Закачка воды в систему отопления: Инструкция как залить воду в систему отопления открытого и закрытого типа

Содержание

заполнение, чем закачать, насосы для подкачки, как долить, слив, заправка

Чтобы обогрев дома обходился дешевле, некоторые работы проводятся самостоятельно.

Заполнение системы проводится: после ремонта; после слива системы на лето; при замене теплоносителя.

Каждый тип отопительной системы имеет свои нюансы, поэтому заполнение может происходить по-разному.

Периодичность замены теплоносителя

Если в многоквартирных домах теплоноситель сливается ежегодно, то в частных — необязательно. Следует исходить из того, что вода, которая уже циркулировала сезон в системе, является подготовленной:

  • не содержит в составе кислорода;
  • в результате длительного контакта с внутренними поверхностями получила инертность, что стало гарантом сохранения материалов контура;
  • все соли и химические соединения, которые при нагревании превращаются в осадок и накипь, уже выпали, и вода стала приспособленной к циркуляции без химической активности.

Если нет опасности замерзания системы, она может циркулировать ещё один и даже два сезона. Для определения необходимости замены проверяется фильтр грубой очистки — если он относительно чист, то воду менять не надо.

Что касается антифриза, то качественный состав по технологии меняется раз в 5—7 лет. Однако на практике он используется намного дольше.

Виды теплоносителя для залива в отопительную схему

Для систем отопления используют несколько типов теплоносителей.

Вода

Дешёвый универсальный теплоноситель:

  • если заливать дистиллированную воду, то накипи и осадка не будет;
  • не меняет свойств при соприкосновении с внутренними поверхностями;
  • безопасна для людей;
  • может крутиться в системе почти бесконечно.

Недостатки:

  • При замерзании расширяется и разрушает трубы, поэтому в холодном климате придётся покупать антифриз.
  • Металлические трубы начинают ржаветь.
  • При использовании водопроводной воды кристаллизуется большое количество солей, поэтому придётся покупать дистиллированную воду. Если заливается водопроводная — рекомендуется регулярная очистка основных узлов и по возможности труб от солевых отложений. Процесс трудоёмкий, требует специальных реагентов.

Антифриз

Представляет собой водяные растворы этиленгликоля или пропиленгликоля с добавками.

Фото 1. Антифриз для систем отопления от производителя Termagent. Выдерживает температуру до минус 30.

  • Допускается к использованию в отопительных системах только антифриз с составом, разработанным для этого. Нигде более эта жидкость использоваться не может.
  • Замерзает при температуре от —30° до 60°С.
  • Антифриз с этиленгликолем токсичен.
  • Безопасный для человека теплоноситель с пропиленгликолем стоит дорого и требует замены каждые 5 лет.
  • Новый состав, который предлагается на рынке, содержит ацетат и формиат калия. Подходит для местности с умеренным климатом — замерзает при температуре ниже —5°С. По стоимости является более доступным вариантом.

Правильный выбор теплоносителя требует внимательного отношения и учёта определённых факторов:

  • Иногда в инструкции по эксплуатации котла указаны допустимые виды жидкости и иные использовать нельзя. Некоторые зарубежные производители вообще исключают применение антифриза — гарантийные обязательства аннулируются.
  • Материал, из которого выполнены основные узлы и трубы — система должна быть выполнена из химически устойчивых труб и узлов. Антифриз несовместим с оцинкованным железом, потому что меняет свойства при контакте.

  • Определённые виды составов плохо нагреваются и отдают тепло, если их используют, система проектируется с учётом этого.
  • Теплоноситель не должен содержать токсичные и ядовитые вещества.
  • Наиболее эффективная жидкость для системы имеет низкую вязкость.
  • Некоторые виды теплоносителя предназначены исключительно для промышленного использования.
  • Стоимость теплоносителя и допустимый срок его эксплуатации.

Вам также будет интересно:

Подготовительные работы перед закачкой тепловой жидкости

Перед заполнением отопительной системы необходимо выполнить подготовительные работы.

Опрессовка

Опрессовка — серьезная часть пусконаладочных работ, которые проводятся перед первым запуском системы, а также перед каждым отопительным сезоном. Так называется гидродинамическая проверка системы в условиях, по сложности превосходящих последующую реальную нагрузку. Это проверка на прочность трубопровода, всех соединений и узлов, а также точек ввода и вывода в здание, системы теплых полов, оборудование и работоспособность котельных.

Принципы проведения регламентируются СНиП:

  • В здании температура должна быть выше 0°С.
  • Подбор опрессовочного давления не должен превышать предельные величины, указанные производителем.
  • Величина давления опрессовки должна превышать рабочее на 50%.
  • В частных жилищах давление опрессовки находится в среднем в диапазоне 2—6 атм.
  • Системы в старых домах проверяются с заниженными величинами, чугунные радиаторы также устанавливают предел максимальному значению — не более 6 атм.
  • При подборе оптимального значения опрессовочного давления важно пользоваться технической документацией на трубы и оборудование, исходить следует из допустимого максимума для самого слабого звена в системе.
  • Проводится проверка водой, даже если в систему будет заливаться антифриз, опрессовка с рабочим раствором делается во вторую очередь.

Контроль параметров

Грамотную опрессовку проводит только специалист, имеющий соответствующие знания и опыт. Проверка и контроль параметров требует спецоборудования.

Рекомендуемые параметры:

  • выше рабочих в полтора раза, не ниже 0,6 МПа.
  • не новые сети проверяются при давлении в 1,25 выше рабочих, не ниже 0,2 МПа.
  • в частных домах до трёх этажей отопление работает под давлением не более 2 атм.
  • в многоквартирных пятиэтажных домах 2—6 атм
  • в зданиях с этажностью больше 8 — 7—10 атм.

В эти значения вносятся поправки на месте, исходя из состояния составляющих системы.

В частных домах нередко арматура, радиаторы и прочее пребывает в лучшем состоянии, чем в многоквартирных.

Согласно правилам, в многоквартирных домах подобные работы могут проводиться раз в 5—7 лет.

Заполнение системы отопления

Способы заполнения открытой и закрытой отопительной системы различаются.

Как залить в закрытую

Закрытая система оснащена герметичным расширительным бачком, который устанавливается произвольно.

Внимание! Не рекомендуется использовать для залива теплоносителя верхний ярус системы. В этом случае воздух выходит сквозь слой теплоносителя, насыщая его. При нагреве по всему контуру образуются воздушные пробки.

Оптимальный вариант — подача теплоносителя через нижний вентиль:

  • из водопровода;
  • из ёмкости, скважины с помощью насоса.

Фото 2. Схема закрытой системы отопления. В неё монтируется герметичный расширительный бак и насос.

Сам процесс проводится в начале отопительного сезона или после ремонтных работ.

Качественный антифриз может перезаливаться раз в 5—6 лет.

Если подача жидкости производится не из водопровода, то понадобится насос. Источником выступает скважина или ёмкость. Процесс заполнения:

  • Проводить заполнение системы лучше вдвоём, тогда будет проще контролировать давление.
  • Теплоноситель закачивается при выключенном источнике тепла.
  • Вся запорная арматура открывается, закрытым остаётся только слив.
  • Радиаторы также перекрываются, за исключением самых отдалённых в каждом ответвлении.
  • Подключается подача теплоносителя: заполняются контур, котёл и бачок.
  • С начала процесса выход воздуха контролируется: он должен выходить через клапан группы безопасности и отводчик в верхней точке магистрали.

Важно! Группу безопасности рекомендуется ставить на систему с любым видом котла и типа топлива.

  • Открываются радиаторы, начиная с первого от котла. Открываются краны, воздух стравливается через кран Маевского, после заполнения радиатор снова перекрывается. Этот процесс повторяется со всеми радиаторами ответвления.

  • Когда батареи залиты, выпускается скопившийся воздух из циркуляционного насоса.
  • Далее активизируется источник тепла и одновременно включается насос. Проводится прокачка системы — без радиаторов.
  • Когда трубы достаточно нагрелись, на каждой батарее открываются краны. При этом необходимо ещё раз проконтролировать выход воздуха из каждого.
  • Если все сделано правильно, давление стабилизируется и составляет не более 2 Бар.
  • Процесс повторяется для каждого ответвления, в последнюю очередь теплоноситель заливается в тёплый пол.

Если отопление сконструировано с коллектором, то ветки заполняются отдельно, выход воздуха происходит через клапаны коллектора.

Внимание! В случае разветвлённой структуры прокачка и нагрев системы проводится только после заполнения всех частей.

Процесс занимает много времени, требует внимательности. Если основные моменты будут упущены, в системе может остаться воздух, который впоследствии создаст проблемы в работе отопления.

Как закачать в открытую

Это открытая ёмкость с крышкой, которая является также удобным входом для поступления воды в систему. Заполняется обычным ведром или присоединяется насос. Отличие заполнения заключается в давлении в контуре: оно равно обычному атмосферному. Теплоноситель контактирует с окружающей средой — в самом высоком месте контура устанавливается расширительный бачок.

Фото 3. Схема открытой отопительной системы в двухэтажном здании. Схема заполняется теплоносителем через специальный резервуар.

Процесс заполнения:

  • Если используется насос, то понадобится ёмкость большого размера для подачи определёнными объёмами.
  • Вода заливается постепенно, с перерывами — так у воздуха будет возможность выходить. Если включается насос, то давление в контуре не должно превышать двух атмосфер. Воду останавливают, когда начинает заполняться сам расширительный бачок.
  • Далее выпускается воздух изо всех радиаторов и узлов системы. Для этого открываются вентили или краны Маевского до появления жидкости.
  • Затем в систему добавляется вода. Воздух по большей части самостоятельно удаляется через расширительный бачок, после запуска источника тепла этот процесс усиливается. В открытой системе проблема воздушных пробок не стоит так остро, как в закрытой.

Из открытого бачка происходит испарение, поэтому время от времени воду придётся доливать.

Контур заполняется снизу, если есть соответствующий разъём.

Вам также будет интересно:

Как долить воду в отопительную конструкцию

В закрытую и открытую отопительную конструкцию теплоноситель доливается по-разному.

В закрытую

В системе должно поддерживаться постоянное давление, которое зависит от общего объёма теплоносителя в контуре.

В процессе работы происходит уменьшение количества жидкости, поэтому следует регулярно подпитывать контур через специальные клапаны подпитки, расположенные в точке наименьшего давления — перед насосом.

Фото 4. Клапан подпитки для системы отопления. С помощью него можно долить теплоноситель при закрытой отопительной схеме.

В открытую

В открытой системе проблема утечки теплоносителя более актуальна — испарение горячей воды из бачка требует постоянного контроля и подпитки системы.

Жидкость просто подливается в бачок.

Виды насосов для подкачки жидкости

Заполнение открытой системы не представляет проблемы с точки зрения оборудования — достаточно обычного ведра. Для ускорения процесса и большего удобства используется ручной насос или устройство, работающее от электричества.

Закрытая система, напротив, заполняется только с насосом, подача теплоносителя происходит под давлением.

Для этих целей подойдут любые насосы, специализированных — для закачки антифриза в систему отопления нет.

Вибрационный

Вибрационные погружные насосы полностью находятся в жидкости. Так работает популярный «Малыш», который используется в колодцах и скважинах. Это устройство вполне подходит для нагнетания давления до 4 атм. Полезно для системы ещё то, что этот насос снабжён фильтрами.

Дренажный

Это тоже погружной прибор, но есть отличие от предыдущего типа устройств: агрегат пропускает включения, максимальный размер указывается в техпаспорте.

Используя такое устройство, принимаются меры для предупреждения попадания в систему посторонних частиц.

Подбирая ёмкость для перекачиваемой жидкости, учитывается ещё одна особенность такого типа устройств: поплавковый механизм, который отключает агрегат, если жидкости остаётся мало.

Самовсасывающий центробежный

Эти насосы работают, оставаясь на поверхности — в жидкость погружается шланг. Благодаря высокой мощности их используют для заполнения системы и для опрессовки.

Ручной поршневой

Удобный экономичный агрегат с резервуаром, оснащён манометром, что позволяет контролировать давление. Требует значительных физических усилий.

Технология слива теплоносителя

  • Для слива понадобится шланг, который присоединяется к патрубку котла. Второй конец размещается в канализации или отдельной ёмкости.
  • Котёл отключается.
  • Шланг присоединяется к крану обратки, расположенному под котлом (если там его нет, то местоположения указано в тех. паспорте).

  • Вентиль открывается, и жидкость сливается, затем снова закрывается.
  • После этого систему заполняют воздухом, для этого открываются краны Маевского в самой высокой точке контура. Затем заново производят слив.
  • Теперь ещё раз запускают воздух, но на этот раз открывают все имеющиеся краны Маевского. Жидкость ещё раз сливают.
  • В заключение шланг переподключают с вентиля обратки на кран подачи. При этом шланг располагают как можно ниже по отношению к крану.

