человек, касающийся одного провода, фактически устанавливает контакт между двумя точками в цепи (проводом и заземлением):

    Рисунок 1.2

    Символ заземления представляет собой набор из трех горизонтальных полос уменьшающейся ширины, расположенных в левом нижнем углу показанной цепи, а также у ног человека, подвергаемого удару током.В реальной жизни заземление энергосистемы состоит из какого-то металлического проводника, закопанного глубоко в землю для обеспечения максимального контакта с землей. Этот проводник электрически соединен с соответствующей точкой соединения на цепи толстым проводом. Связь жертвы с землей осуществляется через ноги, которые касаются земли.

    В этот момент у ученика обычно возникает несколько вопросов:

    • Если наличие точки заземления в цепи обеспечивает легкую точку контакта для кого-то, кто может получить удар током, зачем вообще иметь ее в цепи? Разве незаземленная цепь не была бы безопаснее?
    • Человек, которого шокируют, скорее всего, не босиком.Если резина и ткань являются изоляционными материалами, то почему их обувь не защищает их, предотвращая образование цепи?
    • Насколько хорошим проводником может быть грязь ? Если вы можете получить удар током через землю, почему бы не использовать землю в качестве проводника в наших силовых цепях?

    Отвечая на первый вопрос, наличие преднамеренной «заземляющей» точки в электрической цепи предназначено для обеспечения того, чтобы одна ее сторона была безопасной для контакта.Обратите внимание: если наша жертва на приведенной выше диаграмме коснется нижней стороны резистора, ничего не произойдет, даже если ее ноги все еще будут касаться земли:

    Рисунок 1.3

    Поскольку нижняя часть цепи надежно соединена с землей через точку заземления в левом нижнем углу цепи, нижний проводник цепи имеет электрически общий с заземлением. Поскольку между электрически общими точками не может быть напряжения, на человека, контактирующего с нижним проводом, не будет подано напряжение, и он не получит удар током.По той же причине провод, соединяющий цепь с заземляющим стержнем / пластинами, обычно остается оголенным (без изоляции), так что любой металлический предмет, с которым он соприкасается, будет аналогичным образом электрически общим с землей.

    Заземление цепи гарантирует, что по крайней мере в одной точке цепи будет безопасно прикасаться. Но как насчет того, чтобы оставить цепь полностью незаземленной? Разве это не сделало бы любого человека, касающегося всего лишь одного провода, таким же безопасным, как птица, сидящая только на одном проводе? В идеале да. Практически нет.Посмотрите, что происходит без заземления:

    Рисунок 1.4

    Несмотря на то, что ноги человека все еще соприкасаются с землей, прикосновение к любой отдельной точке цепи должно быть безопасным. Поскольку через тело человека от нижней стороны источника напряжения к верхней не образуется полный путь (цепь), ток не может пройти через человека. Однако все это может измениться из-за случайного заземления, например, когда ветка дерева касается линии электропередач и обеспечивает соединение с заземлением.Такое случайное соединение проводника энергосистемы с землей (землей) называется замыканием на землю .

    Рисунок 1.5

    Замыкания на землю

    Замыкания на землю могут быть вызваны многими причинами, в том числе скоплением грязи на изоляторах линий электропередач (создание пути грязной воды для тока от проводника к опоре и земле во время дождя), просачиванию грунтовых вод в подземные проводники линий электропередач , а птицы приземляются на линии электропередач, соединяя линию со столбом своими крыльями.Учитывая множество причин замыканий на землю, они, как правило, непредсказуемы. В случае с деревьями никто не может гарантировать, какой провод может касаться их ветвей. Если бы дерево задело верхний провод в цепи, это сделало бы верхний провод безопасным для прикосновения, а нижний — опасным — полная противоположность предыдущему сценарию, когда дерево касается нижнего провода:

    . Рисунок 1.6

    Если ветка дерева соприкасается с верхним проводом, этот провод становится заземляющим проводником в цепи, электрически общим с заземлением.Следовательно, между этим проводом и землей нет напряжения, но есть полное (высокое) напряжение между нижним проводом и землей. Как упоминалось ранее, ветки деревьев являются лишь одним из потенциальных источников замыканий на землю в энергосистеме. Рассмотрим незаземленную энергосистему без соприкасающихся деревьев, но на этот раз с двумя людьми, касающимися отдельных проводов:

    Рисунок 1.7

    Когда каждый человек стоит на земле и контактирует с разными точками цепи, путь ударного тока проходит через одного человека, через землю и через другого человека.Несмотря на то, что каждый человек думает, что безопасно коснуться только одной точки цепи, их совместные действия создают смертельный сценарий. По сути, один человек действует как замыкание на землю, что делает его небезопасным для другого человека. Именно поэтому незаземленные энергосистемы опасны: напряжение между любой точкой цепи и землей (землей) непредсказуемо, потому что замыкание на землю может возникнуть в любой точке цепи в любое время. Единственный персонаж, который гарантированно будет в безопасности в этих сценариях, — это птица, которая вообще не имеет связи с землей! Надежно соединив назначенную точку цепи с заземлением («заземлив» цепь), по крайней мере, безопасность может быть обеспечена в этой точке.Это является большей гарантией безопасности, чем полное отсутствие заземления.

    Отвечая на второй вопрос, обувь с резиновой подошвой до действительно обеспечивает некоторую электрическую изоляцию, помогающую защитить кого-либо от прохождения ударного тока через ноги. Тем не менее, большинство распространенных моделей обуви не должны быть электрически «безопасными», их подошвы слишком тонкие и не из нужного материала. Кроме того, любая влага, грязь или токопроводящие соли от пота тела на поверхности подошвы обуви или через нее могут поставить под угрозу те небольшие изолирующие свойства обуви, которые она изначально имела.Есть обувь, специально предназначенная для опасных электромонтажных работ, а также толстые резиновые коврики, на которых можно стоять при работе с электрическими цепями под напряжением, но эти специальные элементы снаряжения должны быть в абсолютно чистом и сухом состоянии, чтобы быть эффективными. Достаточно сказать, что обычной обуви недостаточно, чтобы гарантировать защиту от поражения электрическим током от энергосистемы.

    Исследование контактного сопротивления между частями человеческого тела и точками контакта (например, землей) показывает широкий диапазон цифр (информацию об источнике этих данных см. в конце главы):

    • Контакт с руками или ногами, с резиновой изоляцией: 20 МОм тип.
    • Контакт стопы через кожаную подошву обуви (сухую): от 100 кОм до 500 кОм
    • Контакт ноги через кожаную подошву обуви (влажную): от 5 кОм до 20 кОм

    Как видите, резина не только является гораздо лучшим изоляционным материалом, чем кожа, но и наличие воды в пористом веществе, таком как кожа , значительно снижает электрическое сопротивление .

    Отвечая на третий вопрос, грязь не очень хороший проводник (по крайней мере, когда она сухая!). Это слишком плохой проводник, чтобы поддерживать непрерывный ток для питания нагрузки.Однако, как мы увидим в следующем разделе, требуется очень небольшой ток, чтобы ранить или убить человека, поэтому даже плохой проводимости грязи достаточно, чтобы обеспечить путь для смертельного тока, когда имеется достаточное напряжение, как обычно находится в энергосистемах.

    Некоторые поверхности земли являются лучшими изоляторами, чем другие. Асфальт, например, на масляной основе обладает гораздо большей устойчивостью, чем большинство видов грязи или камня. Бетон, с другой стороны, имеет тенденцию иметь довольно низкое сопротивление из-за содержания в нем воды и электролита (проводящего химического вещества).

    • Поражение электрическим током может произойти только при контакте между двумя точками цепи; при подаче напряжения на тело пострадавшего.
    • Силовые цепи обычно имеют обозначенную точку, которая «заземляется»: прочно соединена с металлическими стержнями или пластинами, закопанными в землю, чтобы гарантировать, что одна сторона цепи всегда находится под потенциалом земли (нулевое напряжение между этой точкой и землей).
    • Замыкание на землю — это случайное соединение между проводником цепи и землей (землей).
    • Специальная изолирующая обувь и маты предназначены для защиты людей от ударов током через заземление, но даже эти элементы снаряжения должны быть чистыми и сухими, чтобы быть эффективными. Обычная обувь недостаточно хороша, чтобы обеспечить защиту от ударов, изолируя ее владельца от земли.
    • Хотя грязь — плохой проводник, она может проводить ток, достаточный для того, чтобы ранить или убить человека.

    Распространённая фраза, касающаяся электробезопасности, звучит примерно так: « Убивает не напряжение, а ток ! ” Хотя в этом есть доля правды, нужно понять больше об опасности поражения электрическим током, чем эта простая поговорка.Если бы напряжение не представляло опасности, никто бы никогда не печатал и не вывешивал таблички с надписью: ОПАСНОСТЬ — ВЫСОКОЕ НАПРЯЖЕНИЕ!

    Принцип «текущие убийства» по сути верен. Это электрический ток, который сжигает ткани, замораживает мышцы и вызывает фибрилляцию сердца. Однако электрический ток не возникает сам по себе: должно быть доступное напряжение, чтобы ток протекал через жертву. Тело человека также оказывает сопротивление току, что необходимо учитывать.