Важно! Систему тёплых полов таким образом слить невозможно, для слива этой ветки понадобится специальный компрессор.

Полезное видео

Посмотрите видео, в котором рассказывается, как правильно заполнить и запустить систему отопления.

Можно ли с заправкой справиться самому

Услуги профессионалов в решении проблем с теплоснабжением обходятся в круглые суммы, поэтому можно заняться этим самостоятельно. Если подойти к вопросу внимательно, не допускать скачков давления при заполнении, соблюдать технологию — проблема будет решена.

Заполнение системы отопления водой — закачка своими руками

Как известно, для нормальной работы системе отопления требуется такой важный элемент, как теплоноситель, которым обычно выступает вода. Однако не все могут разобраться с тем, как должно проходить заполнение системы отопления водой непосредственно перед ее включением. Кроме того, важно упомянуть и то, как выполняется закачка воды в систему отопления после перерывав ее работе. Об этих и некоторых других процедурах, связанных с наполнением системы обогрева теплоносителем, далее и пойдет речь.

Необходимость заполнения системы отопления водой

Безусловно, один из частых случаев, связанных с осушением системы отопления – это проведение каких-либо ремонтных работ. Вода сливается в случае замены и установки арматуры запорного типа, а также во время повреждений участков общего стояка.

Совсем нелишним также будет сбросить систему отопления в теплое время года, особенно это касается радиаторов, изготовленных чугунов, что связано с одной неприятной особенностью такого оборудования: в процессе эксплуатации находящиеся внутри таких батарей прокладки, выполненные из устойчивой к высокой температуре резины, теряют свою эластичность.

В той ситуации, если радиатор является горячим, то секции прибора немного расширяются, что неизбежно влечет за собой сжатие таких прокладок. А при остывании в местах стыков может появиться течь, что особенно часто наблюдается в устаревшем оборудовании. Во многих случаях каким-либо образом заменить вышедшие из строя прокладки просто не представляется возможным, поэтому работники коммунальных служб и рекомендуют сливать воду из системы в теплое время года.

Однако подобное осушение системы может привести к неприятным последствиям, наиболее существенными из которых можно назвать следующие:

  • в случае повторного включения оборудования появиться острая необходимость избавления от пробок воздуха, образовавшихся в системе. Большинство радиаторов оснащены специально предназначенными для этого кранами Маевского, которые располагаются в верхних точках приборов, однако возникают ситуации, когда хозяев нет на месте и, как следствие, развоздушить систему некому;
  • появление воздуха внутри трубопровода также негативно скажется на структурной целостности оборудования, поскольку, как известно, кислород, вступая во взаимодействие с водой, в значительной мере ускоряет коррозию металлических деталей, что существенно снижает срок службы всей системы теплоснабжения в целом.

То, нужно ли выполнять залив воды в систему отопления частной постройки в летнее время, зависит от двух следующих критериев:

  1. Во-первых, от материала, из которого изготовлены трубы и нагревательные приборы системы. К примеру, сталь, которая обладает низкими показателями стойкости к появлению на ней коррозии, не следует оставлять на долгое время без воды. Но если речь идет об алюминиевых или полимерных трубах, то в данном случае бояться нечего, поскольку таким изделиям появление ржавчины не грозит.
  2. Во-вторых, сколько воды в системе отопления имеется. Если ее много, то сброс большого количества теплоносителя будет не совсем экономичным решением, поскольку впоследствии придется заливать новую воду, а частных постройках расход воды, как известно, измеряется по счетчику. Так или иначе, расход воды в системе отопления частного дома не нанесет чересчур серьезных убытков, но и при отсутствии желания переплачивать от слива можно отказаться.

Как заполнить водой систему отопления

Чтобы понять, как заполнить водой систему отопления, функционирующую по принципу нижнего розлива, следует запомнить следующий алгоритм действий:

  • ещё до того, как заполнить систему отопления в частном доме, задвижку на трубопроводе подачи необходимо задвинуть, а на участке подачи следует открыть сброс;
  • далее на трубе обратки нужно не спеша открыть задвижку. В том случае, если скорость воды в системе отопления на выходе будет высокой, то возникает риск гидроудара, что может привести к самым неприятным последствиям, включая и отрыв отопительных батарей;
  • далее нужно дождаться, пока не пойдет вода, лишенная воздуха;
  • затем сброс перекрывается, а задвижка на подаче, напротив, открывается;
  • после этого нужно полностью развоздушить все участки отопления в подъезде, к которым имеется доступ, включая служебные помещения.

Важно помнить, что циркуляция воды в системе отопления с верхним розливом иная, поэтому заполнить такой трубопровод теплоносителем гораздо проще. Для этого достаточно будет медленно приоткрыть задвижки на подаче и отдаче (сбросы при этом закрыты), а затем удалить воздух из воздушника в баке расширения, который располагается на чердаке многоэтажного дома.

Принцип запуска системы отопления открытого типа, подготовка воды

Никаких сложностей в такой работе нет, так как никакой расчет воды в системе отопления этого типа выполнять не нужно. Все, что потребуется – это залить несколько ведер воды в бак расширения, чтобы она была видна на его дне. Совершенно не стоит пытаться сделать заполнение системы отопления закрытого типа с некоторым запасом, иначе ввиду нагрева теплоносителя во время функционирования отопительной системы его объем увеличиться, и вода польется через край расширительного бака.

В том случае, если вся система собрана собственноручно, то очень важно проверить все стыки частей оборудования и его резьбу, чтобы в дальнейшем избежать появления течей. Читайте также: «Как заполнить систему отопления – виды теплоносителей и правила заполнения «.

Особенности запуска закрытой отопительной системы с дистиллированной водой

Заполнение водой закрытой системы отопления имеет следующие особенности:

  • чтобы насос циркуляции и нагревательный котел работали нормально, давление в системе должно быть несколько избыточным. Специалисты утверждают, что этот параметр должен составлять не менее 1,5 кгс/см²;
  • прежде чем запустить систему, требуется опрессовать ее давлением, в полтора раза превышающим норму. Особенно важно выполнить такую процедуру для помещений, оборудованных системой теплого пола, так как этот элемент отопления располагается в полностью закрытой стяжке, поэтому добраться до него впоследствии не будет никакой возможности (прочитайте также: «Пуск отопления — запускаем систему по правилам «).

Гораздо проще будет обеспечить отопительный контур необходимым давлением в том случае, если жилое помещение имеет доступ к центральному водоснабжению. В этой ситуации для опрессовки системы теплоснабжения достаточно заполнить ее водой через перемычку, отдаляющую водопровод, при этом тщательно следя за возрастанием давления на манометре. После выполнения такого мероприятия ненужную воду можно будет удалить с помощью любого из вентилей или посредством воздушника.

Многие задаются вопросом относительно того, должна ли выполняться специальная подготовка воды для системы отопления или можно ограничиться водой из ближайшего водоема. При этом некоторые утверждают, что дистиллированная вода в системе отопления благотворно скажется на сроке службе оборудования и не даст ему выйти из строя раньше времени. Но гораздо важнее разобраться с тем, как подготовить воду для отопления, если в нее добавляется специальная незамерзающая жидкость наподобие этиленгликоля и как впоследствии заполнить таким теплоносителем отопительный контур.

Для этих целей принято использовать особый насос, служащий для заполнения системы водой, причем им можно управлять как в автоматическом режиме, так и вручную. Подключение этого насоса выполняется с помощью вентиля, а после обеспечения необходимого давления вентиль перекрывается.

Бывают ситуации, когда такого оборудования нет под рукой. Как вариант, допускается подключение к вентилю сброса стандартного садового шланга, второй конец которого следует поднять на высоту в 15 метров и заполнить контур водой при помощи воронки. Подобный способ будет особенно актуальным при наличии вблизи обустраиваемого здания высоких деревьев.

Еще один вариант заполнения системы отопления – применения бака расширения, который выполняет функцию вмещения излишков теплоносителя, вызванных его расширением в процессе нагревания.

Такой бак имеет вид резервуара, который разделен пополам специальной мембраной из эластичной резины. Одна часть емкости предназначается для воды, а другая – для воздуха. В конструкцию любого расширительного бака также входит ниппель, с помощью которого появляется возможность установить внутри агрегата нужное давление посредством удаления излишков воздуха. Если давление недостаточное, то компенсировать этот параметр можно, закачав воздух в систему с помощью обычно велосипедного насоса.

Весь процесс не несет в себе особой сложности:

  • для начала ликвидируется воздух из бака расширения, для чего нужно отвернуть ниппель. Готовые баки поступают в продажу с несколько избыточным давлением, которое равно 1,5 атмосферам;
  • далее отопительный контур заполняется водой. При этом расширительный бак нужно смонтировать так, чтобы он располагался резьбой вверх. Важно помнить, что заполнять бак водой полностью совершенно не стоит. Будет правильнее, если общий объем воздуха в этом аппарате будет составлять примерно одну десятую часть от общего объема воды, в противном случае бак не справиться со своей основной функцией и не сможет вместить излишки нагретого теплоносителя;
  • после этого в систему через ниппель закачивается воздух, что, как уже говорилось выше, можно выполнить при помощи обычного насоса для велосипеда. Давление требуется контролировать с помощью манометра.

Все указанные действия позволят аккуратно заполнить отопительную систему водой и обеспечат всему контуру стабильное и качественное функционирование. При необходимости всегда можно обратиться за помощью к специалистам, которые всегда имеют в наличии различные фото необходимых для такой работы устройств, способные помочь в подключении.

чем промыть систему отопления

насос для закачки воды в систему отопления

вода для системы отопления частного дома

расчет количества антифриза для системы отопления

какое давление в отопительной системе многоэтажного дома

Воздух в системе отопления: просто о сложном

1.Воздух в системе отопления. Просто о сложном.

— «воздух» — что это?
— воздух в системе отопления. (причины появления, последствия)
— общие принципы борьбы с завоздушиванием системы отопления
— технологические новинки обезводушивающих систем.

Доброго времени суток, дорогой читатель. В своей сегодняшней статье я постараюсь рассказать о той проблеме, с которой регулярно сталкиваюсь в ходе ежедневной работы. Я работаю в отделе клиентского сервиса компании ХОГАРТ. Основная наша задача, консультирование клиентов (монтажные, мелкооптовые, оптовые и строительные компании) по выбору оборудования, его использованию и обслуживанию. Тот вопрос, который хотелось бы осветить сегодня встречается на любом объекте у любого клиента, если речь заходит о водяном отоплении. Говорить мы сегодня будем о воздухе в системе отопления. Я постараюсь обойтись без использования сложных технических терминов. Начнем с начала.

2.Что такое воздух?

Сам по себе воздух как и многое в природе не состоит из какого-то одного вещества – это смесь газов. Химический состав воздуха прост: азот-78, 08%, кислород-20, 94%, инертные газы-0, 94%, диоксид углерода-0, 04%.Теперь подробнее.

КИСЛОРОД — газ без цвета и запаха, хорошо растворимый в воде. Помимо этого кислород активно взаимодействует с другими химическими веществами (образует окислы, в том числе с металлом, например ржавчина.
Что касается АЗОТА – здесь все несколько проще. Он не так активен как кислород (не вступает в активную реакцию с металлом в системе отопления), однако по своему распространению ничуть ему не уступает. По весу этот газ немного легче кислорода.

3. Почему воздух в системе отопления это плохо?

Сейчас я опишу Вам картину, знакомую 100% монтажников систем отопления. Итак: монтируем систему, заполняем теплоносителем, запускаем котел и …. Несколько радиаторов или целая ветка системы отопления не греются. Проверяем воздухоотводчики, стравливаем скопившийся воздух. Заработало. Прошел месяц – таже картинка – опять не работает какой-то радиатор. Снова едем к клиенту и все по новой. Знакомо?

Причина такого знакомства – воздух. Попадая в приборы отопления он создает воздушные пробки, которые не дают теплоносителю нормально циркулировать. Теплоноситель застаивается в системе и теплообмен нарушается. Типична следующая картинка (как на рисунке) : не греется угол или часть радиатора, а другая его часть находится в нормальном состоянии.

Не менее распространена и другая «беда»– выход из строя различных металлических элементов системы по причине коррозии. Сама по себе ржавчина хорошо знакома любому из нас. Все мы еще из школы знаем, что кислород окисляет металл из-за чего и возникает коррозия. Другое дело растворенный в воде кислород. Его не видно, а ржавчина – вот она! Сломанная запорная арматура, вышедшая из строя сантехника, забитые ржавчиной трубы системы отопления – вот далеко не полный список последствий воздействия кислорода на металл инженерных систем Вашего дома.

Если коротко описать последствия воздействия воздуха на Вашу систему отопления, то список получится примерно такой:
— завоздушивание труб и радиаторов
— шумы в радиаторах
— снижение мощности котл и радиаторов
— выход из строя отдельных узлов или деталей системы

4.Как воздух попадает в систему отопления?

Давайте по порядку – может он оттуда никуда и не уходил? Для того, чтобы было удобнее представим систему отопления стандартного коттеджа (средний объем около 200 литров теплоносителя). Что из себя представляется система отопления в таком доме?


Обычно это газовый или любой другой котел, который служит источником тепла, радиаторы, краны, различные трубы и фитинги, соединяющие между собой котел и другие приборы.

«Откуда же в системе воздух?» – спросите Вы.
«А он никуда и не уходил…» — ответит Вам с улыбкой монтажник и в этой шутке есть своя доля истины.
Современная система отопления по сути своей представляет замкнутый контур состоящий из труб, радиаторов и иных приборов. Казалось бы воздуху там взяться неоткуда. Или так только кажется? Начнем с заполнения системы.

Через специальный кран вода подается в ЗАКМНУТУЮ систему и начинает ее заполнять. Но система была собрана на объекте ,в обычных условиях, а значит в ней уже есть воздух и вода будет его вытеснять по мере заполнения системе.
Куда деваться воздуху?

Для его удаления предусмотрены многочисленные воздухоотводчики, которые на сегодняшний день устанавливаются практически на всех гребенках и других элементах системы отопления. Эти устройства могут справляться с отведением воздуха который был вытеснен из системы отопления теплоносителем. Но как быть с тем воздухом, который растворен в воде и циркулирует с ней по системе отопления.

Здесь большинство специалистов может предложить установить дополнительно сепаратор воздуха для системы отопления. Определенная логика в этом есть – воздухоотводчики удаляют выделившийся воздух, сепараторы удаляют пузырьки воздуха из потока, НО! Особенность сепараторов воздуха заключается в том, что эффективно работать они могут в двух условиях: давление и высокая температура.

Поэтому обычно их устанавливают внизу, рядом с котлом. Вопрос заключается в том, что 80% в году наша система отопления работает в переходных режимах. В таких условиях установка сепаратора проблему не решит, а поступление воздуха в систему через ее узлы никто не отменял. Да-да! Не удивляйтесь. Система отопления тоже «дышит». Воздух может поступать через такие элементы системы, как расширительный бак, полипропиленовый трубы, трубы из шитого полиэтилена, резиновые прокладки, уплотняющие материалы, такие как фумлента и лён. Диффузия газа через синтетические материалы минимальна, но она есть и идет постоянно.

Таким образом мы приходим к тому, что нам необходимо устройство способное удалять воздух из системы независимо от параметров ее работы. А есть ли такое оборудование?!

5. Выход есть!

Недавно компания Reflex сообщила о выходе на рынок РФ и СНГ нового поколения оборудования для обезвоздушивания систем отопления – это REFLEX
«SERVITEC MINI».Подобное оборудование ранее применялось только в промышленных системах.

Reflex первым из производителей адаптировал его для повседневного использования в индивидуальных системах отопления. Давайте знакомиться с новинкой.


Работа данного оборудования основана на принципе выделения пузырьков растворенных в жидкости газов (воздуха) при понижении давления.

Ниже на схемах можно посмотреть , как это происходит поэтапно.


ЭТАП 1. Создание вакуума                               ЭТАП 2.Начинается процесс дегазации


ЭТАП 3. Удаление газов                                ЭТАП 4. Возврат в начальное положение

Таким образом в компактном корпусе предлагается устройство, которое эффективно борется с завоздушиванием Вашей системы отопления. Получить дополнительную информацию по параметрам работы данного оборудования Вы можете в отделе клиентского сервиса компании ХОГАРТ – [email protected] Если Вас интересует цена или срок поставки данного оборудования – обращайтесь в отдел продаж ХОГАРТ по тел +7 495 780 78 66.

Насос для закачки и опрессовки отопления

Смонтировали новую систему отопления и готовитесь к первому запуску? Пришло время замены теплоносителя, или давление в системе регулярно падает? В любой из этих ситуаций пригодится насос для закачки системы отопления.

Большинство частных домов отапливаются автономно, от газового котла. Систему отопления открытого типа теоретически можно заполнить без насоса, заливая воду или антифриз через воронку. Но для опрессовки и выявления утечек, а также удаления воздушных карманов насос незаменим.

Содержание статьи

Далее рассмотрим подробно, как работает насос для подкачки системы отопления, какие они бывают и как ими пользоваться.

Как работает насос для закачки отопления

Принцип работы каждого насоса сводится к созданию разницы давления в разных камерах, за счет чего жидкость выталкивается под напором. Это достигается вращением крыльчатки циркуляционного насоса, движением штока на электромагнитной силе вибрационных моделей, движением поршня в цилиндре ручных насосов.

При заполнении контура отопления нагнетатель должен не только переместить теплоноситель из ёмкости в трубы, но и создать рабочее давление в 1,5 атм.

Для опрессовки и выявления утечек давление повышают до 2 – 3 бар, насос выключают. Через несколько часов проверяют показания манометра: если давление снизилось, присутствует утечка, которую необходимо найти и устранить.

Типы насосов для закачки

Специализированный насос для закачки системы отопления или промывки контура – дорогостоящее оборудование узкого профиля. Заполнить трубы и создать необходимое давление можно любым водяным нагнетателем. Они различаются по принципу работы, строению и характеристикам, но выбор зависит от того, что есть в наличии.

  Погружные вибрационные насосы, как «Малыш» или Ручеёк», наиболее доступны и универсальны. Они используются в колодцах и скважинах, для полива или перекачки жидкости из любой ёмкости. Основные их преимущества – низкая цена, компактность, универсальность, встроенный фильтр, низкое энергопотребление (25 Вт/ч) и достаточно высокая производительность (до 450 л/мин).

Недостатки: отсутствие встроенного манометра, некоторое количество антифриза останется в ёмкости неиспользованным, недолговечность. Как насос закачки отопления он достаточно надёжен, а теплоноситель не получится купить без запаса. Удобнее использовать модели с нижним забором жидкости.

  Ручной поршневой с резервуаром – идеальный насос для подкачки отопления, опрессовки системы, но может использоваться и для первичного заполнения контура. Он энергонезависим, компактен, имеет простую и надёжную конструкцию со встроенным манометром. Такое устройство можно оставить постоянно подключенным к клапану подпитки в котельной.

Недостатки этих нагнетателей – они гораздо менее универсальны, чем погружные, а для заправки всей системы понадобится немало физических усилий.

При использовании воды в качестве теплоносителя, не стоит заправлять её прямо из крана, используя давление сети водоснабжения. Лучше её заранее набрать в резервуар, дать отстояться, а затем закачать в трубы насосом. Так вы избавитесь от многих примесей, в том числе – ржавчины, хлорки и части растворенного воздуха, которые снижают ресурс системы отопления.

  Поверхностные насосы различных типов имеют 2 патрубка: для забора и подачи жидкости. Они мощнее, имеют встроенный манометр, но большинство устройств слишком дорогие, чтобы использоваться в домашнем хозяйстве.

  Дренажные насосы предназначены для откачки сливных ям и подвалов, поэтому в них нет встроенных фильтров, предусмотрено автоматическое отключение при низком уровне жидкости. Это несколько осложняет работу, но, если у вас есть только такой нагнетатель, его вполне можно использовать.

Порядок закачки антифриза

Сразу после монтажа системы заливать антифриз нельзя: сперва необходима опрессовка, проверка герметичности, а также очистка системы. Проводятся эти процедуры одновременно, путем закачки воды или воздуха под давлением, которое в 1,5 – 2 раза выше рабочего. Пренебрегая этим этапом, вы раскуете испортить весь объём дорогостоящей незамерзающей жидкости либо значительно уменьшить ресурс всего оборудования системы.

Для систем закрытого типа рекомендуют перед заправкой отключить расширительный бак, а после заполнения проверить его настройку.

Когда все подготовительные работы проведены, поступают следующим образом:

1. Подключить насос закачки отопления к выбранному патрубку системы через кран, сам насос или его патрубок забора погрузить в ёмкость с антифризом.

2. Запустите нагнетатель и следите за манометром на его корпусе или на котле. Когда показания достигнут 1,5 Бар, выключите насос.

3. Спустите воздух с каждой батареи через кран Маевского. Если теплообменники расположены на разном уровне (на разных этажах или в гравитационной системе), начинайте с самого нижнего. Если из крана после воздуха пошла не жидкость, а пена, дайте теплоносителю отстояться минимум 30 минут, а затем повторите попытку.

4. Запустите насос и восстановите давление до значения, рекомендованного производителем котла.

5. Ещё раз проверьте наличие воздуха под каждым отводчиком воздуха. Повторяйте предыдущие 2 этапа до полного устранения воздушных карманов.

6. Запустите котёл, проверьте температуру каждого радиатора. В двухтрубной системе последний может оказаться холодным. Тогда нужно перекрыть все, кроме него, и спустить воздух.

7. Через сутки после запуска котла ещё раз проверить наличие воздушных подушек и давление, при необходимости использовать насос для подкачки системы отопления.

Все работы можно выполнить самому, но быстрее и удобнее делать это вдвоём: один следит за насосом и давлением, а второй – поочередно и закрывает открывает все краны Маевского. Ещё один вариант ускорения работы – заранее открыть все отводчики воздуха и подставить под них небольшие ёмкости. Отверстия в них тонкие, много теплоносителя не вытечет.

Контуры тёплого пола заполняются поочерёдно, только в прямом направлении тока антифриза, до появления чистого теплоносителя без пузырьков воздуха из дренажного отверстия коллектора. В противном случае в более длинном контуре останется воздушный карман, который будет невозможно удалить.

Через какой патрубок закачивать

Обычно насос для подкачки отопления подключают к специальному патрубку слива и подпитки системы, выведенному в котельной. Если его нет, выберите один из следующих вариантов:
  Патрубок подпитки, встроенный в котел современной модели. В системах с водой в качестве теплоносителя подключается к водопроводу, с антифризом остаётся свободным.
  Заменить заглушку батареи краном, через который подключить шланг.
  Снять расширительный бак закрытого типа и подключить насос вместо него.

Независимо от типа и точки подключения насоса, он справится с основной задачей – доставкой и равномерным распределением теплоносителя по всем трубам и батареям.

Вместе со статьей «Насос для закачки и опрессовки отопления» читают:

Закачка теплоносителя в систему отопления, материалы для теплообменника

В промышленности, коммерческой и коммунальной сферах используются различные теплообменные комплексы для отопления, кондиционирования помещений, охлаждения и обеспечения микроклимата объектов. Для отопительного оборудования, как и для других теплообменных систем, в качестве рабочей среды на практике принято применять составы низкозамерзающие всесезонные и жидкости охлаждающие (общепринятый термин – антифризы) – для краткости теплоносители. Одной из основных особенностей теплоносителей служит их универсальность – возможность применения в широком температурном диапазоне эксплуатации теплообменных систем от минус 70°С до 130°С (а иногда и до 170°С).

Это повышает эффективность, снижает затраты на энергетические ресурсы. Незамерзающая всесезонная жидкость особенно необходима в том случае, если отопление не постоянное, или возможны сбои в процессе работы. При использовании в качестве рабочей среды воды систему теплообмена можно заполнять из традиционного водопровода с обычным давлением, а для заполнения теплоносителем потребуется специальный насос.

Открытые и закрытые системы – заполняем грамотно

В закрытой теплообменной системе нет контакта теплоносителя с атмосферным воздухом. На теплообменных аппаратах установлены краны Маевского, с помощью которых можно выпускать воздух при заполнении системы теплоносителем. Закачка теплоносителя в закрытую систему отопления происходит с помощью насоса, который создает давление не менее 1,5 атмосфер. Важным условием процесса заполнения является обеспеченность достаточным количеством теплоносителя, чтобы выполнить залив его за один производственный цикл.

Этапы заполнения закрытой отопительной системы:

  • кран подкачки или слива теплоносителя соединяется с подающим напорным рукавом;
  • противоположный конец рукава крепится к насосу специального типа;
  • насос подсоединяется к промежуточной буферной ёмкости, из которой теплоноситель будет перекачиваться в теплообменное оборудование через систему трубопроводов;
  • на одной из верхних точек открывается «воздушный» кран Маевского и включается насос для подачи теплоносителя;
  • по мере проведения залива следует добавлять теплоноситель в промежуточную буферную емкость, для поддержания рабочего уровня;
  • при достижении теплоносителем предохранительного клапана на теплообменном аппарате процесс заполнения завершается.