    Взяв закон Ома для напряжения, тока и сопротивления и выразив его через ток при заданном напряжении и сопротивлении, мы получим следующее уравнение:

    [латекс]\textbf{закон Ома}[/латекс]

    [латекс]Ток=\frac{Напряжение}{Сопротивление}[/latex]                [latex]I=\frac{E}{R}[/latex]

     

    Величина тока, протекающего через тело, равна величине напряжения, приложенного между двумя точками на этом теле, деленному на электрическое сопротивление тела между этими двумя точками.Очевидно, что чем большее напряжение может вызвать протекание тока, тем легче он будет течь через любое заданное сопротивление. Отсюда опасность высокого напряжения, которое может генерировать достаточный ток, чтобы вызвать травму или смерть. И наоборот, если тело имеет более высокое сопротивление, при любом заданном напряжении будет течь меньший ток. То, насколько опасно напряжение, зависит от того, насколько велико общее сопротивление в цепи, противодействующее протеканию электрического тока.

    Сопротивление тела не является фиксированной величиной.Это варьируется от человека к человеку и время от времени. Существует даже методика измерения телесного жира, основанная на измерении электрического сопротивления между пальцами ног и пальцев человека. Различное процентное содержание жира в организме обеспечивает различное сопротивление: одна переменная влияет на электрическое сопротивление в организме человека. Чтобы метод работал точно, человек должен регулировать потребление жидкости за несколько часов до теста, что указывает на то, что гидратация тела является еще одним фактором, влияющим на электрическое сопротивление тела.

    Сопротивление тела также варьируется в зависимости от того, как осуществляется контакт с кожей: от руки к руке, от руки к ноге, от стопы к стопе, от руки к локтю и т. д. Пот, богатый солью и минералами , является отличным проводником электричества, будучи жидкостью. Как и кровь с таким же высоким содержанием проводящих химических веществ. Таким образом, контакт с проводом потной рукой или открытой раной будет оказывать гораздо меньшее сопротивление току, чем контакт с чистой сухой кожей.

    Измеряя электрическое сопротивление чувствительным измерителем, я измеряю приблизительно 1 миллион Ом сопротивления (1 МОм) на руках, держа между пальцами металлические щупы измерителя.Измеритель показывает меньшее сопротивление, когда я сильно сжимаю щупы, и большее сопротивление, когда я держу их свободно. Я сижу здесь за своим компьютером, печатая эти слова, и мои руки чисты и сухи. Если бы я работал в какой-то жаркой, грязной промышленной среде, сопротивление между моими руками, вероятно, было бы намного меньше, что представляло бы меньшее сопротивление смертельно опасному току и большую угрозу поражения электрическим током.

    Сколько электрического тока вредно?

    Ответ на этот вопрос также зависит от нескольких факторов.Индивидуальная химия тела оказывает значительное влияние на то, как электрический ток влияет на человека. Некоторые люди очень чувствительны к току, испытывая непроизвольные сокращения мышц при ударах статическим электричеством. Другие могут высекать большие искры от разряда статического электричества и почти не ощущать этого, не говоря уже о мышечном спазме. Несмотря на эти различия, приблизительные рекомендации были разработаны с помощью тестов, которые показывают, что для проявления вредного воздействия требуется очень небольшой ток (опять же, см. в конце главы информацию об источнике этих данных).Все значения тока указаны в миллиамперах (миллиампер равен 1/1000 ампера):

    ЭФФЕКТ ТЕЛА МУЖЧИНЫ/ЖЕНЩИНЫ ПОСТОЯННЫЙ ТОК (DC) 60 Гц 100 кГц
    Легкое ощущение в руке(ах) Мужчины 1,0 мА 0,4 мА 7 мА
    Женщины 0,6 мА 0,3 мА 5 мА
    Болевой порог Мужчины 5.2 мА 1,1 мА 12 мА
    Женщины 3,5 мА 0,7 мА 8 мА
    Болезненный, но произвольный контроль мышц сохраняется Мужчины 62 мА 9 мА 55 мА
    Женщины 41 мА 6 мА 37 мА
    Болезненно, невозможно отпустить провода Мужчины 76 мА 16 мА 75 мА
    Женщины 60 мА 15 мА 63 мА
    Сильная боль, затрудненное дыхание Мужчины 90 мА 23 мА 94 мА
    Женщины 60 мА 15 мА 63 мА
    Возможна фибрилляция сердца через 3 секунды Мужчины и женщины 500 мА 100 мА

    «Гц» обозначает единицу измерения Герц .Это мера того, насколько быстро меняется переменный ток, также известная как частота . Так, столбец цифр с надписью «60 Гц переменного тока» относится к току, который чередуется с частотой 60 циклов (1 цикл = период времени, когда ток течет в одном направлении, затем в другом) в секунду. Последний столбец, помеченный как «10 кГц переменного тока», относится к переменному току, который совершает десять тысяч (10 000) циклов туда и обратно каждую секунду.

    Имейте в виду, что эти цифры приблизительны, так как люди с разным химическим составом тела могут реагировать по-разному.Было высказано предположение, что тока всего 17 миллиампер переменного тока через грудную клетку достаточно, чтобы вызвать фибрилляцию у человека при определенных условиях. Большинство наших данных относительно индуцированной фибрилляции получено в результате испытаний на животных. Очевидно, что проводить тесты индуцированной фибрилляции желудочков на людях нецелесообразно, поэтому имеющиеся данные отрывочны. О, и если вам интересно, я понятия не имею, почему женщины более восприимчивы к электрическому току, чем мужчины! Предположим, мне нужно было положить руки на клеммы источника переменного напряжения с частотой 60 Гц (60 циклов в секунду).Какое напряжение потребуется в этом состоянии чистой, сухой кожи, чтобы произвести ток в 20 миллиампер (достаточно, чтобы я не смог отпустить источник напряжения)? Мы можем использовать закон Ома, чтобы определить это:

    [латекс]E = ИК[/латекс]

    [латекс]E = (20 мА)(1 М \Омега)[/латекс]

    [латекс]\textbf{E = 20 000 вольт или 20 кВ}[/латекс]

    Имейте в виду, что это «наилучший сценарий» (чистая, сухая кожа) с точки зрения электробезопасности, и что это значение напряжения представляет собой величину, необходимую для возникновения столбняка.Гораздо меньше потребуется, чтобы вызвать болевой шок! Кроме того, имейте в виду, что физиологические эффекты любого конкретного количества тока могут значительно различаться от человека к человеку и что эти расчеты являются лишь приблизительными оценками .

    Побрызгав на пальцы водой для имитации пота, я смог измерить сопротивление рукопашного боя всего 17 000 Ом (17 кОм). Имейте в виду, что только один палец каждой руки касается тонкой металлической проволоки. Пересчитав напряжение, необходимое для возникновения тока в 20 миллиампер, получим такую ​​цифру:

    [латекс]E = ИК[/латекс]

    [латекс]E = (20 мА)(17 кОм)[/латекс]   

    [латекс]\textbf{E = 340 В}[/латекс]

    В этом реалистичном состоянии достаточно 340 вольт потенциала от одной моей руки к другой, чтобы вызвать 20 миллиампер тока.Тем не менее, все еще можно получить смертельный удар от меньшего напряжения, чем это. При гораздо более низком показателе сопротивления тела, увеличенном контактом с кольцом (золотая полоса, обернутая вокруг пальца, является отличной точкой контакта для поражения электрическим током) или полным контактом с большим металлическим предметом, таким как труба или металл. ручкой инструмента показатель сопротивления тела может упасть до 1000 Ом (1 кОм), что позволяет даже более низкому напряжению представлять потенциальную опасность.

    [латекс]E = ИК[/латекс]

    [латекс]E = (20 мА)(1 кОм)[/латекс]

    [латекс]\textbf{E = 20 В}[/латекс]

    Обратите внимание, что в этом состоянии 20 вольт достаточно, чтобы произвести через человека ток силой 20 миллиампер; достаточно, чтобы вызвать столбняк. Помните, было высказано предположение, что ток силой всего 17 миллиампер может вызвать фибрилляцию желудочков (сердца). При сопротивлении рукопашного боя 1000 Ом для создания этого опасного состояния потребуется всего 17 вольт.

    [латекс]E = ИК[/латекс]
    [латекс]E = (17 мА)(1 кВт)[/латекс]
    [латекс]\textbf{E = 17 В}[/латекс]

    Семнадцать вольт не так уж и много для электрических систем. Конечно, это «наихудший» сценарий с переменным напряжением 60 Гц и отличной проводимостью тела, но он показывает, насколько малое напряжение может представлять серьезную угрозу при определенных условиях.

    Условия, необходимые для создания сопротивления тела 1000 Ом, не обязательно должны быть такими экстремальными, как то, что было представлено (потная кожа с контактом на золотом кольце).Сопротивление тела может уменьшаться при приложении напряжения (особенно если столбняк заставляет пострадавшего сильнее сжимать проводник), так что при постоянном напряжении удар может усилиться после первого контакта. То, что начинается как легкий шок — достаточно, чтобы «заморозить» жертву, чтобы она не могла отпустить, — может перерасти во что-то достаточно серьезное, чтобы убить ее, поскольку сопротивление их тела уменьшается, а ток соответственно увеличивается.