Далее закрывается «воздушный» кран Маевского и перекрывается линия сливного трубопровода, затем отключается насос. После циркуляции на «холостом» режиме не менее суток всех теплообменных аппаратов вновь открываются «воздушные» клапаны для удаления из системы скопившегося воздуха. После удаления скопившегося воздуха производится компенсационная подкачка соответствующего объёма теплоносителя до величины требуемого рабочего давления в системе. Подкачка может быть повторена, если в системе образовались новые воздушные пробки после продолжения циркуляции. Длительность и повторы процедуры зависят от объёма теплообменной системы и её конструкционных особенностей.

Для открытой отопительной системы процесс заполнения аналогичен, но уже не потребуется этапа удаления освобождающегося из системы воздуха, так как она не оборудована гидравлическим запором — «воздушным» краном. Остатки воздуха из теплообменных аппаратов и системы трубопроводов за счёт разности плотности с рабочей средой отведутся через расширительный бак. Заполнение открытой системы отопления теплоносителем относительно проще, но такая теплообменная система менее эффективна.

Подбор качественного носителя для отопления

Основная сфера деятельности компании «SVA» – производство теплоносителей. В номенклатуре производимых предприятием теплоносителей представлен широкий ассортимент жидкостей охлаждающих низкозамерзающих различных видов. Производимые составы низкозамерзающие всесезонные и жидкости охлаждающие сохраняют свои свойства в экстремальных условиях, обеспечивают максимум эффективности передачи тепловой энергии. Возможно оказание услуги по организации доставки продукции по всей России со склада (Тверская обл., пгт Редкино, ул. Заводская, д. 1), поскольку у предприятия имеются удобные подъездные пути для автомобильного и железнодорожного транспорта. Отгрузка осуществляется в любых объемах, учитываем индивидуальные пожелания покупателей, по расфасовке товара в транспортную тару. Предлагаем любые партии теплоносителей в виде концентратов или готовых к применению товарных марок. На каждую приобретаемую товарную марку теплоносителя собственной аккредитованной и аттестованной лабораторией ОТК оформляется паспорт качества по результатам фактических испытаний проб, отобранных от товарной партии продукции. По вопросам консультаций подбора видов охлаждающих жидкостей, а также для оформления и оказания услуг обращайтесь к нашим специалистам.

Как заполнить систему отопления

Несмотря на развитие и применение новых систем обогрева помещений, содержащих инновационные технологии, значительно удешевляющие отопление, как частных домов, так и квартир, большое распространение по-прежнему имеют системы, в которых основную роль играет нагретый в котле отопления теплоноситель. Сегодня это классическая модель отопления, где теплоноситель – это специально подготовленная вода, антифриз или даже самая обычная водопроводная вода.

            Популярность такого варианта отопления дома бесспорна – он прост, удобен, надежен и весьма эффективен, особенно тогда, когда в качестве котла отопления используется современный прибор, обеспечивающий работу закрытой системы циркуляции теплоносителя под давлением.
 

Системы отопления, содержащие жидкий теплоноситель

            Необходимость периодического добавления теплоносителя в систему отопления вызвана особенностями протекания физических и химических процессов в ходе работы приборов отопления.

            Так, в варианте использования воды или водного раствора в качестве теплоносителя для обогрева частного дома в конструкции системы естественной циркуляции, вода может попросту испаряться, ведь она имеет в своей конструкции расширительный бак открытого типа. Отопительный котел такого типа отопления частного дома, обеспечивает нагрев теплоносителя, который поднимается вверх к высшей точке, а далее по трубопроводам поступает в регистры или батареи отопления, постепенно отдавая тепло и уже в остывшем состоянии, опять поступает к котлу. При естественной циркуляции теплоносителя, для предотвращения образования давления, способного привести к разрыву оболочки приборов и самого отопительного котла при закипании, как обязательный элемент устанавливается бак, в который при лавинообразном нарастании давления стравливается вода и водяной пар. Расширительный бак имеет внешнее отверстие, чтобы теплоноситель мог свободно выйти из системы наружу, сохранив целостность отопительных приборов.

            В системах закрытого типа, где теплоноситель постоянно находится под давлением, и расширительный бак имеет закрытый вид, уменьшение количества теплоносителя может быть вызвано не только технической неисправностью, такой как нарушение герметичности контура, но и активными химическими процессами, при которых в воде, особенно имеющей большое количество примесей, происходят процессы при которых объем воды уменьшается.

Зачем нужно периодически доливать воду

            И в первом, и во втором варианте конструкции системы для нормального обеспечения отопления частного дома требуется время от времени проводить заполнение системы отопления водой или другим теплоносителем, например, антифризом.
            В открытом типе системы это необходимо для поддержания необходимого рабочего уровня жидкости и нормальной циркуляции воды, а вот для двухконтурного котла отопления с циркуляционным насосом, особенно для частных домов, имеющих кроме отопления еще и горячее водоснабжение, автоматика безопасности сработает на отключение, если давление будет ниже установленного.
           

Приемы и способы заполнения открытого типа системы отопления

             Кроме, регламентного заполнения открытой системы отопления водой или антифризом взамен испарившегося объема, в частных домовладениях бывают моменты, когда приходится полностью сливать воду. Чаще всего это связано с проведением ремонтных работ или в процессе модернизации, при установке дополнительного оборудования. В любом случае, когда полностью сливается вода, после устранения неполадок, объем снова необходимо наполнить теплоносителем.

            Сам процесс заполнения системы отопления водой при этом начинается с расчета объема необходимого теплоносителя, это особенно важно, когда заливается не обычная водопроводная вода с крана, а подготовленный теплоноситель – антифриз или дополнительно обработанная и подготовленная вода.

            Вначале, перед тем как заполнить приборы отопления дома нелишне провести осмотр всех соединений и проверить, чтобы все краны были открыты, и при закачке не было воздушных пробок. Сам процесс заполнения объема системы может растянуться на несколько часов и зависит от того насколько внутренний объем трубопроводов и батарей свободен от накипи и отложений, как эффективно проводится закачка насосом.

            Для одноэтажного частного дома, в котором расширительный бак размещается внутри помещения или на чердаке закачка может проводиться с помощью насоса, но в большинстве это делается простым доливанием воды вручную. Особенностью этой операции выступает необходимость постоянно следить за уровнем воды в расширительном баке, как только ее уровень перестанет снижаться, добавление воды следует остановить. Однако, после проведения пробной топки, в обязательном порядке нужно проверить уровень жидкости, осмотреть резьбовые и сварные соединения всех элементов, и в случае выявления просачивания жидкости прекратить процесс топки и принять меры к устранению неполадки.

            Особенностью работы с техническими жидкостями выступает то, что перед тем как залить антифриз в систему отопления, необходимо ознакомиться со всеми тонкостями его применения в качестве теплоносителя – он должен быть химически нейтрален, его применение должно быть сертифицировано в частных домах, а при приготовлении раствора из концентрата обязательно необходимо следовать указаниям инструкции и выдерживать необходимые пропорции частей.
 

Заполнение системы отопления с принудительной циркуляцией теплоносителя

Перед тем как заполнить систему отопления двухконтурного котла самостоятельно необходимо просто внимательно прочесть инструкцию по эксплуатации котла. В частных домах, оборудованных системой центрального водоснабжения или местным водопроводом, двухконтурный котел устанавливается как для обеспечения отопления, так и для горячего водоснабжения. Такое универсальное назначение котла, в особенности с установкой блока электронного управления делает жизнь значительно комфортнее, тем более что сам кран забора воды в систему уже установлен в корпусе котла.

Это связано с тем, что двухконтурные котлы имеют не только встроенный в корпус расширительный бак, но и циркуляционный насос. Закрытая система отопления функционирует при определенном рабочем давлении внутри системы, когда теплоноситель находится в замкнутом объеме, а циркулирует благодаря работе встроенного циркуляционного насоса.

Выполнить такую операцию, как заполнение системы отопления двухконтурного котла теплоносителем из водопроводной воды довольно просто – нужно согласно инструкции открыть кран закачки воды из водопровода и следить за показателем манометра на табло котла. По достижении рекомендованного инструкцией к котлу показателя давления кран перекрывается. В дальнейшем остается только следить за показателем манометра.
 

Принудительное заполнение системы отопления двухконтурного котла

Для отдельных случаев, например, когда отопление установлено в загородном доме посещение, которого планируется нечасто, для сохранности оборудования в период больших морозов рекомендуется в качестве теплоносителя использовать антифриз. Использование незамерзающих технических жидкостей вместе с тем существенно усложняет процесс заполнения системы.

Во-первых, необходимо правильно подобрать техническую жидкость.
Во-вторых, для заполнения будет необходимо использование специального оборудования – насоса и шлангов высокого давления, что делает процесс самостоятельного заполнения крайне сложным.
В-третьих, для этого требуются определенные знания и умения.

Однако, и в этой операции нет ничего сложного просто необходимо четко представлять все особенности этого процесса.

Двухконтурный котел имеет встроенный расширительный бак замкнутого типа. Подпитка извне осуществляется через клапан или кран подачи воды. Вторым, альтернативным способом закачать жидкость внутрь системы можно используя сливное отверстие, заполнение объема теплоносителя в данном случае будет проводиться с помощью насоса. Кран слива расположен так, чтобы обеспечить полное удаление теплоносителя из системы, то есть это самая нижняя точка уровня конструкции.

Перед тем как закачать антифриз в систему отопления, к патрубку слива подсоединяется армированный шланг, способный выдержать давление минимум в 15 атмосфер. Это давление соответствует рабочему давлению теплоносителя в системе. Шланг, с другой стороны, должен быть подключен к нагнетающему насосу – специальному оборудованию для закачивания жидкостей под давлением, это и есть, то сложное оборудование необходимое для работы. Из емкости с готовым антифризом жидкость под давлением закачивается в контур. Обратно антифриз не вытекает благодаря имеющемуся обратному клапану. По достижению необходимого давления подкачка прекращается, и кран системы перекрывается, замыкая систему.

При проверке работоспособности отопления по показанию манометра определяется, насколько заполнен объем системы отопления. После того как теплоноситель равномерно разогреет все радиаторы, в обязательном порядке необходимо посредством открытия спускных клапанов или кранов Маевского, стравить воздух и опять проверить рабочее давление. В случае его падения необходимо с помощью насоса снова добавить техническую жидкость внутрь, до достижения нужного уровня показания манометра.

В отдельных случаях для такого метода наполнения системы может быть использован бытовой электронасос типа «Малыш», с вибрационным двигателем. Через шланг он подключается к сливному патрубку и нагнетает теплоноситель в контур котла. При этом, чтобы не допустить перегрузки насоса следует внимательно следить за показанием манометра и мгновенно отключать от сети при достижении требуемого давления. И так же оперативно необходимо и перекрывать кран, чтобы не допустить обратного слива жидкости.
 
  

Залив антифриза в системы отопления открытого и закрытого типа

Промышленные антифризы, которые используются для заливки в системы отопления частных домов, административных учреждений, торговых, спортивных или промышленных объектов, изготавливаются на основе раствора этиленгликоля или пропиленгликоля. Антифризы (теплоносителей) из раствора пропиленгликоля  безопаснее и дороже.

Некоторые  продавцы и поставщики используют эту информацию как маркетинговый ход. Периодически появляются мнения, что раствор этиленгликоля настолько опасен, что малейшая протечка приведет к его попаданию в систему горячего водоснабжения здания и отравит все живое. Реальная картина обстоит иначе.

Профессионалы уверены: при качественно подобранной конструкции и правильном монтаже системы отопления риск протечки и попадания промышленного гликолевого антифриза в воду сводится к нулю. Протечки из отопительной системы несущественны и безвредны для окружающей среды и здоровья человека.

Если вы уверены в качестве монтажа отопительной системы, смело применяйте растворы этиленгликоля.

Обратите внимание! Для объектов с особыми требованиями к экологической безопасности (детские, медицинские или оздоровительные учреждения) допускается только растворы на основе пропиленгликоля.

Чаще всего промышленный антифриз реализуется в виде концентрата, который в нужной пропорции разбавляется водой и заливается в отопительную систему. Помните, что при покупке концентрированного раствора важно приобрести антикоррозионные присадки: раствор гликоля обладает окислительными свойствами и приводит к разрушению металлических элементов системы, полимерных уплотнителей и прокладок трубопроводов.

Рекомендуемый срок эксплуатации большинства гликолевых антифризов – 5 лет, а нашей продукции до 10 лет.

Соблюдайте рекомендации производителя рабочей жидкости и не превышайте допустимую концентрацию раствора гликоля. Это не повлияет на срок эксплуатации антифриза (теплоносителя), но повысит температуру замерзания (между температурой кристаллизации и концентрацией присутствует нелинейная зависимость), что негативно скажется на работоспособности системы отопления.

Как залить антифриз в открытую отопительную систему?