    Исследования предоставили примерный набор цифр электрического сопротивления точек контакта человека в различных условиях:

     

    Ситуация Сухой Влажный
    Провод, на который нажали пальцем 40 000 Ом – 1 000 000 Ом 4 000 Ом – 15 000 Ом
    Трос, удерживаемый рукой 15 000 Ом – 50 000 Ом 3000 Ом – 5000 Ом
    Металлические плоскогубцы, удерживаемые вручную 5 000 Ом – 10 000 Ом 1000 Ом – 3000 Ом
    Контакт с ладонью 3000 Ом – 8000 Ом 1000 Ом – 2000 Ом
    1.5-дюймовая металлическая труба, удерживаемая одной рукой 1000 Ом – 3000 Ом 500 Ом – 1500 Ом
    1,5-дюймовая металлическая труба, удерживаемая двумя руками 500 Ом – 1500 кОм 250 Ом – 750 Ом
    Рука, погруженная в проводящую жидкость 200 Ом – 500 Ом
    Ножка, погруженная в проводящую жидкость 100 Ом – 300 Ом

     

    Обратите внимание на значения сопротивления двух условий, включающих 1.Металлическая труба 5 дюймов. Сопротивление, измеренное двумя руками, сжимающими трубу, составляет ровно половину сопротивления одной руки, сжимающей трубу.

    Рис. 1.8

    Двумя руками площадь контакта с телом в два раза больше, чем с одной рукой. Это важный урок: электрическое сопротивление между любыми контактирующими объектами уменьшается с увеличением площади контакта при прочих равных условиях. Если две руки держат трубу, ток имеет два параллельных путей, по которым течет от трубы к телу (или наоборот).

    Рисунок 1.9.

    Как мы увидим в одной из последующих глав, параллельных цепей всегда приводят к меньшему общему сопротивлению, чем любой отдельный путь, рассматриваемый отдельно.

    В промышленности 30 вольт обычно считаются консервативным пороговым значением для опасного напряжения. Осторожный человек должен расценивать любое напряжение выше 30 вольт как опасное, не полагаясь на нормальное сопротивление тела для защиты от удара. Тем не менее, держать руки в чистоте и сухости и снимать все металлические украшения при работе с электричеством — отличная идея.Даже при более низком напряжении металлические украшения могут представлять опасность, проводя ток, достаточный для того, чтобы обжечь кожу, если они соприкасаются между двумя точками цепи. Металлические кольца, в частности, были причиной более чем нескольких обожженных пальцев, устанавливая мосты между точками в низковольтной, сильноточной цепи.

    Кроме того, напряжение ниже 30 В может быть опасным, если его достаточно, чтобы вызвать неприятные ощущения, которые могут привести к рывку и случайному контакту с более высоким напряжением или какой-либо другой опасности.Я помню, как однажды жарким летним днем ​​работал над автомобилем. Я был в шортах, моя голая нога касалась хромированного бампера автомобиля, когда я затягивал контакты аккумулятора. Когда я коснулся металлическим ключом положительной (незаземленной) стороны 12-вольтовой батареи, я почувствовал покалывание в том месте, где моя нога касалась бампера. Сочетание плотного контакта с металлом и моей потной кожи позволило ощутить удар всего 12-вольтовым электрическим потенциалом.

    К счастью, ничего страшного не произошло, но если бы двигатель работал и удар ощущался в моей руке, а не в ноге, я мог бы рефлекторно дернуть руку на пути вращающегося вентилятора или уронить металлический ключ на клеммы аккумулятора (вызвав большое количество тока через ключ с большим количеством сопровождающих искр).Это иллюстрирует еще один важный урок, касающийся электробезопасности; что электрический ток сам по себе может быть косвенной причиной травмы, заставляя вас прыгать или сокращать части вашего тела, нанося вред.

    Путь тока, проходящий через человеческое тело, влияет на то, насколько он вреден. Ток воздействует на все мышцы, находящиеся на его пути, и, поскольку мышцы сердца и легких (диафрагмы), вероятно, являются наиболее важными для выживания, пути удара, пересекающие грудную клетку, являются наиболее опасными.Это делает путь ударного тока из рук в руки очень вероятным способом получения травм и летального исхода.

    Во избежание подобных ситуаций рекомендуется работать только одной рукой с цепями под напряжением, находящимися под опасным напряжением, а другую руку держать в кармане, чтобы случайно ничего не задеть. Конечно, всегда безопаснее работать с обесточенной цепью, но это не всегда практично или возможно. При работе одной рукой правая рука обычно предпочтительнее левой по двум причинам: большинство людей правши (что обеспечивает дополнительную координацию при работе), а сердце обычно расположено слева от центра в грудной полости.

    Для левшей этот совет может оказаться не самым лучшим. Если такой человек недостаточно координирует свою правую руку, он может подвергать себя большей опасности, используя руку, с которой ему наименее комфортно, даже если ударный ток через эту руку может представлять большую опасность для его сердца. Относительная опасность удара током одной рукой или другой, вероятно, меньше, чем опасность работы с менее чем оптимальной координацией, поэтому выбор руки лучше оставить на усмотрение человека.

    Наилучшей защитой от поражения электрическим током от цепи под напряжением является сопротивление, а сопротивление телу можно добавить с помощью изолированных инструментов, перчаток, обуви и другого снаряжения. Ток в цепи является функцией доступного напряжения, деленной на общего сопротивления на пути потока. Как мы рассмотрим более подробно позже в этой книге, сопротивления имеют аддитивный эффект, когда они сложены таким образом, что существует только один путь для протекания тока:

    . Фигура 1.10

     

    Лицо, находящееся в непосредственном контакте с источником напряжения: сила тока ограничивается только сопротивлением тела.

    [латекс]I = \frac{E}{R_{boot}}[/latex]

     

    Теперь мы увидим эквивалентную схему для человека в утепленных перчатках и ботинках:

    Рисунок 1.11

     

    Лицо в изолирующих перчатках и сапогах;

    Ток теперь ограничен сопротивлением цепи:

    [латекс]I = \frac{E}{R_{перчатка}+R_{тело}+R_{сапог}+}[/latex]

     

    Поскольку электрический ток должен пройти через ботинок и тело и перчатку, чтобы завершить свою цепь обратно к батарее, сумма ( сумма ) этих сопротивлений препятствует протеканию тока в большей степени, чем любое сопротивлений, рассматриваемых индивидуально.

    Безопасность — одна из причин, по которой электрические провода обычно покрывают пластиковой или резиновой изоляцией: чтобы значительно увеличить величину сопротивления между проводником и кем-либо или чем-либо, кто может с ним соприкоснуться. К сожалению, было бы непомерно дорого заделывать проводники ЛЭП недостаточной изоляцией для обеспечения безопасности в случае случайного прикосновения. Таким образом, безопасность поддерживается за счет того, что эти линии находятся достаточно далеко от досягаемости, чтобы никто не мог случайно коснуться их.

    Если возможно, отключите питание цепи перед выполнением каких-либо работ на ней.Вы должны обезопасить все источники вредной энергии, прежде чем система может считаться безопасной для работы. В промышленности обеспечение безопасности цепи, устройства или системы в этом состоянии обычно называется переводом их в состояние нулевого энергопотребления . В центре внимания этого урока, конечно же, электробезопасность. Однако многие из этих принципов применимы и к неэлектрическим системам.

    • Вред для тела зависит от величины ударного тока. Более высокое напряжение позволяет производить более высокие и опасные токи.Сопротивление противодействует току, что делает высокое сопротивление хорошей защитой от ударов.
    • Обычно считается, что любое напряжение выше 30 может создавать опасные ударные токи. Металлические украшения определенно плохо носить при работе с электрическими цепями. Кольца, ремешки для часов, ожерелья, браслеты и другие подобные украшения обеспечивают превосходный электрический контакт с вашим телом и могут сами проводить ток, достаточный для того, чтобы вызвать ожоги кожи, даже при низком напряжении.
    • Низкое напряжение все еще может быть опасным, даже если оно слишком низкое, чтобы непосредственно вызвать поражение электрическим током.Их может быть достаточно, чтобы напугать жертву, заставив ее дернуться назад и коснуться чего-то более опасного в непосредственной близости.
    • При необходимости работы на «живой» цепи лучше выполнять работу одной рукой, чтобы не допустить смертельного рукопашного (через грудную клетку) пути ударного тока.
    • Если возможно, отключите питание цепи, прежде чем выполнять какие-либо работы с ней.

    При работе с оборудованием отключите все источники питания перед выполнением любых работ.В промышленности удаление этих источников питания из цепи, устройства или системы обычно называется переводом в состояние нулевого энергопотребления . В центре внимания этого урока, конечно же, электробезопасность. Однако многие из этих принципов применимы и к неэлектрическим системам.

    Защита чего-либо в состоянии нулевой энергии означает избавление от любого вида потенциальной или накопленной энергии, включая, помимо прочего:

    • Опасное напряжение
    • Давление пружины
    • Гидравлическое (жидкостное) давление
    • Пневматическое (воздушное) давление
    • Подвесной груз
    • Химическая энергия (легковоспламеняющиеся или иные химически активные вещества)
    • Ядерная энергия (радиоактивные или делящиеся вещества)

    Напряжение по своей природе является проявлением потенциальной энергии.В первой главе я даже использовал приподнятую жидкость в качестве аналогии потенциальной энергии напряжения, обладающей способностью (потенциалом) производить ток (течение), но не обязательно реализующей этот потенциал до тех пор, пока не будет установлен подходящий путь для течения. и сопротивление потоку преодолевается. Пара проводов с высоким напряжением между ними не выглядит и не кажется опасной, даже несмотря на то, что они содержат достаточно потенциальной энергии между собой, чтобы пропустить через ваше тело смертельное количество тока. Несмотря на то, что это напряжение в настоящее время ничего не делает, у него есть потенциал, и этот потенциал должен быть нейтрализован, прежде чем станет безопасным физический контакт с этими проводами.