Конструкция климатической системы часто предусматривается наличие открытого расширительного бачка, который располагается в пределах отапливаемого здания и сообщается с атмосферным воздухом. При раствора использовании этиленгликоля присутствует риск попадания токсичных испарений в жилые или рабочие помещения. Поэтому специалисты рекомендуют отдавать предпочтение пропиленгликолевым антифризам.

  • Разбавленный в нужной пропорции концентрат раствора гликоля заливается через подпиточный вентиль или расширительный бак с помощью насоса.
  • Установленные на радиаторах отопления краны Маевского должны быть открыты.
  • По мере заполнения системы теплоносителем краны закрываются, а уровень рабочей жидкости доводится примерно до трети от объема расширительного бака.

Важно!

Перед тем, как заливать промышленный антифриз в систему открытого типа, обязательно проверьте работоспособность запорно-регулирующей арматуры. После запуска и прогрева отопительного котла повторно стравите воздух через радиаторы. Если в процессе удаления воздуха из системы уровень нагретого теплоносителя в расширительном баке падает, долейте антифриз примерно до половины от объема бака.

Как залить антифриз в закрытую систему отопления?

Закрытая отопительная система гликолевым антифризом заполняется с помощью насоса, который подключается к штуцеру подпитки. Если насоса нет, придется заливать жидкость через самую высокую точку. Для этого нужно открутить автоматический воздухоотводчик. Это длительный и трудоемкий процесс, с которым сложно справиться в одиночку. Роль помощника – следить за своевременным удалением воздуха из батарей в момент залива теплоносителя в систему.

Перед началом работы важно проверить:

  • открыта ли запорно-регулирующая арматура;
  • закрыты ли краны, отсекающие котел;
  • правильно ли разбавлен концентрат антифриза;
  • закрыты ли сбросные клапаны Маевского;
  • открыт ли вентиль, отсекающий мембранный расширительный бак.
  1. Антифриз закачивается в систему пока показания манометра не достигнут 1,5 Бар (усредненное значение). После этого нужно выпустить воздух из радиаторов отопления и параллельно следить за падением давления в системе по манометрам (минимально допустимый показатель – 1 Бар). После этого нужно регулировать уровень давления периодической подкачкой теплоносителя.

    Важно! В системах отопления закрытого типа на подпиточной врезке должен располагаться обратный клапан пружинного типа. Иначе закачать внутрь системы антифриз практически невозможно.

  2. После удаления воздуха из радиаторов отопления рабочая жидкость доливается в систему до достижения показателей давления 1,5 Бар.
  3. Далее нужно открыть отсекающие котел краны: на обратной и подающей магистрали. Второй кран открывайте максимально аккуратно, чтобы атмосферный воздух успевал выйти через автоматический воздухоотводчик.
  4. При пробном запуске котла и прогреве рабочей жидкости контролируйте показатели давления в системе. Максимально допустимый показатель – 1,8 Бар (усредненное значение).
  5. Последний этап заливки антифриза – повторный сброс воздуха и корректировка давления.

После завершения работы тщательно обследуйте трубопроводы и соединения на наличие протечек антифриза. При обнаружении протечки можно не сливать весь объем теплоносителя из системы, а отсечь отдельную ветку или радиатор арматуры. После устранения дефектов конструкции скорректируйте давление выпустив воздух и долив необходимый объем рабочей жидкости.

Советы специалистов

Залив гликолевого антифриза (теплоносителя) в систему отопления – трудоемкий процесс. Важно использовать рабочую жидкость одной концентрации и от одного производителя. Это связано с различиями в пакетах антикоррозионных присадок. Некоторые компоненты могут вступать в химическую реакцию и образовывать осадок, который негативно сказывается на производительности системы и эксплуатационном ресурсе оборудования.

Смотрите допуски и сертификаты соответствия жидкостей компании «Техноформ». 

В ассортименте компании «Техноформ» вы  подберете раствор гликоля нужной концентрации, а также сможете приобрести карбоксилатные ингибиторы коррозии бельгийского производства.

Для использования в системах отопления рекомендуем готовые составы Hot Stream, температура кристаллизации и рабочие характеристики которых адаптированы под нужные климатические условия.

Главное — использовать антифриз (теплоноситель) совместимый с отопительным котлом для сохранения гарантии на котел. Многие производители выдвигают строгие требования, не допуская совместной работы теплогенераторов и незамерзающей жидкости. Перечень антифризов на основе раствора гликоля устанавливает производитель, поэтому важно придерживаться требований и проводить регулярное техническое обслуживание оборудования.

Вам могут быть интересны следующие товары

Вам могут быть интересны услуги

Закачка воды — обзор

9.3.2.3 Полевые испытания закачки воды

Процесс закачки воды был начат в 2006 году в пластах Баккен и Нижний Шаунавон. Схема закачки была такой, что горизонтальные нагнетательные скважины располагались параллельно горизонтальным производителям с их разнесением в сотни метров [60]. Позже моделирование было проведено для Нижнего Шаунавона с 1 инжектором и 18 производителями. Через 50 лет коэффициент восстановления прогнозировался на уровне 5,1% [61].

Вода была закачана компанией Meridian Oil на месторождении Двухсотлетия в округе Маккензи в 1994 году.Приблизительно 13 200 баррелей пресной воды было закачано в горизонтальную скважину на сланце Верхний Баккен в течение 50 дней, затем время выдержки составляло 60 дней, после периода выдержки добыча нефти оставалась ниже дебита до закачки воды в течение оставшегося срока эксплуатации скважины. Еще одно пилотное испытание по закачке воды было проведено в формации Баккен, расположенной в Северной Дакоте; как показано на рис. 9.8, соотношение добывающих скважин к нагнетательным составляет 4: 1. Скорость закачки составляла около 1350 баррелей в сутки за 8 месяцев в середине 2012 года; Однако прироста нефти не наблюдалось [40].Неудача этого пилотного проекта заводнения, по-видимому, была вызвана низкой эффективностью вытеснения воды, поскольку было произведено гораздо меньше воды, чем закачанной (потеря воды). Следовательно, данный случай не может рассматриваться как общее правило при проектировании сценария заводнения в плотных и сланцевых коллекторах [1].

Рисунок 9.8. Схема расположения скважины для опытно-промышленных испытаний в пласте Баккен [40].

Испытание проводилось в 2014 году. Были одна нагнетательная скважина и несколько соседних скважин. В первые 3 месяца дебит закачки в скважину составлял 1700 STB / день, а затем снизился до 1000 STB / день из-за прорыва на близкорасположенной скважине [40].В скважине с близким расположением (на расстоянии около 880 футов) было огромное увеличение добычи воды, но дебит нефти за это время не увеличился. Вода отошла через 1 неделю.

Одно пилотное испытание с подачей воды и затяжкой было проведено в части пласта Баккен в Северной Дакоте в 2012 году. Время закачки составляло чуть более 1 месяца, время выдержки составляло 2 недели, а время добычи составляло 3–4 месяца. . Скорость закачки составляла 1200 баррелей в сутки. Проблем с приемистостью воды не наблюдалось, но дебит нефти почти не увеличивался [40].

Согласно пилотному испытанию обратной закачки пластовой воды с настройкой huff-n-puff, которое было проведено на месторождении Паршалл, после использования такого метода не наблюдается значительного улучшения коэффициента извлечения нефти. В этом сценарии, который выполняется весной 2012 года, продолжительность закачки воды составляла около 30 дней и 10 дней в качестве периода замачивания; после этого производство было открыто для потока [1].

В таблице 9.2 представлены несколько полевых испытаний, которые были выполнены на месторождениях сланцевой нефти, расположенных в Китае.В этой таблице представлена ​​общая информация о типе режима закачки, а также характеристиках породы и флюида (некоторые из них не указаны). Кроме того, характеристики каждого полевого испытания приведены в Таблице 9.2 [1].

Таблица 9.2. Производительность закачки воды в пласты, расположенные в Китае [1]

Закачка Название месторождения Проницаемость (мД) Вязкость нефти (сП) Производительность
Импульсный An 83, Чанг 7 0.17 1.01 При остановке p резко снизилось, fw не уменьшилось
Асинхронный An 83, Chang 7 Добыча нефти увеличилась
Huff-n-Puff 1 An 83, Chang 7 Добыча нефти увеличилась
Huff-n-Puff 2 An 83, Chang 7 Производительность не так хороша, как Huff-n-Puff 1
Huff-n -Puff 3 An 83, Chang 7 Шесть скважин имели один цикл, а две скважины — два цикла.Соседние лунки без затяжки и затяжки превзошли по эффективности лунки без затяжки. Второй цикл отработал не так хорошо, как первый цикл
Huff-n-Puff 4 Chang 6 0,54 4,67 Добыча нефти увеличилась. Сценарий выполнялся при 7-дневной выдержке и интервале скважин 300 м
Huff-n-Puff 5 0,1–1 Добыча нефти увеличилась с 0,9 до 5 т / сут

p , давление; fw , фракционный поток в воду.

Закачка воды Huff-n-puff была также выполнена в резервуар Chang 6, нефтяное месторождение Yanchang около деревни Qieli, бассейн Ордос, Китай (huff-n-puff 4 в Таблице 9.2) [1].

Закачка воды Huff-n-puff была также успешно испытана в резервуаре Toutai, Daqing. Проницаемость составляла 1,25 мД, а цикл «затяжка-затяжка» составлял от половины до одного года [1]. Закачка воды Huff-n-puff была испытана в 2007 году в скважине Niu 15-5 в резервуаре Niuquanhu, месторождении Tuha. Проницаемость в этой области составила 0,42–7.84 мД. Время замачивания составляло 108 дней. Проведено два цикла с дополнительным запасом нефти 1816 т [1]. Закачка воды Huff-n-puff была выполнена на месторождении Duha Field, Синцзян, Китай (huff-n-puff 5 в Таблице 9.2). Закачка воды в скважину Ма-55 производилась с 18 июля 2014 года по 24 июля 2014 года. Скорость закачки составила 285 м 3 / сут. Общий объем закачанной воды составил 2000 м 3 3 . Дебит нефти до закачки воды составил 0,9 т / сут, обводненность — 16%. После закачки воды huff-n-puff дебит нефти составлял 5 т / сут, и дебит воды поддерживался постоянным до отчетной даты (август 2015 г.) [1].

Влияние впрыска воды на производительность котла

Коммерческий котел мощностью 20 кВт был модифицирован таким образом, чтобы можно было впрыскивать воду в воздух для горения с целью снижения выбросов монооксида углерода (CO) и оксидов азота (NOx) и повышение эффективности теплопередачи.

Было установлено, что впрыск воды использовался для повышения эффективности и контроля выбросов как в газовых турбинах, так и в двигателях внутреннего сгорания. Снижение NOx стабильно достигалось, однако снижение CO зависело от области применения.Отсутствие литературы, касающейся закачки воды в котлы, дало возможность для новых исследований.

Экспериментальная установка была разработана для исследования влияния воды, впрыскиваемой в воздух для горения, на эффективность теплопередачи котельной системы, а также на выбросы CO и NOx. Также были изучены различия между жидкой водой и паром, впрыскиваемым во внутренние и внешние точки горелки, с использованием форсунок или без них.

Снижение выбросов NOx и CO до 40% и 93% было достигнуто за счет впрыска воды внутрь горелки через сопло без значительного изменения эффективности теплопередачи.Было обнаружено, что эффективность снижения выбросов CO зависит от нескольких факторов. К ним относятся: метод и место впрыска, испарение жидкости и эквивалентное соотношение воздуха и топлива. Большинство экспериментальных случаев привело к снижению NOx.

Школа

  • Машиностроение, электротехника и производство

Издатель

Университет Лафборо

Правообладатель

© Митчелл Томас Уильям Кейн

Дата публикации

2018

Докторантура.Представлено при частичном выполнении требований для присуждения степени доктора технических наук Университета Лафборо.

Язык

en

Супервайзер (ы)

Эндрю Кларк

Название квалификации

EngD

Уровень квалификации

Докторантура

Эта заявка включает подписанный сертификат в дополнение к файлам диссертации

представили подписанный сертификат

Как на самом деле работает закачка воды?

Впрыск воды ушел в прошлое, но с ужесточением правил выбросов, он может вернуться.Итак, как это работает?

Возможно, вы слышали о таких автомобилях, как BMW M4 GTS с впрыском воды, а также о сильно модифицированных автомобилях, которые стремятся добиться значительного прироста мощности. Впрыск воды обычно используется в двигателях с высокой степенью сжатия (преимущественно в трансмиссиях с принудительной индукцией) из-за потенциальных неблагоприятных эффектов такой высокой степени сжатия в каждом цилиндре.