    Все правильно спроектированные цепи имеют механизмы «разъединителя» для отключения напряжения от цепи. Иногда эти «разъединители» выполняют двойную функцию автоматического размыкания в условиях чрезмерного тока, и в этом случае мы называем их «автоматическими выключателями». В других случаях разъединители представляют собой устройства с ручным управлением без автоматической функции. В любом случае они предназначены для вашей защиты и должны использоваться должным образом. Обратите внимание, что устройство отключения должно быть отделено от обычного выключателя, используемого для включения и выключения устройства.Это защитный выключатель, который следует использовать только для защиты системы в состоянии нулевого энергопотребления:

    . Рис. 1.12

    Когда разъединитель находится в положении «разомкнуто», как показано на рисунке (обрыв цепи отсутствует), цепь разомкнута и тока не будет. На нагрузке будет нулевое напряжение, а полное напряжение источника будет падать на разомкнутые контакты разъединителя. Обратите внимание, что нет необходимости в разъединителе в нижнем проводнике цепи. Поскольку эта сторона цепи прочно соединена с землей (землей), она электрически общая с землей, и ее лучше оставить такой.Для максимальной безопасности персонала, работающего с нагрузкой этой цепи, можно установить временное заземление на верхней стороне нагрузки, чтобы исключить падение напряжения на нагрузке:

    Рисунок 1.13

    При наличии временного заземления обе стороны проводки нагрузки подключаются к земле, обеспечивая состояние нулевого энергопотребления на нагрузке.

    Поскольку заземление с обеих сторон нагрузки электрически эквивалентно короткому замыканию нагрузки проводом, это еще один способ достижения той же цели максимальной безопасности:

    Фигура 1.14

    В любом случае обе стороны нагрузки будут электрически общими с землей, что не допускает наличия напряжения (потенциальной энергии) между любой стороной нагрузки и землей, на которой стоят люди. Этот метод временного заземления проводников в обесточенной энергосистеме очень распространен при ремонтных работах, выполняемых в системах распределения электроэнергии высокого напряжения.

    Еще одним преимуществом этой меры предосторожности является защита от возможности замыкания разъединителя (включения, чтобы обеспечить непрерывность цепи), когда люди все еще контактируют с нагрузкой.Временный провод, подключенный к нагрузке, вызовет короткое замыкание, когда разъединитель будет замкнут, немедленно отключив любые устройства защиты от перегрузки по току (автоматические выключатели или предохранители) в цепи, которые снова отключат питание. Если это произойдет, разъединитель вполне может быть поврежден, но рабочие на нагрузке находятся в безопасности.

    Здесь следует упомянуть, что устройства перегрузки по току не предназначены для защиты от поражения электрическим током.Скорее они существуют исключительно для защиты проводников от перегрева из-за чрезмерных токов. Только что описанные временные закорачивающие провода действительно вызвали бы «срабатывание» любых устройств перегрузки по току в цепи, если бы разъединитель был замкнут, но следует понимать, что защита от поражения электрическим током не является предполагаемой функцией этих устройств. Их основная функция будет просто использоваться для защиты рабочих с установленным закорачивающим проводом.

    Структурированные системы безопасности: блокировка/маркировка

    Поскольку очевидно, что важно иметь возможность зафиксировать любые разъединяющие устройства в разомкнутом (выключенном) положении и убедиться, что они остаются в этом положении во время выполнения работ на цепи, необходимо внедрить структурированную систему безопасности. место.Такая система обычно используется в промышленности и называется Lock-out/Tag-out .

    Процедура блокировки/маркировки работает следующим образом: все лица, работающие с защищенным каналом, имеют свой собственный навесной замок или кодовый замок, который они устанавливают на рычаге управления отключающим устройством перед началом работы с системой. Кроме того, они должны заполнить и подписать ярлык, который они подвешивают к своему замку, с описанием характера и продолжительности работы, которую они намерены выполнять в системе.Если необходимо «заблокировать» несколько источников энергии (несколько разъединений, защита как электрических, так и механических источников энергии и т. д.), рабочий должен использовать столько своих замков, сколько необходимо для обеспечения питания системы. до начала работы. Таким образом, система поддерживается в состоянии нулевого энергопотребления до тех пор, пока не будет удалена каждая последняя блокировка со всех разъединяющих и отключающих устройств, а это означает, что каждый последний работник дает согласие, сняв свои личные блокировки. Если принято решение повторно включить систему, а замок (замки) одного человека все еще остается на месте после того, как все присутствующие сняли свои, бирка (метки) покажет, кто этот человек и чем он занимается.

    Даже при наличии хорошей программы безопасности по блокировке/маркировке по-прежнему необходимо соблюдать осторожность и соблюдать меры предосторожности, руководствуясь здравым смыслом. Это особенно актуально в промышленных условиях, когда множество людей могут одновременно работать с устройством или системой. Некоторые из этих людей могут не знать о надлежащей процедуре блокировки/маркировки или могут знать о ней, но слишком самодовольны, чтобы следовать ей. Не думайте, что все соблюдали правила безопасности!

    После того, как электрическая система была заблокирована и помечена вашим личным замком, вы должны перепроверить, действительно ли напряжение зафиксировано в нулевом состоянии.Один из способов проверить, запустится ли машина (или что-то еще, с чем она работает) при нажатии переключателя или кнопки запуска . Если он запустится, то вы знаете, что не удалось получить от него электроэнергию.

    Кроме того, вы должны всегда проверять наличие опасного напряжения с помощью измерительного прибора, прежде чем прикасаться к каким-либо проводникам в цепи. В целях безопасности вам следует следовать следующей процедуре проверки, использования и последующей проверки вашего глюкометра:

    .
    • Проверьте правильность показаний вашего мультиметра на известном источнике напряжения.
    • Используйте свой мультиметр для проверки заблокированной цепи на наличие опасного напряжения.
    • Еще раз проверьте свой измеритель на известном источнике напряжения, чтобы убедиться, что он по-прежнему показывает правильно.

    Хотя это может показаться чрезмерным или даже параноидальным, это проверенный метод предотвращения поражения электрическим током. Однажды у меня был измеритель, который не показывал напряжение, когда он должен был, проверяя цепь, чтобы увидеть, не «разряжена ли она». Если бы я не использовал другие средства для проверки наличия напряжения, возможно, меня уже не было бы в живых, чтобы написать это.Всегда есть вероятность того, что ваш измеритель напряжения будет неисправен именно тогда, когда он вам нужен для проверки опасного состояния. Выполнение этих шагов поможет гарантировать, что вы никогда не попадете в смертельную ситуацию из-за сломанного счетчика.

    Наконец, электрик подходит к точке процедуры проверки безопасности, когда считается безопасным прикасаться к проводникам. Имейте в виду, что после принятия всех мер предосторожности все еще возможно (хотя и очень маловероятно) наличие опасного напряжения.Последней мерой предосторожности, которую следует предпринять на этом этапе, является мгновенный контакт с проводником (проводниками) тыльной стороной руки , прежде чем схватить его или металлический инструмент, соприкасающийся с ним. Почему? Если по какой-либо причине между этим проводником и заземлением все еще присутствует напряжение, движение пальца от ударной реакции (сжатие кулака) разорвет контакт с проводником. Обратите внимание, что это абсолютно последний шаг , который должен предпринять любой электрик перед началом работы с энергосистемой, и никогда не следует использовать в качестве альтернативного метода проверки опасного напряжения.Если у вас есть основания сомневаться в надежности вашего глюкометра, воспользуйтесь другим глюкометром, чтобы получить «второе мнение»

    • Состояние нулевого энергопотребления: когда цепь, устройство или система защищены таким образом, что не существует потенциальной энергии, которая могла бы повредить кому-либо, работающему с ними.
    • Выключатели-разъединители должны присутствовать в правильно спроектированной электрической системе, чтобы обеспечить удобную готовность к состоянию нулевого энергопотребления.
    • Временные заземляющие или закорачивающие провода могут быть подключены к обслуживаемой нагрузке для дополнительной защиты персонала, работающего с этой нагрузкой.
    • Блокировка/маркировка работает следующим образом: при работе с системой в состоянии нулевого энергопотребления работник устанавливает личный замок или кодовый замок на каждое устройство отключения энергии, имеющее отношение к его или ее задаче в этой системе. Также на каждый из этих замков вешается бирка с описанием характера и продолжительности предстоящей работы, а также того, кто ее выполняет.
    • Всегда проверяйте, чтобы цепь была защищена в состоянии нулевого энергопотребления с помощью тестового оборудования после «заблокировки». Обязательно проверьте свой измеритель до и после проверки цепи, чтобы убедиться, что он работает правильно.
    • Когда придет время фактически вступить в контакт с проводником (проводниками) предположительно отключенной энергосистемы, сделайте это сначала тыльной стороной руки, чтобы в случае удара током мышечная реакция оттянула пальцы от проводника. .

    Безопасное и эффективное использование электрического счетчика, возможно, является самым ценным навыком, которым может овладеть электронщик, как ради личной безопасности, так и для профессионального мастерства. Поначалу может быть сложно использовать счетчик, зная, что вы подключаете его к цепям под напряжением, которые могут содержать опасные для жизни уровни напряжения и тока.Это опасение небезосновательно, и всегда лучше действовать осторожно при использовании счетчиков. Небрежность больше, чем любой другой фактор, является причиной несчастных случаев с электричеством опытных техников.

    Мультиметры

    Наиболее распространенным электрическим испытательным оборудованием является мультиметр . Мультиметры названы так потому, что они имеют возможность измерять множество переменных: напряжение, ток, сопротивление и часто многие другие, некоторые из которых не могут быть объяснены здесь из-за их сложности.В руках квалифицированного специалиста мультиметр является одновременно и эффективным рабочим инструментом, и защитным устройством. Однако в руках кого-то невежественного и/или неосторожного мультиметр может стать источником опасности при подключении к «живой» цепи.

    Существует много различных марок мультиметров, при этом несколько моделей, выпускаемых каждым производителем, имеют разные наборы функций. Мультиметр, показанный здесь на следующих иллюстрациях, представляет собой «универсальную» конструкцию, не относящуюся к какому-либо производителю, но достаточно общую для обучения основным принципам использования:

    Фигура 1.15

    Вы заметите, что дисплей этого счетчика относится к «цифровому» типу: он показывает числовые значения с использованием четырех цифр, подобно цифровым часам. Поворотный селекторный переключатель (теперь установленный в положение Off ) имеет пять различных положений измерения, в которых он может быть установлен: два положения «V», два положения «A» и одно, установленное посередине с забавной «подковой». символ на нем, представляющий «сопротивление». Символ «подкова» представляет собой греческую букву «Омега» (Ω), которая является общепринятым символом электрической единицы измерения омов.

    Из двух настроек «V» и двух настроек «A» вы заметите, что каждая пара разделена на уникальные маркеры либо парой горизонтальных линий (одна сплошная, одна пунктирная), либо пунктирной линией с волнистой кривой над ней. . Параллельные линии представляют «DC», а волнистая кривая представляет «AC». «V», конечно, означает «напряжение», а «A» — «ампер» (ток). Измеритель использует различные внутренние методы для измерения постоянного тока, чем он использует для измерения переменного тока, и поэтому он требует от пользователя выбора, какой тип напряжения (В) или тока (А) должен быть измерен.Хотя мы не обсуждали переменный ток (AC) в каких-либо технических подробностях, важно помнить об этом различии в настройках счетчика.

    Мультиметр Розетки

    На лицевой панели мультиметра есть три разных разъема, к которым мы можем подключить наши тестовые провода . Измерительные провода — это не что иное, как специально подготовленные провода, используемые для подключения измерителя к тестируемой цепи. Провода покрыты гибкой изоляцией с цветовой маркировкой (черной или красной), чтобы руки пользователя не касались оголенных проводников, а наконечники щупов представляют собой острые жесткие куски проволоки:

    Фигура 1.16

    Черный измерительный провод всегда подключается к черному разъему на мультиметре: тот, который помечен как «COM» для «общего». Красные измерительные провода подключаются либо к красному разъему, отмеченному для напряжения и сопротивления, либо к красному разъему, отмеченному для тока, в зависимости от того, какую величину вы собираетесь измерять с помощью мультиметра.

    Чтобы увидеть, как это работает, давайте рассмотрим пару примеров, демонстрирующих использование счетчика. Во-первых, мы настроим измеритель для измерения постоянного напряжения от батареи:

    Фигура 1.17

    Обратите внимание, что два измерительных провода вставлены в соответствующие разъемы на измерителе для напряжения, а селекторный переключатель установлен на постоянное напряжение «V». Теперь рассмотрим пример использования мультиметра для измерения напряжения переменного тока от бытовой розетки (розетки):

    Рисунок 1.18

    Единственным отличием в настройке измерителя является размещение селекторного переключателя: теперь он повернут в положение AC «V». Поскольку мы все еще измеряем напряжение, тестовые провода останутся подключенными к тем же розеткам.В обоих этих примерах обязательно не допускать соприкосновения наконечников щупов друг с другом, пока они оба соприкасаются со своими соответствующими точками на цепи. Если это произойдет, произойдет короткое замыкание, создающее искру и, возможно, даже шар пламени, если источник напряжения способен обеспечить достаточный ток! Следующее изображение иллюстрирует потенциальную опасность:

    Рис. 1.19

    Это лишь один из способов, которым счетчик может стать источником опасности при неправильном использовании.

    Измерение напряжения, пожалуй, самая распространенная функция, для которой используется мультиметр. Это, безусловно, первичное измерение, проводимое в целях безопасности (часть процедуры блокировки/маркировки), и оператор счетчика должен хорошо понимать его. Поскольку это напряжение всегда относительно между двумя точками, измеритель должен быть надежно подключен к двум точкам в цепи, прежде чем он обеспечит надежное измерение. Обычно это означает, что оба щупа должны быть захвачены руками пользователя и прижаты к соответствующим точкам контакта источника напряжения или цепи во время измерения.

    Поскольку наиболее опасным является контактный путь удара током, удерживание измерительных щупов в двух точках высоковольтной цепи таким образом всегда представляет потенциальную опасность. Если защитная изоляция щупов изношена или треснула, пальцы пользователя могут соприкоснуться с проводниками щупов во время испытания, что приведет к сильному удару током. Если для захвата зондов можно использовать только одну руку, это более безопасный вариант. Иногда можно «зафиксировать» один наконечник щупа на контрольной точке схемы, чтобы его можно было отпустить, а другой щуп установить на место, используя только одну руку.Для облегчения этого можно прикрепить специальные аксессуары для наконечников зондов, такие как пружинные зажимы.

    Помните, что измерительные провода измерителя являются частью всего комплекта оборудования, и с ними следует обращаться так же бережно и уважительно, как и с самим измерителем. Если вам нужны специальные аксессуары для ваших измерительных проводов, такие как пружинный зажим или другой специальный наконечник пробника, обратитесь к каталогу продукции производителя измерителя или другого производителя испытательного оборудования. Не пытайтесь изобретать и изготавливать свои собственные тестовые пробники, так как вы можете подвергнуть себя опасности в следующий раз, когда будете использовать их в цепи под напряжением.

    Кроме того, следует помнить, что цифровые мультиметры обычно хорошо различают измерения переменного и постоянного тока, поскольку они настраиваются на одно или другое при проверке напряжения или тока. Как мы видели ранее, как переменное, так и постоянное напряжение и ток могут быть смертельными, поэтому при использовании мультиметра в качестве устройства проверки безопасности вы всегда должны проверять наличие как переменного, так и постоянного тока, даже если вы не ожидаете найти оба. ! Также при проверке на наличие опасного напряжения следует обязательно проверить все пары рассматриваемых точек.

    Например, предположим, что вы открыли электромонтажный шкаф и обнаружили три больших проводника, подающих переменный ток к нагрузке. Автоматический выключатель, питающий эти провода (предположительно), отключен, заблокирован и помечен. Вы перепроверили отсутствие питания, нажав кнопку Пуск для нагрузки. Ничего не произошло, так что теперь вы переходите к третьему этапу вашей проверки безопасности: проверка счетчика на напряжение.

    Сначала вы проверяете свой измеритель на известном источнике напряжения, чтобы убедиться, что он работает правильно.Любая близлежащая розетка питания должна быть удобным источником переменного напряжения для проверки. Вы делаете это и обнаруживаете, что счетчик показывает то, что должен. Далее нужно проверить наличие напряжения среди этих трех проводов в шкафу. Но напряжение измеряется между точками и , так где же проверить?

    Рис. 1.20

    Ответ — проверка всех комбинаций этих трех точек. Как видите, на иллюстрации точки обозначены «A», «B» и «C», поэтому вам нужно будет взять мультиметр (настроенный в режим вольтметра) и проверить точки A и B, B и С, А и С.Если вы обнаружите напряжение между любой из этих пар, схема не находится в состоянии нулевой энергии. Но ждать! Помните, что мультиметр не будет регистрировать напряжение постоянного тока, когда он находится в режиме напряжения переменного тока, и наоборот, поэтому вам нужно проверить эти три пары точек в в каждом режиме , всего шесть проверок напряжения, чтобы завершить!

    Однако, несмотря на всю эту проверку, мы еще не рассмотрели все возможности. Помните, что опасное напряжение может появиться между одним проводом и землей (в этом случае металлическая рама шкафа будет хорошей точкой отсчета земли) в энергосистеме.Таким образом, чтобы быть в полной безопасности, мы не только должны проверить между A и B, B и C и A и C (как в режимах переменного, так и постоянного тока), но мы также должны проверить между A и землей, B и землей, и C & заземление (как в режимах переменного, так и постоянного тока)! Это дает в общей сложности двенадцать проверок напряжения для этого, казалось бы, простого сценария всего с тремя проводами. Затем, конечно, после того, как мы завершили все эти проверки, нам нужно взять наш мультиметр и повторно проверить его на известном источнике напряжения, таком как розетка, чтобы убедиться, что он все еще находится в хорошем рабочем состоянии.

    Использование мультиметра для проверки сопротивления

    Использование мультиметра для проверки сопротивления — гораздо более простая задача. Тестовые провода будут оставаться подключенными к тем же разъемам, что и для проверки напряжения, но селекторный переключатель необходимо будет повернуть, пока он не укажет на символ сопротивления в виде «подковы». Прикасаясь щупами к устройству, сопротивление которого нужно измерить, прибор должен корректно отображать сопротивление в омах:

    Фигура 1.21

    Очень важно помнить об измерении сопротивления: его можно проводить только на обесточенных компонентах ! Когда измеритель находится в режиме «сопротивления», он использует небольшую внутреннюю батарею для генерации небольшого тока через измеряемый компонент. Почувствовав, насколько сложно провести этот ток через компонент, можно определить и отобразить сопротивление этого компонента. Если в контуре счетчик-вывод-компонент-вывод-измеритель есть дополнительный источник напряжения, который либо помогает, либо противодействует току измерения сопротивления, создаваемому измерителем, это приведет к ошибочным показаниям.В худшем случае измеритель может быть даже поврежден внешним напряжением.