Эти системы работают путем впрыска или распыления воды в топливно-воздушную смесь или непосредственно в цилиндр.Те из вас, кто когда-либо сталкивался с тем, что вода случайно попадала в двигатель, где этого быть не должно, вы знаете, что тот факт, что вода является несжимаемой жидкостью, может привести к полной катастрофе. К счастью, количество впрыскиваемой воды настолько минимально, что жидкость никак не влияет на ход поршня. Водная смесь по сути представляет собой туман, а не поток жидкости, поэтому она довольно быстро испаряется в процессе сгорания.

Причина впрыска воды — ее охлаждающие свойства.Вместо того, чтобы использовать воду в качестве охлаждающей жидкости для охлаждения двигателя снаружи, вода впрыскивается в определенный момент времени двигателя для охлаждения значительных «горячих точек» в системе впуска, что может вызвать явление, называемое преждевременным зажиганием.

Предварительное воспламенение происходит из-за того, что эти «горячие точки» имеют более высокую температуру, чем искра от свечи зажигания, в результате чего воздушно-топливная смесь воспламеняется до того, как искра сможет воспламенить топливо. Со временем это может иметь разрушительные последствия для поршней, поскольку каждый из них вынужден двигаться против своего обычного времени из-за предварительного зажигания и может привести к перегреву компонентов.

8 КБ

Так поэтапный впрыск воды. Путем охлаждения горячих точек внутри цилиндра можно избежать преждевременного зажигания и можно безопасно изучить возможность использования более высоких степеней сжатия в двигателе.Когда вода поступает в цилиндр, тепло передается от горячего воздуха дожигания внутри цилиндра к холодной воде, охлаждая всасываемый заряд. Это означает, что смесь во впускном заряде более плотная, позволяя большему количеству воздуха / топлива поступать в цилиндр. И больше топлива = больше взрыва.

Из-за детонации в двигателе (побочный продукт преждевременного зажигания) угол опережения зажигания обычно замедляется, так что именно свеча зажигания воспламеняет топливо, а не горячие точки, но с добавлением водяного охлаждения угол опережения зажигания может быть изменен. помещается в гораздо более мощную зону производства крутящего момента в пределах цикла двигателя, что приводит к увеличению количества лошадей, попадающих в конюшню.

В M4 GTS чрезвычайно эффективен впрыск воды.

Теперь это не просто водопроводная вода, распыляемая в цилиндр. На самом деле это смесь 50/50 со спиртом (метанолом) и очень небольшим процентным содержанием масла.Когда вода охлаждает, спирт действует как антифриз и полностью воспламеняется, в то время как масло снижает воздействие воды на металлические компоненты коррозии. Из-за присутствия метанола этот процесс иногда можно назвать закачкой воды и метанола, в то время как некоторые опытные тюнеры даже соглашаются на 100-процентную закачку метанола, но очевидные соображения безопасности делают этот вариант чертовски опасным.

Закачка воды дает много других преимуществ.Выбросы уменьшаются из-за поглощения воды теплом в процессе сгорания, тем самым уменьшая количество выхлопных газов, производимых как NOx, а также продлевая срок службы двигателя за счет поглощения тепловой энергии, которая в противном случае попадала бы на стенки каждого цилиндра.

Впрыск воды в двигатель M4 GTS

Время впрыска воды, очевидно, имеет решающее значение, и его следует применять только при предварительном зажигании или детонации.Неправильное использование может привести к потерям мощности из-за недостаточной эффективности, когда вода заполняет потенциальное топливное пространство внутри цилиндра.

Развитие интеркулера в последние десятилетия 20-го века почти отправило впрыск воды в учебники истории из-за его абсолютной сложности, и если автомобили специально не производятся со склада с впрыском воды, чрезвычайно трудно попытаться настроить автомобиль для внезапно использую это.

Однако в свете решительных мер по снижению выбросов стоит ожидать возвращения впрыска воды из-за его влияния на сокращение выбросов выхлопных газов.Только не пытайтесь установить элементарную систему впрыска для своей 1.2 Fiesta, такая дорога может привести только к неудачам.

Регулятор смешивания впрыска для водяных систем водяного отопления

Регулятор смешивания впрыска для водяных систем водяного отопления

2019-08-02 07:20:18

Гидравлические системы водяного отопления пола обычно требуют температуры воды ниже, чем могут подавать обычные газовые или мазутные котлы без конденсации дымовых газов.Было разработано несколько методов работы таких котлов при температурах без конденсации с одновременным смешиванием их выхода горячей воды с обратной водой с более низкой температурой из контуров пола для достижения надлежащих температур подачи. К ним относятся регулируемые вручную шаровые клапаны, 3-ходовые и 4-ходовые смесительные клапаны с электроприводом, теплообменники, буферные резервуары и группа методов, известных как смешивание с помощью инъекций. В этой статье обсуждаются пять подходов к инжекционному смешиванию, которые становятся все более популярными и экономически эффективными для систем водяного отопления.

Чтобы понять, как работает инъекционное смешивание, представьте контур распределения пола как постоянно циркулирующую «конвейерную ленту» для тепла. Когда необходимо отвести тепло в помещение, небольшой поток горячей воды «проталкивается» в напольный распределительный контур через устройство управления впрыском, такое как клапан или насос. Закачиваемая вода смешивается с более холодной водой, возвращающейся из контуров пола в тройнике. Комбинированный поток теперь (в идеале) имеет требуемую температуру подачи, поскольку он возвращается в контуры пола.Поскольку распределительная система полностью заполнена жидкостью, нагнетаемый поток горячей жидкости должен сопровождаться равным, но выходящим потоком холодной возвратной воды из распределительной системы. Большая разница температур между нагнетаемой горячей водой и холодной водой, возвращающейся из контуров пола, обеспечивает высокую скорость передачи тепла при относительно небольшом расходе. Например: Предположим, что в систему распределения теплого пола необходимо подавать 2000 000 БТЕ / ч с использованием нагнетаемой воды при температуре 180 ° F.Предполагается, что вода, возвращающаяся из контура пола, составляет 95 °. Необходимый расход закачиваемой воды можно рассчитать по формуле 1:

.

Где:

f = расход нагнетаемой горячей воды (в галлонах в минуту).

Q = Требуемый расход тепла (в британских тепловых единицах в час).

T i = Температура входящей воды для закачки (в i ° F).

T R = Температура воды на выходе из возвратной стороны R распределительной системы (в ° F).

490 = Константа, основанная на свойствах воды.Это значение изменится для других жидкостей.

Для предполагаемых условий:

Такой небольшой расход обеспечивается за счет клапана 3/4 дюйма и трубопровода 3/4 дюйма. В общем, любая гидравлическая система с большой разницей температур между нагнетаемой водой и возвратной водой может использовать небольшое оборудование для впрыска и при этом обеспечивать высокую скорость переноса тепла. Эта характеристика может значительно снизить затраты на управление в более крупных системах водяного отопления.

Инжекционное смешивание с 2-ходовыми клапанами

Существует три метода смешивания при впрыске, в которых 2-ходовые клапаны используются в качестве устройства управления впрыском.Все используют небольшие вариации общей системы трубопроводов, показанной на рисунке 2. Эту общую систему трубопроводов можно представить как три подузла; контур котла, напольный распределительный контур и «мостовые трубы», соединяющие эти контуры.

Котловой контур необходим для предотвращения конденсации дымовых газов внутри котла. Его следует использовать в любой системе впрыска, которая объединяет низкотемпературный распределительный контур с обычным газовым или масляным котлом. Контур котла работает путем подачи горячей воды к тройнику, ведущему к впрыскивающему клапану, но со скоростью потока, значительно превышающей требуемую скорость потока впрыска.Это заставляет большую часть горячей воды обходить тройник № 1 и продолжать дальше по потоку, где она смешивается с холодной возвратной водой, поступающей в тройник № 2. В результате получается смесь, которая может быть всего на 10-20 ° ниже температуры на выходе из котла. , возвращается в котел достаточно горячим, чтобы предотвратить конденсацию дымовых газов. Для газового котла без конденсации температура возврата должна быть не ниже 140 ° F. Температуру возврата котла можно рассчитать по Формуле 2:

.

где:

T обратка котла = температура воды на входе в котел (в ° F).

T подача котла = температура воды на выходе из котла (в ° F).

Q design = тепловая нагрузка, которую котел должен обеспечивать при расчетных условиях (в британских тепловых единицах в час).

f котловой контур = расход в котловом контуре (в галлонах в минуту).

490 = постоянная, основанная на свойствах воды. Это значение изменится для других жидкостей.

Относительно короткие контуры котла, состоящие из труб большего диаметра, позволяют достичь значительных расходов при использовании небольших циркуляционных насосов с мокрым ротором.Котловой контур также может служить в качестве первичного контура, который питает несколько других вторичных отопительных контуров, например, для нагрева воды для бытового потребления или зон плинтусных конвекторов.

Метод № 1. Неэлектрические двухходовые клапаны впрыска

В первом методе впрыска, который мы рассмотрим, используется неэлектрический клапан с термостатическим управлением для поддержания определенной температуры подачи в контуры пола всякий раз, когда требуется тепло. Чувствительная груша для привода клапана расположена на подающей трубе, ведущей к напольным контурам, предпочтительно после распределительного циркуляционного насоса (см. Рисунок 3).Когда в распределительном контуре начинается охлаждение ниже желаемой температуры подачи, клапан постепенно открывается, позволяя большему количеству горячей котловой воды проходить в распределительный контур. При правильном размере клапана изменение температуры подачи должно быть в пределах +/- ° F. желаемой уставки.

Чтобы обеспечить «стимул» протеканию воды через мостовой трубопровод между контуром котла и распределительным контуром, необходим ограничитель расхода определенного типа для создания перепада давления между тройниками в одном из контуров.Контур с наиболее постоянной скоростью потока является предпочтительным местом для ограничителя потока. Если котловой контур обслуживает только нагрузку на систему обогрева пола, его расход будет постоянным при каждой подаче тепла. Если контур котла является первичным контуром настоящей первичной / вторичной системы, обслуживающей несколько вторичных нагрузок, его расход также должен быть постоянным. Напольный распределительный контур может иметь или не иметь постоянный расход в зависимости от того, включены или выключены отдельные контуры этажа с помощью средств управления зонированием.

Ограничитель потока может быть запорным клапаном, отводным тройником или, возможно, просто сопротивлением потоку трубы и фитингов между тройниками, соединяющими мостовые трубы с петлей. Он должен обеспечивать падение давления не менее 1 фунта на кв. Дюйм при расчетной скорости потока контура, в котором оно установлено.

Груша датчика для термостатического 2-ходового клапана (в идеале) должна быть установлена ​​в тройник в непосредственном контакте с приточной водой, протекающей в контуры пола. Если это невозможно, грушу датчика можно плотно зажать снаружи подающей трубы, а этот участок трубы осторожно обернуть изоляцией.Лучше всего расположить грушу датчика после распределительного циркуляционного насоса, чтобы обеспечить тщательное перемешивание до измерения температуры подачи.

Привод клапана обычно настраивается на поддержание номинальной расчетной температуры подачи в контуры пола всякий раз, когда требуется тепло. В условиях частичной нагрузки здание быстро перегреется, если поток не будет включен и выключен по мере необходимости. Один из подходов состоит в том, чтобы расположить напольные контуры для каждой комнаты, установить отдельные термостаты в каждой комнате, подключив их к отдельным операторам «телестатического» клапана на распределительном клапане каждого напольного контура.Для больших «многоконтурных зон» можно использовать один термостат для управления зонным клапаном или зональной циркуляцией. Если в контурах пола должен поддерживаться непрерывный поток, можно использовать термостат (ы) для включения и выключения циркуляции котла и контура котла.

Крупный производитель термостатических 2-ходовых клапанов предлагает следующую процедуру выбора клапана впрыска:

  1. Рассчитайте требуемый расход впрыска по следующей формуле:

Где:

fi = расход нагнетаемой горячей воды при расчетных условиях (в галлонах в минуту).

фс = расход в распределительном контуре при расчетных условиях (в галлонах в минуту).

Ts = температура подачи в контуры пола при расчетных условиях (в ° F).

TR = температура возврата из контуров пола при расчетных условиях (в ° F).

Ti = температура доступной воды для закачки (в ° F).

  1. «Уменьшите номинальные характеристики» перечисленных значений Cv рассматриваемых клапанов, умножив их перечисленные значения Cv на 0,6. (Это сужает пропорциональный диапазон значения и уменьшает колебания температуры подачи выше и ниже заданного значения).

  2. Выбор клапана с «пониженным» значением Dv, равным или немного превышающим требуемый расход впрыска.

Метод № 2: Регулирующий клапан с управлением сбросом

В другом методе инъекционного смешивания используется модулирующий 2-ходовой клапан, электрически регулируемый с помощью регулятора резервуара. Необходимая температура подачи постоянно рассчитывается регулятором сброса на основе наружной температуры и настроек кривой нагрева. На привод клапана отправляется сигнал, который регулирует расход впрыска, необходимый для поддержания этой температуры.Датчик температуры на подающей трубе, ведущей к контурам пола, обеспечивает постоянную обратную связь с системой управления, позволяя ей непрерывно регулировать расход впрыска по мере необходимости. Ограничитель потока снова используется либо в контуре котла, либо в контуре распределения для создания перепада давления, необходимого для проталкивания горячей воды через мостовой трубопровод при открытии впрыскивающего клапана.