    Режим «Сопротивление» мультиметра

    Режим «сопротивление» мультиметра очень полезен для определения целостности проводов, а также для точных измерений сопротивления. Когда между кончиками щупов имеется хорошее прочное соединение (имитируемое касанием их друг к другу), прибор показывает почти нулевое значение Ω. Если бы в тестовых проводах не было сопротивления, оно бы показывало ровно ноль:

    . Фигура 1.22

    Если выводы не соприкасаются друг с другом или касаются противоположных концов оборванного провода, измеритель покажет бесконечное сопротивление (обычно пунктирными линиями или аббревиатурой «O.L.», что означает «разомкнутый контур»):

    Рисунок 1.23

    Измерение тока с помощью мультиметра

    Безусловно, наиболее опасным и сложным применением мультиметра является измерение силы тока. Причина этого довольно проста: чтобы счетчик измерял ток, измеряемый ток должен пройти от 90 379 до 90 380 мкм.Это означает, что счетчик должен быть частью пути тока цепи, а не просто быть подключенным где-то сбоку, как в случае измерения напряжения. Чтобы сделать счетчик частью пути тока цепи, исходная цепь должна быть «разорвана», а счетчик подключен через две точки открытого разрыва. Чтобы настроить измеритель для этого, селекторный переключатель должен указывать либо на переменный ток, либо на постоянный ток «А», а красный измерительный провод должен быть подключен к красному разъему с маркировкой «А». На следующем рисунке показан измерительный прибор, полностью готовый к измерению тока, и цепь, подлежащая проверке:

    Фигура 1.24

    Теперь цепь разорвана для подготовки к подключению счетчика:

    Рисунок 1.25

    Следующим шагом является подключение измерительного прибора к цепи путем подсоединения двух наконечников щупа к оборванным концам цепи, черного щупа к отрицательной (-) клемме 9-вольтовой батареи, а красного щуп к свободному концу провода, ведущему к лампе:

     

    Рисунок 1.26

    В этом примере показана очень безопасная схема. 9 вольт вряд ли представляют опасность поражения электрическим током, и поэтому нечего опасаться размыкания этой цепи (голыми руками, не меньше!) и подключения счетчика к потоку тока.Однако с более мощными цепями это может быть действительно опасным занятием. Даже если напряжение в цепи было низким, нормальный ток мог быть достаточно высоким, что могло привести к опасной искре в момент установления соединения с последним измерительным щупом.

    Еще одна потенциальная опасность использования мультиметра в режиме измерения тока («амперметр») заключается в том, что его невозможно правильно перевести в режим измерения напряжения перед измерением напряжения с его помощью. Причины этого связаны с конструкцией и работой амперметра.При измерении тока в цепи путем размещения измерителя непосредственно на пути тока лучше всего, чтобы измеритель оказывал небольшое сопротивление протеканию тока или не оказывал никакого сопротивления. В противном случае дополнительное сопротивление изменит работу схемы. Таким образом, мультиметр рассчитан на практически нулевое сопротивление между наконечниками измерительного щупа, когда красный щуп подключен к красному разъему «А» (токоизмерительный). В режиме измерения напряжения (красный щуп вставлен в красное гнездо «V») сопротивление между наконечниками щупов составляет много мегаом, потому что вольтметры рассчитаны на сопротивление, близкое к бесконечному (так что они не t потребляют значительный ток от тестируемой цепи).

    При переключении мультиметра из режима измерения тока в режим измерения напряжения легко прокрутить селекторный переключатель из положения «А» в положение «В» и забыть соответственно переключить положение красного штекера щупа из «А» в положение «В». «В». В результате, если счетчик затем подключить к источнику значительного напряжения, произойдет короткое замыкание через счетчик!

     

    Рисунок 1.27

    Чтобы предотвратить это, большинство мультиметров имеют функцию предупреждения, с помощью которой они издают звуковой сигнал, если провод подключен к разъему «A», а селекторный переключатель установлен в положение «V».Какими бы удобными ни были подобные функции, они все же не заменят ясного мышления и осторожности при использовании мультиметра.

    Все мультиметры хорошего качества содержат внутри предохранители, которые «перегорают» в случае прохождения через них чрезмерного тока, как в случае, показанном на последнем изображении. Как и все устройства защиты от перегрузки по току, эти предохранители в первую очередь предназначены для защиты оборудования (в данном случае самого счетчика) от чрезмерного повреждения и лишь во вторую очередь для защиты пользователя от вреда.Мультиметр можно использовать для проверки собственного токового предохранителя, установив селекторный переключатель в положение сопротивления и создав соединение между двумя красными розетками следующим образом:

    Рисунок 1.28

    Исправный предохранитель будет показывать очень низкое сопротивление, в то время как перегоревший предохранитель всегда будет показывать «O.L.» (или любое другое указание, которое эта модель мультиметра использует для обозначения отсутствия непрерывности). Фактическое число омов, отображаемое для исправного предохранителя, не имеет большого значения, если оно произвольно низкое.

    Итак, теперь, когда мы увидели, как использовать мультиметр для измерения напряжения, сопротивления и силы тока, что еще нужно знать? Множество! Ценность и возможности этого универсального измерительного прибора станут более очевидными по мере того, как вы приобретете навыки и опыт его использования.Ничто не заменит регулярную практику со сложными инструментами, такими как эти, так что не стесняйтесь экспериментировать с безопасными схемами с батарейным питанием.

    • Измерительный прибор, способный измерять напряжение, силу тока и сопротивление, называется мультиметром .
    • Поскольку напряжение всегда относительно между двумя точками, вольтметр («вольтметр») должен быть подключен к двум точкам в цепи, чтобы получить правильные показания. Будьте осторожны, не соприкасайтесь оголенными наконечниками щупов при измерении напряжения, так как это приведет к короткому замыканию!
    • Не забывайте всегда проверять напряжение как переменного, так и постоянного тока при использовании мультиметра для проверки наличия опасного напряжения в цепи.Обязательно проверьте наличие напряжения между всеми парными комбинациями проводников, в том числе между отдельными проводниками и землей!
    • В режиме измерения напряжения («вольтметр») мультиметры имеют очень высокое сопротивление между выводами.
    • Никогда не пытайтесь измерить сопротивление или целостность цепи с помощью мультиметра в цепи, находящейся под напряжением. В лучшем случае показания сопротивления, которые вы получите от мультиметра, будут неточными, а в худшем случае мультиметр может быть поврежден, и вы можете получить травму.
    • Измерители тока («амперметры») всегда включены в цепь, поэтому электроны должны течь через счетчик.
    • В режиме измерения тока («амперметр») мультиметры практически не имеют сопротивления между выводами. Это предназначено для того, чтобы позволить электронам проходить через измеритель с наименьшими возможными трудностями. Если бы это было не так, счетчик добавил бы дополнительное сопротивление в цепь, тем самым влияя на ток.

    Как мы видели ранее, энергосистема без надежного соединения с заземлением непредсказуема с точки зрения безопасности.Невозможно гарантировать, сколько или как мало напряжения будет существовать между любой точкой цепи и заземлением. Заземляя одну сторону источника напряжения энергосистемы, по крайней мере одна точка в цепи может быть электрически общей с землей и, следовательно, не представлять опасности поражения электрическим током. В простой двухпроводной системе электропитания проводник, соединенный с землей, называется нейтральным , а другой проводник называется горячим , также известным как активный или активный :

    . Фигура 1.29 Двухпроводная система электроснабжения

    Что касается источника напряжения и нагрузки, заземление значения не имеет. Он существует исключительно ради личной безопасности, гарантируя, что хотя бы одна точка в цепи будет безопасной для прикосновения (нулевое напряжение на землю). «Горячая» сторона цепи, названная так из-за потенциальной опасности поражения электрическим током, будет опасна для прикосновения, если напряжение не будет обеспечено путем надлежащего отключения от источника (в идеале, с помощью систематической процедуры блокировки/маркировки).

    Этот дисбаланс опасности между двумя проводниками в простой силовой цепи важно понимать. Следующая серия иллюстраций основана на обычных бытовых системах электропроводки (для простоты используются источники постоянного напряжения, а не переменного тока).

    Если мы посмотрим на простой бытовой электроприбор, такой как тостер с токопроводящим металлическим корпусом, мы увидим, что при правильной работе не должно быть опасности поражения электрическим током. Провода, подводящие питание к нагревательным элементам тостера, изолированы от соприкосновения с металлическим корпусом (и друг с другом) резиной или пластиком.

    Рисунок 1.30 Отсутствие напряжения между корпусом и землей

     

    Однако, если один из проводов внутри тостера случайно соприкоснется с металлическим корпусом, корпус станет электрически общим с проводом, и прикосновение к корпусу будет столь же опасным, как и прикосновение к оголенному проводу. Представляет ли это опасность поражения электрическим током, зависит от того, какой провод случайно коснется:

    Рисунок 1.31. Случайное контактное напряжение между корпусом и землей

     

    Если «горячий» провод соприкасается с корпусом, это подвергает опасности пользователя тостера.С другой стороны, если нейтральный провод соприкасается с корпусом, опасности поражения электрическим током нет:

    Рисунок 1.32 Случайный контакт без напряжения между корпусом и землей

     

    Чтобы гарантировать, что первый отказ менее вероятен, чем второй, инженеры стараются проектировать приборы таким образом, чтобы свести к минимуму контакт горячего проводника с корпусом. В идеале, конечно, вы не хотите, чтобы какой-либо провод случайно соприкасался с токопроводящим корпусом прибора, но обычно есть способы спроектировать расположение частей, чтобы случайный контакт одного провода был менее вероятным, чем другого.

    Однако эта профилактическая мера эффективна только в том случае, если можно гарантировать соблюдение полярности вилки питания. Если вилку можно перевернуть, то проводник, который с большей вероятностью соприкоснется с корпусом, вполне может быть «горячим»:

    . Рисунок 1.33 Напряжение между корпусом и землей

     

    Устройства, сконструированные таким образом, обычно поставляются с «поляризованными» вилками, при этом один штырь вилки немного уже другого. Розетки питания также спроектированы таким образом, один слот уже другого.Следовательно, вилка не может быть вставлена ​​«наоборот», и можно гарантировать идентичность проводника внутри прибора. Помните, что это никак не влияет на основные функции прибора: это делается исключительно в целях безопасности пользователя.

    Некоторые инженеры решают проблему безопасности, просто делая внешний корпус прибора непроводящим. Такие приборы называются с двойной изоляцией , поскольку изолирующий корпус служит вторым слоем изоляции поверх изоляции самих проводников.Если провод внутри прибора случайно соприкоснется с корпусом, пользователю прибора ничего не угрожает.

    Другие инженеры решают проблему безопасности, сохраняя токопроводящий корпус, но используя третий проводник для надежного соединения этого корпуса с землей:

    Рисунок 1.34 Нулевое напряжение корпуса заземления между корпусом и землей

    Третий штырь шнура питания обеспечивает прямое электрическое соединение корпуса прибора с заземлением, благодаря чему эти две точки электрически общие друг с другом.Если они электрически общие, то между ними не может быть падения напряжения. По крайней мере, так это должно работать. Если горячий проводник случайно коснется металлического корпуса прибора, он создаст прямое короткое замыкание обратно на источник напряжения через заземляющий провод, отключив все устройства защиты от перегрузки по току. Пользователь прибора останется в безопасности.

    Вот почему так важно никогда не отрезать третий штырь от сетевой вилки, когда пытаетесь вставить ее в розетку с двумя штырьками.Если это сделать, корпус прибора не будет заземлен для обеспечения безопасности пользователей. Прибор по-прежнему будет функционировать должным образом, но если произойдет внутренняя неисправность, из-за которой горячий провод соприкоснется с корпусом, последствия могут быть смертельными. Если необходимо использовать розетку с двумя контактами , можно установить переходник для розеток с двумя контактами на три с заземляющим проводом, прикрепленным к заземляющему винту крышки. Это обеспечит безопасность заземленного устройства при подключении к розетке такого типа.

    Однако проектирование электробезопасности не обязательно заканчивается на нагрузке. Окончательная защита от поражения электрическим током может быть установлена ​​на стороне источника питания цепи, а не на самом приборе. Эта защита называется обнаружение замыкания на землю и работает следующим образом:

    В правильно работающем приборе (показанном выше) ток, измеренный через горячий проводник, должен быть точно равен току через нейтральный проводник, потому что в цепи есть только один путь для движения электронов.При отсутствии неисправности внутри прибора нет связи между проводниками цепи и человеком, касающимся корпуса, и, следовательно, нет удара.

    Если, однако, горячая проволока случайно коснется металлического корпуса, через человека, прикоснувшегося к корпусу, пройдет ток. Наличие ударного тока будет проявляться как разница тока между двумя силовыми проводниками в розетке:

    Рисунок 1.35   Разность тока между двумя проводниками питания в розетке

    Эта разница в токе между «горячим» и «нейтральным» проводниками будет существовать только в том случае, если через заземление протекает ток, что означает неисправность в системе.Таким образом, такую ​​разность токов можно использовать как способ обнаружения неисправности. Если устройство настроено для измерения этой разницы тока между двумя силовыми проводниками, обнаружение дисбаланса тока может использоваться для срабатывания размыкающего выключателя, тем самым отключая питание и предотвращая серьезный удар:

    Рисунок 1.36 Прерыватели тока замыкания на землю

    Такие устройства называются Прерыватели тока замыкания на землю или сокращенно GFCI. За пределами Северной Америки устройство GFCI по-разному известно как предохранительный выключатель, устройство защитного отключения (RCD), RCBO или RCD/MCB в сочетании с миниатюрным автоматическим выключателем или автоматическим выключателем утечки на землю (ELCB).Они достаточно компактны, чтобы их можно было встроить в розетку. Эти розетки легко узнать по характерным кнопкам «Тест» и «Сброс». Большим преимуществом использования этого подхода для обеспечения безопасности является то, что он работает независимо от конструкции прибора. Конечно, использование устройства с двойной изоляцией или заземлением в дополнение к розетке GFCI было бы еще лучше, но приятно знать, что можно что-то сделать для повышения безопасности помимо конструкции и состояния устройства.

    Прерыватель цепи дугового замыкания (AFCI) , автоматический выключатель, предназначенный для предотвращения пожаров, предназначен для размыкания при прерывистых резистивных коротких замыканиях. Например, обычный выключатель на 15 А предназначен для быстрого размыкания цепи, если нагрузка значительно превышает номинальные 15 А, и более медленно, если они немного превышают номинальные значения. В то время как это защищает от прямых коротких замыканий и нескольких секунд перегрузки, соответственно, это не защищает от дуги — аналогично дуговой сварке. Дуга представляет собой сильно изменчивую нагрузку, периодически достигающую пикового значения более 70 А, разомкнутую цепь с пересечением нуля переменным током.Хотя среднего тока недостаточно для срабатывания стандартного выключателя, его достаточно для возникновения пожара. Эта дуга может быть создана металлическим коротким замыканием, которое прожигает металл, оставляя резистивную распыляющую плазму ионизированных газов.

    AFCI содержит электронную схему для обнаружения этого прерывистого резистивного короткого замыкания. Он защищает как от дуги «горячая на нейтраль», так и от дуги «горячая на землю». AFCI не защищает от опасности поражения электрическим током, как это делает GFCI. Таким образом, GFCI по-прежнему необходимо устанавливать на кухне, в ванной и на открытом воздухе.Поскольку AFCI часто срабатывает при запуске больших двигателей и, в более общем случае, на щеточных двигателях, его установка ограничена цепями спальни в соответствии с Национальным электротехническим кодексом США. Использование AFCI должно уменьшить количество электрических пожаров. Однако ложные срабатывания при работе устройств с двигателями в цепях AFCI представляют собой проблему.

    • В энергосистемах часто одна сторона источника напряжения подключается к заземлению для обеспечения безопасности в этой точке.
    • «Заземленный» проводник в энергосистеме называется нейтральным проводником , а незаземленный проводник называется горячим .
    • Заземление в энергосистемах необходимо для личной безопасности, а не для работы нагрузки(й).
    • Электрическая безопасность электроприбора или других нагрузок может быть повышена за счет хорошей инженерии: поляризованные вилки, двойная изоляция и трехштырьковые вилки с «заземлением» — все это способы обеспечения максимальной безопасности на стороне нагрузки.
    • Прерыватели тока замыкания на землю (GFCI) работают, обнаруживая разницу в токе между двумя проводниками, подающими питание на нагрузку.Разницы в токе быть не должно. Любая разница означает, что ток должен входить или выходить из нагрузки каким-либо образом, кроме двух основных проводников, что нехорошо. Значительная разница в токе автоматически размыкает механизм разъединителя, полностью отключая питание.

     

    Обычно номинальная сила тока проводника является конструктивным пределом схемы, который никогда нельзя намеренно превышать, но есть приложения, в которых ожидается превышение допустимой силы тока: в случае  предохранителей .

    Что такое предохранитель?

    Предохранитель представляет собой электрическое защитное устройство, построенное вокруг проводящей полосы, которая плавится и разделяется в случае чрезмерного тока. Плавкие предохранители всегда подключаются последовательно с компонентами, которые необходимо защитить от перегрузки по току, так что, когда предохранитель перегорает  (размыкается), он размыкает всю цепь и останавливает ток через компонент(ы). Предохранитель, включенный в одну ветвь параллельной цепи, конечно, не повлияет на ток в любой из других ветвей.

    Обычно тонкий кусок провода плавкого предохранителя заключен в защитную оболочку, чтобы свести к минимуму опасность взрыва дуги, если провод прогорает с большой силой, что может произойти в случае сильных перегрузок по току. В случае небольших автомобильных предохранителей оболочка прозрачна, чтобы можно было визуально осмотреть плавкий элемент. В жилой электропроводке обычно используются ввинчиваемые предохранители со стеклянным корпусом и тонкой узкой полосой металлической фольги посередине. Фотография, показывающая оба типа предохранителей, показана здесь:

     

    Фигура 1.37   Типы предохранителей

     

    Предохранители картриджного типа

    популярны в автомобильной промышленности и в промышленности, если они изготовлены из материалов оболочки, отличных от стекла. Поскольку предохранители рассчитаны на «отказ» размыкания при превышении их номинального тока, они, как правило, предназначены для легкой замены в цепи. Это означает, что они будут вставлены в какой-либо держатель, а не будут напрямую припаяны или прикручены болтами к проводникам цепи. Ниже приведена фотография, показывающая пару предохранителей со стеклянными картриджами в держателе с несколькими предохранителями:

    .