Метод № 3: Управление клапаном впрыска вкл. / Выкл.

Третий способ использования двухходового клапана для инъекционного смешивания показан на Рисунке 4.Когда комнатный термостат требует тепла, стандартный клапан гидравлической зоны в трубопроводе перемычки впрыска срабатывает. Также включаются котел и циркуляционный насос котлового контура. Распределительный циркуляционный насос либо работает непрерывно, либо включается, когда требуется тепло. Балансировочный (шаровой) клапан, на этот раз показанный в распределительном контуре, был предварительно настроен на перепад давления, необходимый для принудительного нагнетания требуемого потока через клапан открытой зоны.

Для защиты от чрезмерно высокой температуры подачи после точки впрыска устанавливается аквастат.Если температура подачи должна подняться выше заданного максимального значения (например, если балансировочный клапан установлен неправильно), аквастат прерывает сигнал термостата и закрывает клапан впрыска, защищая пол от перегрева. Распределительный термостат должен продолжать работать в этих условиях, позволяя контурам пола постепенно остыть до точки, при которой аквастат снова открывает зональный клапан.

Этот подход требует тщательной настройки балансировочного клапана, чтобы предотвратить чрезмерное срабатывание аквастата.Существует соблазн, особенно при запуске в холодную погоду, состоит в том, чтобы настроить балансировочный клапан на подачу относительно теплой воды в контуры пола, даже если температура возврата из этих контуров довольно низкая. Это нормально в течение нескольких часов для ускорения плиты до нормальной температуры, но если балансировочный клапан оставить на этой настройке, аквастат в конечном итоге начнет короткий цикл включения и выключения, потому что по мере того, как плита достигает температуры, а температура обратной воды повышается , так же как и температура подачи.Чтобы предотвратить это, используйте формулы 4 и 5 для расчета необходимого повышения температуры на тройнике впрыска при запуске, а затем используйте точные термометры, чтобы аккуратно настроить балансировочный клапан для получения этого повышения. Обратите внимание, что для этого требуется точная оценка падения температуры системы теплого пола в расчетных условиях. Это достигается путем точных расчетов конструкции.

Где:

Ti = Температура доступной воды для закачки (в ° F). TR = Температура обратки из контуров пола (в ° F).

Ts = Температура подачи в контуры пола (в ° F).

Qdesign = Тепловая мощность коллектора, зоны теплого пола и т. Д. При расчетных условиях (в британских тепловых единицах в час).

fdist = Расход в системе распределения (в галлонах в минуту).

490 = Константа, основанная на свойствах воды. Это значение изменится для других жидкостей.

Например: Предположим, что для системы теплого пола требуется температура воды 110 ° F при расчетных условиях. Во время пуска возвратная вода возвращается из контуров пола при температуре 60 °, а нагнетаемая вода из контура котла доступна при температуре 170 °.Повышение температуры, необходимое для системы теплого пола при расчетных условиях, было рассчитано на 10 °, таким образом, температура обратного потока от пола при расчетных условиях составляет 110-10 = 100 °. * T на тройнике впрыска при запуске рассчитывается по формуле 4:

.

Уставка аквастата должна быть на два-четыре градуса выше расчетной температуры подаваемой воды. Его перепад должен быть на несколько градусов «шире», чем расчетное превышение температуры на тройнике впрыска. Это помогает избежать коротких циклов, если и когда аквастат прерывает нагнетание горячей воды.

Поскольку расход впрыска установлен на фиксированном значении (например, расход, требуемый в условиях проектной нагрузки), этот тип системы медленнее реагирует на переходные условия, такие как большое увеличение настройки термостата. Напротив, два предыдущих метода закачки могут регулировать свои скорости потока закачки — в некоторых случаях даже выше, чем требуется в проектных условиях — для сокращения переходного времени восстановления.

Также доступны элементы управления

, которые позволяют использовать клапаны зоны включения / выключения в сочетании со стратегией управления сбросом.В таких системах датчик температуры подачи регулятора сброса заменяет аквастат, показанный на Рисунке 4. Эти регуляторы работают, регулируя время включения клапана впрыска в зависимости от температуры наружного воздуха. Хотя подвод тепла не такой постоянный, как в способах 1 и 2, масса системы теплого пола плитного типа имеет тенденцию сглаживать колебания температуры подачи и плавно подавать тепло в здание.

Инжекционное смешивание с помощью насосов с регулируемой скоростью

Инъекционное смешивание с регулируемой скоростью — еще один метод регулирования температуры воды, применяемый в системах теплого пола.Хотя насосы с регулируемой скоростью использовались в крупных гидравлических системах в течение некоторого времени, их адаптация к управлению впрыском в жилых и легких коммерческих системах относительно нова. В системе этого типа небольшой насос заменяет двухходовые клапаны, показанные на предыдущих схемах. При работе этот насос выталкивает горячую воду из контура котла в контур распределения с более низкой температурой. Чем быстрее работает насос, тем быстрее нагнетается горячая вода в распределительный контур и тем выше становится температура подачи.

В некоторых системах в качестве впрыскивающего насоса используется небольшой гидравлический циркуляционный насос с мокрым ротором и электродвигателем с защитным сопротивлением PSC. В этом случае скорость насоса регулируется электронно с помощью симистора для управления формой волны переменного напряжения, подаваемой на двигатель. В других системах в качестве устройства переменной скорости используется небольшой насос с приводом от постоянного тока.

Существуют две основные схемы трубопроводов для систем впрыскивающих насосов с регулируемой скоростью. У каждого есть свои преимущества и недостатки в зависимости от типа проектируемой системы.

Метод №4: Трубопровод прямого впрыска

Первый метод управления впрыском с регулируемой скоростью называется прямым впрыском. Расположение трубопроводов показано на рисунке 5. Направленный впрыск обеспечивает максимальную скорость передачи тепла в систему распределения для данной скорости нагнетаемого потока и температуры. Он хорошо подходит для больших жилых и легких коммерческих систем. Его недостаток заключается в том, что даже небольшой гидравлический циркуляционный насос (например, типичный циркуляционный насос с мокрым ротором мощностью 1/25 л.с.) при использовании в сочетании с первичным / вторичным трубопроводом, высокотемпературной нагнетаемой водой и низкотемпературной возвратной водой может легко нагнетать несколько сотен тысяч БТЕ / ч тепла в систему распределения.

В небольших жилых системах это означает, что насос может быть ограничен до небольшой части своей нормальной скорости даже в проектных условиях. По этой причине в трубопроводе обратного моста установлен шаровой клапан (см. Рисунок 5), чтобы преднамеренно дросселировать поток впрыска и, таким образом, вынудить циркуляционный насос работать в более широкой части своего диапазона скоростей, поскольку мощность нагрева изменяется от нуля до полной расчетной. нагрузка. Небольшие «микронасосы» с приводом от постоянного тока, которые работают от нескольких ватт мощности, не нуждаются в ограничении потока впрыска таким образом.

Две детали трубопровода, которые имеют решающее значение для успеха систем прямого впрыска, — это расстояние между тройниками первичного и вторичного контуров и образование «тепловой ловушки».

Расстояние между тройниками первичного вторичного контура как в котле, так и в распределительном контуре должно быть как можно меньше (ни в коем случае не более четырех диаметров трубы). Трубопровод, соединяющий эти тройники, следует тщательно развернуть и аккуратно припаять, чтобы свести к минимуму любые потери давления между боковыми портами тройников.Любая возникающая потеря давления способствует перемещению горячей воды из контура котла в контур распределения, даже когда нагнетательный насос полностью отключен. Поскольку многие системы излучающего пола поддерживают непрерывную циркуляцию через контуры пола, эта слабая, но постоянная струйка горячей воды может постоянно нагнетать тепло (хотя и с небольшой скоростью) в контуры пола, даже когда здание не нуждается в этом. Это может привести к перегреву в мягкую погоду, особенно в небольших системах.

Деталь трубопровода тепловой ловушки также помогает предотвратить тепловую миграцию, когда нагнетательный насос выключен.Обе мостовые трубы, соединяющие котел и распределительные петли, должны иметь минимальный перепад высот в 1 фут, а лучше 2 с лишним фута, чтобы предотвратить миграцию горячей воды вниз в распределительную систему.

Требуемый расход впрыска можно рассчитать по формуле 3. Использование взвешенных (контроль расхода) или подпружиненных обратных клапанов в мостовых трубопроводах систем прямого впрыска не рекомендуется, поскольку это приводит к нестабильной работе впрыскивающего насоса в условиях низкой нагрузки.

Метод №5: Трубопровод обратного впрыска

Альтернативная конструкция трубопровода для смешивания с впрыском с регулируемой скоростью показана на рисунке 6. В этой так называемой системе обратного впрыска вода выходит из распределительного контура при температуре подачи контура пола, а не при температуре возврата, как в предыдущих системах. Такое расположение трубопроводов сводит к минимуму или устраняет некоторые недостатки систем прямого впрыска.

Поскольку разница температур между входящим и выходящим водяными потоками меньше в системе реверсивного впрыска, скорость впрыскиваемого потока, необходимая для обеспечения того же теплопереноса, больше, чем в системах с прямым впрыском.Этот расход можно рассчитать по формуле 6.

Где:

fi = скорость нагнетания горячей воды при расчетных условиях (в галлонах в минуту). fs = расход в распределительных системах (в галлонах в минуту).

Ts = температура подачи в контуры пола при расчетных условиях (в ° F).

TR = температура возврата из контуров пола при расчетных условиях (в ° F).

Ti = температура доступной воды для закачки (в ° F).

Более высокий расход впрыска заставляет циркуляционный насос впрыска работать в большей части своего диапазона скоростей в небольших системах.Системы обратного впрыска также лучше защищены от миграции тепла вне цикла, чем системы прямого впрыска. Эта защита является результатом использования нескольких деталей трубопроводов. Во-первых, давление застоя жидкости в точке впрыска заставляет поворотный обратный клапан после впрыскивающего насоса закрываться, когда впрыскивающий насос не работает. Во-вторых, потеря напора в трубопроводе между входным и выходным тройниками распределительного контура дополнительно способствует удержанию этого обратного клапана закрытым в условиях нулевого тепловложения.Наконец, тепловая ловушка в обратном трубопроводе помогает минимизировать любую тепловую миграцию. Снова важно подчеркнуть, что эти детали, ориентация труб и т. Д. Имеют решающее значение для управления подводом тепла при низкой нагрузке.

Из-за их способности останавливать миграцию горячей воды и высоких требований к скорости нагнетания системы обратного впрыска обычно считаются более подходящими для систем обогрева полов в жилых домах, где в качестве нагнетательного устройства используются небольшие циркуляционные насосы с мокрым ротором, работающие на переменном токе.Однако эти преимущества достигаются за счет более сложной компоновки трубопроводов.

Методы смешивания с прямым и обратным впрыском могут использоваться в сочетании со стратегиями управления уставкой или сбросом наружного воздуха. В последнем случае температуру котла также можно контролировать с помощью отдельной кривой сброса, если этого требуют другие нагрузки в системе.

Сводка

Все пять представленных методов инъекционного смешивания успешно используются в водяных системах водяного отопления.Окончательный выбор зависит от нескольких факторов, включая:

• Будет ли система использовать постоянную температуру подачи или контроль сброса наружного воздуха?

• Будет ли в здании использоваться покомнатное зонирование или «зонирование площади»?

• Будут ли напольные контуры работать с непрерывной циркуляцией или циркуляцией «по требованию»?

• Какая требуется скорость транспортировки тепла в систему распределения?

• Какова температура как нагнетаемой воды, так и возвратной воды системы?

• Какие затраты были сделаны на систему управления?

• Какое количество переходных режимов будет испытывать система?

Возможно, самым большим преимуществом каждого типа управления впрыском является возможность использования относительно небольших труб, клапанов и насосов для обеспечения высокой скорости передачи тепла от контура котла к контуру распределения.Это помогает минимизировать затраты на управление, сохраняя при этом тот же комфорт, которым известны системы водяного отопления.

© Сантехника и механика. Просмотреть все статьи.

Инъекционное управление смешиванием для водяных систем водяного отопления
/article/Injection+mixing+control+for+hydronic+radiant+floor+heating+systems/3444719/606629/article.html

Меню

Список проблем

Отчет Radiant Comfort Winter Edition 2021

Отчет Radiant Comfort Весна 2021

Январь 2021 г.