     

    Фигура 1.38 Предохранители со стеклянными картриджами Многофункциональный держатель предохранителей

     

    Предохранители удерживаются пружинными металлическими зажимами, сами зажимы постоянно соединены с проводниками цепи. Основной материал держателя предохранителя (или блока предохранителей , как их иногда называют) выбран как хороший изолятор.

    Другой тип держателя предохранителя патронного типа обычно используется для установки в щиты управления оборудованием, где желательно скрыть все электрические точки контакта от контакта человека.В отличие от только что показанного блока предохранителей, в котором все металлические зажимы открыты, этот тип держателя предохранителя полностью закрывает предохранитель в изолирующем корпусе:

     

    Рисунок 1.39 Держатель предохранителя закрывает изолирующий кожух

     

    Наиболее распространенным устройством, используемым сегодня для защиты от перегрузки по току в сильноточных цепях, является автоматический выключатель .

    Что такое автоматический выключатель?

    Автоматические выключатели — это специально разработанные выключатели, которые автоматически размыкаются для отключения тока в случае перегрузки по току.Небольшие автоматические выключатели, используемые, например, в жилых, коммерческих и легких промышленных помещениях, работают от температуры. Они содержат биметаллическую полосу (тонкая полоска из двух металлов, соединенных друг с другом), проводящую ток, которая изгибается при нагревании. Когда биметаллическая полоса создает достаточное усилие (из-за перегрева полосы сверхтоком), срабатывает расцепляющий механизм, и выключатель размыкается. Автоматические выключатели большего размера автоматически срабатывают под действием силы магнитного поля, создаваемого токоведущими проводниками внутри автоматического выключателя, или могут активироваться внешними устройствами, контролирующими ток в цепи (эти устройства называются защитными реле ).

    Поскольку автоматические выключатели не выходят из строя в условиях перегрузки по току, а просто размыкаются и могут быть повторно включены путем перемещения рычага, вероятность того, что они будут подключены к цепи более постоянным образом, чем предохранители, выше. Фотография небольшого автоматического выключателя показана здесь:

     

    Рис. 1.40 Малый автоматический выключатель

    Внешне он выглядит не более чем как выключатель. Действительно, его можно было использовать как таковой. Однако его истинная функция заключается в работе в качестве устройства защиты от перегрузки по току.

    Следует отметить, что в некоторых автомобилях используются недорогие устройства, известные как плавкие вставки , для защиты от перегрузки по току в цепи зарядки аккумулятора из-за расходов на предохранитель и держатель надлежащего номинала. Плавкая вставка — это примитивный предохранитель, представляющий собой не что иное, как короткий кусок провода с резиновой изоляцией, предназначенный для плавления в случае перегрузки по току, без какой-либо жесткой оболочки. Такие грубые и потенциально опасные устройства никогда не используются в промышленности или даже в жилых домах, в основном из-за более высоких уровней напряжения и тока.Что касается этого автора, то их применение даже в автомобильных схемах сомнительно.

    Символ на электрической схеме предохранителя представляет собой S-образную кривую:

    Рисунок 1.41 S-образная кривая

    Номинальные параметры предохранителей

    Предохранители в основном рассчитаны, как и следовало ожидать, в единицах силы тока: амперы. Хотя их работа зависит от самовыделения тепла в условиях чрезмерного тока за счет собственного электрического сопротивления предохранителя, они спроектированы таким образом, чтобы вносить незначительное дополнительное сопротивление в цепи, которые они защищают.Это в значительной степени достигается за счет того, что провод предохранителя делается настолько коротким, насколько это практически возможно. Точно так же, как мощность обычного провода не связана с его длиной (одножильный медный провод 10 калибра выдерживает 40 ампер тока на открытом воздухе, независимо от того, насколько он длинный или короткий), плавкий провод из определенного материала и калибра будет дуть при определенном токе независимо от того, как долго это будет. Поскольку длина не влияет на номинальный ток, чем короче его можно сделать, тем меньшее сопротивление он будет иметь на всем протяжении.

    Однако разработчик предохранителя также должен учитывать, что происходит после срабатывания предохранителя: расплавленные концы некогда непрерывного провода будут разделены воздушным зазором с полным напряжением питания между концами.Если предохранитель не сделан достаточно длинным в высоковольтной цепи, искра может перескочить с одного конца расплавленного провода на другой, снова замыкая цепь:

    Рис. 1.42. Схема конструктора предохранителей.

    Некоторые крупные промышленные предохранители имеют сменные проволочные элементы для снижения затрат. Корпус предохранителя представляет собой непрозрачный картридж многоразового использования, защищающий плавкую проволоку от оголения и защищающий окружающие предметы от плавкой проволоки.

    Текущий номинал предохранителя — это больше, чем одно число. Если ток в 35 ампер проходит через предохранитель на 30 ампер, он может перегореть внезапно или с задержкой перед перегоранием, в зависимости от других аспектов его конструкции. Некоторые предохранители предназначены для очень быстрого срабатывания, в то время как другие предназначены для более скромного времени «размыкания» или даже для замедленного действия в зависимости от применения. Последние предохранители иногда называют плавкими предохранителями с задержкой срабатывания из-за их преднамеренных характеристик задержки срабатывания.

    Классическим примером применения плавких предохранителей с задержкой срабатывания является защита электродвигателей, где пусковые  броски тока до десяти раз превышают нормальный рабочий ток каждый раз, когда двигатель запускается с полной остановки. Если бы в подобном приложении использовались быстродействующие предохранители, двигатель никогда бы не запустился, потому что нормальные уровни пускового тока немедленно перегорели бы предохранители! Конструкция плавкого предохранителя такова, что плавкий элемент имеет большую массу (но не большую мощность), чем эквивалентный быстродействующий предохранитель, а это означает, что он будет нагреваться медленнее (но до той же предельной температуры) для любого заданного количества. тока.

    На другом конце спектра действия предохранителей находятся так называемые полупроводниковые предохранители , предназначенные для очень быстрого размыкания в случае перегрузки по току. Полупроводниковые устройства, такие как транзисторы , как правило, особенно нетерпимы к условиям перегрузки по току, и поэтому требуют быстродействующей защиты от перегрузок по току в приложениях большой мощности.

    Предохранители всегда должны размещаться на «горячей» стороне нагрузки в заземленных системах. Целью этого является полное обесточивание нагрузки во всех отношениях после срабатывания предохранителя.Чтобы увидеть разницу между предохранителем «горячей» стороны и «нейтральной» стороны нагрузки, сравните эти две схемы:

    Рисунок 1.44 Схема конструктора предохранителей Рисунок 1.45 Схема конструктора предохранителей

    В любом случае предохранитель успешно прервал ток к нагрузке, но нижняя цепь не смогла прервать потенциально опасное напряжение с любой стороны нагрузки на землю, где может стоять человек . Первая схема гораздо безопаснее.

    Как было сказано ранее, предохранители не являются единственным типом используемых устройств защиты от перегрузки по току.Устройства, подобные переключателям, называемые автоматическими выключателями , часто (и чаще) используются для размыкания цепей с чрезмерным током, их популярность объясняется тем, что они не разрушают себя в процессе разрыва цепи, как это делают предохранители. Однако в любом случае размещение устройства защиты от перегрузки по току в цепи будет осуществляться в соответствии с теми же общими рекомендациями, перечисленными выше: а именно, «предохранить» сторону источника питания , а не , соединенную с землей.

    Хотя размещение защиты от перегрузки по току в цепи может определять относительную опасность поражения электрическим током в этой цепи при различных условиях, следует понимать, что такие устройства никогда не предназначались для защиты от поражения электрическим током.Ни предохранители, ни автоматические выключатели не предназначены для размыкания в случае поражения человека электрическим током; скорее, они предназначены для открытия только в условиях потенциального перегрева проводника. Устройства максимального тока в первую очередь защищают проводники цепи от повреждения из-за перегрева (и опасности возгорания, связанной с чрезмерно горячими проводниками), а во вторую очередь защищают определенные части оборудования, такие как нагрузки и генераторы (некоторые быстродействующие предохранители предназначены для защиты электронных устройств, особенно чувствительных к к скачкам тока).Поскольку уровни тока, необходимые для поражения электрическим током или поражения электрическим током, намного ниже нормальных уровней тока обычных силовых нагрузок, состояние перегрузки по току не является признаком возникновения поражения электрическим током. Существуют и другие устройства, предназначенные для обнаружения определенных ударных воздействий (наиболее популярными являются детекторы замыкания на землю), но эти устройства служат только этой цели и не связаны с защитой проводников от перегрева.

     

    • Предохранитель представляет собой небольшой тонкий проводник, предназначенный для плавления и разделения на две части с целью размыкания цепи в случае чрезмерного тока.
    • Автоматический выключатель  – это переключатель специальной конструкции, который автоматически размыкается для прерывания тока в цепи в случае перегрузки по току. Они могут быть «отключены» (разомкнуты) термически, магнитными полями или внешними устройствами, называемыми «защитными реле», в зависимости от конструкции выключателя, его размера и области применения.
    • Предохранители
    • в первую очередь оцениваются по максимальному току, но также оцениваются по тому, какое падение напряжения они безопасно выдержат после разрыва цепи.
    • Предохранители
    • могут быть рассчитаны на быстрое, медленное или промежуточное срабатывание при одинаковом максимальном уровне тока.
    • Лучшее место для установки предохранителя в заземленной энергосистеме — это путь незаземленного проводника к нагрузке. Таким образом, при срабатывании предохранителя к нагрузке будет подключен только заземленный (безопасный) проводник, что сделает присутствие людей более безопасным.

    Leave Comment

    Ваш адрес email не будет опубликован.