Декабрь 2020

Ноябрь 2020

Отчет Radiant Comfort Осень 2020

Октябрь 2020

Сентябрь 2020

августа 2020

июль 2020

июнь 2020

Отчет Radiant Comfort 2020

мая 2020

Апрель 2020

марта 2020

Февраль 2020

января 2020

декабрь 2019

Современная гидроника об.5 2019

ноябрь 2019

Radiant Comfort Ноябрь 2019

Октябрь 2019

сентябрь 2019

Август 2019

Современная гидроника, том 4 2019

июль 2019

Отчет Radiant Comfort 2019 Весеннее издание

июнь 2019

мая 2019

Современная гидроника 2019 Том 3

апрель 2019

Март 2019

Февраль 2019

Современная гидроника 2019 Том 2

Январь 2019

Декабрь 2018

ноябрь 2018

Современная гидроника 2018

Октябрь 2018

Сентябрь 2018

августа 2018

Отчет о радиантах и ​​гидронике за 2018 год

июль 2018

июнь 2018

мая 2018

апрель 2018

Март 2018

Февраль 2018

Январь 2018


Библиотека

Что такое нагрев с прямым впрыском пара?

Прямой впрыск пара работает путем прямого впрыска пара в технологическую жидкость для более быстрой передачи тепла, что приводит к более эффективному использованию энергии по сравнению с косвенными теплообменниками.Этот эффективный процесс нагрева вызван способностью наших гидроагревателей с прямым впрыском пара управлять потоком пара и турбулентностью смешения с помощью регулируемой заглушки штока и сопла или узла диффузора в нагревателе. Это точное смешивание отмеренного количества высокоскоростного пара непосредственно с жидкостью или суспензией обеспечивает мгновенную передачу тепла от пара к жидкости. Этот метод теплопередачи обеспечивает 100% тепловой КПД и экономию энергии на 20-25%. Не верите нам? Перейдите к нашему калькулятору энергосбережения, чтобы получить точную оценку того, сколько вы можете сэкономить на эксплуатационных расходах.

Чтобы добиться этого, точно спроектированное паровое сопло или диффузор с регулируемой площадью измеряет поток в точке впрыска и контакта с жидкостью. Большой перепад давления от полного давления пара до давления технологической жидкости обеспечивает высокоскоростной поток пара и мгновенное смешивание двух потоков. Когда поток пара перекрывается, его скорость на выходе из сопла или диффузора остается постоянной независимо от общего впрыскиваемого массового расхода. Нагреватели Hydro-Thermal с внутренней модуляцией регулируют площадь впрыска (площадь поперечного сечения сопла или отверстия диффузора) для точного регулирования тепловой нагрузки.Постоянная скорость пара обеспечивает стабильную и стабильную работу во всем диапазоне операций.

Запатентованные нагреватели

Hydro-Thermal с прямым впрыском пара используют прямой теплообмен как средство передачи 100% энергии пара для нагрева жидкостей и суспензий в широком диапазоне вязкости и твердого содержимого до точных температур. Внутренняя модуляция водонагревателя обеспечивает точный контроль пара, быстрое управление температурой и дает предсказуемые результаты. Каждый водонагреватель Hydro-Thermal имеет внутреннюю отделку, специально разработанную для конкретных нужд и требований каждого клиента.

Технология DSI

Гидроонагреватели / струйные печи обычно превосходят другие формы прямого впрыска пара и методы косвенного нагрева, такие как теплообменники. Воспользуйтесь ссылками ниже, чтобы узнать больше о том, как запатентованная технология Hydro-Thermal превосходит существующее положение.

Внешняя и внутренняя модуляция:

Прямой впрыск пара с внешней или внутренней модуляцией относится к способу управления массовым расходом пара, впрыскиваемого в технологическую жидкость.

Внешняя модуляция использует регулирующий клапан пара на линии подачи для изменения давления пара в точке впрыска: изменение давления изменяет плотность и скорость пара через сопло, чтобы контролировать количество нагрева. Регулирование давления пара для управления нагревом может привести к нестабильной работе, ударам и вибрации, когда требуются высокие или низкие скорости потока пара. При низком расходе пара, т. Е. При регулируемом нагреве, разница между давлением пара и процессом может быть очень небольшой, и небольшое колебание любого давления может вызвать сбой.В качестве альтернативы, при высоких требованиях к потоку пара, то есть при максимальном нагреве при запуске, размер отверстия или сопла позволит пропускать больше пара, чем может быть сконденсировано, и возникает паровой удар.

DSI с внутренней модуляцией регулирует площадь впрыска, а не скорость и плотность пара, чтобы регулировать степень нагрева. Нагреватель с внутренней модуляцией работает с более высокими скоростями пара по сравнению с внешней модуляцией. Эта более высокая скорость обеспечивает улучшенное, часто быстрое перемешивание и почти мгновенную конденсацию пара в технологической жидкости.

Прямой и косвенный нагрев:

Есть два основных типа теплообменников, используемых для передачи тепла между технологическими жидкостями — прямой теплообмен и косвенный. Косвенный нагрев чаще всего используется в пластинчато-рамных или кожухотрубных теплообменниках. Любой процесс, не допускающий прямого смешивания пара и жидкости, называется косвенным нагревом. Теплообменники передают тепло через мембрану или твердую стену. В результате технологической жидкости передается только ~ 83% тепловой энергии.Напротив, оставшаяся энергия выделяется в конденсате, образующемся из пара.

С другой стороны, прямой нагрев использует 100% тепловой энергии пара за счет добавления пара непосредственно в технологическую жидкость.

Преимущества использования прямого контактного нагрева по сравнению с косвенным:
  • Экономия энергии 25% и более
  • Точное и мгновенное регулирование температуры возможно с точностью до 1 ° F
  • Уменьшенная занимаемая площадь для системы прямого впрыска пара
  • Снижает объем технического обслуживания за счет самоочистки и исключения системы возврата конденсата
Дополнительные преимущества:
  • Быстрый и равномерный нагрев — важно для крахмалов и пищевых продуктов
  • Может нагревать высоковязкую жидкость
  • Справляется с трудно нагреваемыми жидкостями — предотвращает «пригорание»; абразивные шламы
  • Устраняет закупоривание и загрязнение поверхности теплопередачи
  • Быстрое время отклика

Типы прямого впрыска пара (DSI)

В нагревателях

Hydro-Thermal используется прямой впрыск пара.Этот общий термин относится к любому типу нагрева жидкости, в котором пар напрямую смешивается с водой или технологической жидкостью. Существует множество форм прямого впрыска пара, включая барботеры, эдукторные насосы, нагреватели с внешней модуляцией и нагреватели с внутренней модуляцией. Каждый метод различается по уровню сложности, причем барботаж является самым простым и внутренне модулируемым, с высочайшим уровнем технологии и контроля.

Внутренняя модуляция

Технология

Hydro-Thermal, в которой используется внутренняя модуляция, представляет собой наиболее совершенную форму прямого впрыска пара.Он имеет много преимуществ перед другими методами прямого нагрева, в том числе:

  • Пониженное потребление пара
  • Значительно более низкие затраты на энергию, 100% эффективное использование энергии пара
  • Низкие эксплуатационные расходы
  • Работает с трудно нагреваемыми жидкостями — предотвращает «пригорание»; высоковязкие или абразивные шламы не проблема
  • Компактность
  • Постоянная и точная температура нагнетания
  • Возврат конденсата не требуется

Барботаж

Барботаж — это самый старый, самый простой и наименее сложный метод смешивания пара с жидкостью или суспензией для нагрева.Он впрыскивает пар непосредственно в резервуар, заполненный жидкостью. Несмотря на то, что промывка считается недорогой и простой, она очень неэффективна, и операция неизменно приводит к:

  • Низкая экономичность закачки тепла из-за выхода энергии пара из резервуаров без конденсации.
  • Высокие затраты на техническое обслуживание резервуаров, датчиков и трубопроводов являются нормой, если оборудование работает за пределами проектных параметров.
  • Отказ оборудования (как резервуара, так и распределительных труб) из-за вибрации, связанной с паровым молотом, когда он не работает в пределах их узкого конструктивного диапазона.
  • Обычно менее чем удовлетворительное включение / выключение управления процессом. Барботер — наименее контролируемый метод нагрева с прямым впрыском пара.
  • Неравномерный нагрев

Барботажная трубка

Нагреватель с внешне модулируемой трубкой барботера (MST) состоит из трубки барботера с регулируемым впрыском, управляемой пружиной, внутри литого корпуса технологического потока. В ответ на датчик температуры внешний регулирующий клапан подает пар на подпружиненный поршень.Нагреватели MST достаточно хорошо работают с прозрачными жидкостями и некоторыми растворами с низким содержанием твердых частиц. Тем не менее, они подвержены сильному засорению и паровому удару, если не проводить частое техническое обслуживание. В типичных системах водяного отопления эти устройства обычно требуют ежемесячного демонтажа и очистки кислотной ванны. Поскольку поток пара зависит от подпружиненного клапана, точное регулирование температуры затруднено, когда пружина начинает изнашиваться.

Кроме того, если требуется низкий (подогрев триммера) или высокий поток пара, пружинный механизм может иметь трудности с точным или стабильным управлением.Выход из строя пружины — обычная проблема для этого типа нагревателя. Дополнительные недостатки барботажных трубок:

  • Требуется внешний парорегулирующий клапан
  • Очень высокие затраты на обслуживание
  • Склонен к образованию накипи и обрастанию
  • Паровой молот обыкновенный
  • Ограниченное регулирование температуры из-за внешнего управления
  • Внутренняя пружина подвержена износу и поломке

Смешивание Ts

Mixing Ts объединяют отдельные потоки пара и холодной воды для получения нагретой воды.Поскольку с помощью этого метода трудно поддерживать точный контроль температуры, смешивание Ts не лучший выбор для технологических жидкостей. При использовании для воды смесительные тройники склонны к образованию накипи, засорению и чрезмерному удару. Их работа часто требует, чтобы давление пара и воды было очень близким друг к другу для сбалансированного перемешивания. Когда давление пара или воды немного колеблется, линия с более высоким давлением может перекрыть другую и заполнить трубопровод. Это может привести к выходу острого пара из системы.Недостатком Mixing Ts являются:

  • Очень высокие затраты на обслуживание
  • Склонен к образованию накипи и обрастанию
  • Паровой молот обыкновенный
  • Потенциально очень опасно из-за близости острого пара к контакту человека
  • Ограниченный контроль температуры

Хотите узнать больше:

Волшебство впрыска воды — Новости Матери-Земли

1/2

Система впрыска воды использует подающий шланг, прикрепленный к крышке воздушного фильтра, для впрыскивания воды непосредственно в карбюратор.

ФОТО: СОСТАВ НОВОСТЕЙ МАТЕРИ ЗЕМЛИ

2/2

Присвоенный жюри датчик, подключенный к приборной панели, отслеживает экономию топлива автомобиля.

ИНФОРМАЦИЯ О МАТЕРИ ЗЕМЛЕ СОТРУДНИЧЕСТВО

❮ ❯

Во время Второй мировой войны летчики-истребители могли нажать кнопку и впрыснуть струю воды в турбокомпрессоры своих чудовищных силовых установок, чтобы получить дополнительную тягу на взлете. Некоторое время спустя Chrysler (среди других производителей автомобилей) установил впрыск воды на ряд своих двигателей большого объема, опять же для повышения производительности.Действительно, в нагнетании воды, используемом для увеличения мощности, нет ничего нового.

Но использование «Адамова эля» для экономии бензина — это, конечно, изменение ритма! Видите ли, до недавнего времени просто не существовало способа эффективно контролировать объем и распыление крошечного количества жидкости, необходимого для адаптации впрыска H 2 0 к небольшому экономичному двигателю. И, как правило, в то время как крупные технологии не могли понять, как можно справиться с таким регулированием, небольшой предприниматель (с богатым опытом и изобретательностью, но с нехваткой долларов и степеней) преуспел.

Пэт Гудман установил свою первую систему впрыска воды (на гоночном автомобиле Porsche) в 1964 году, и гоночная организация в ответ запретила его устройство — оно сделало автомобиль слишком быстрым! Не испугавшись, Пэт решил, что даже если гоночный истеблишмент не заинтересован в «улучшении породы», он был заинтересован.

Сегодня, несколько позже близких к банкротству, новаторский механик владеет автомобилем, с которым может поспорить только правительство: Ford Fiesta 1978 года, который получает 50 миль на галлон при обычной езде по городу.(Эта впечатляющая цифра была подтверждена сотрудником MOTHER EARTH NEWS, который сопровождал Гудмана в 48-мильной прогулке по Винчестеру, штат Вирджиния. Во время поездки — которую Пэт совершил, если уж на то пошло, с большей скоростью, чем обычно — на маленьком четырехцилиндровом двигателе выпил всего 0,95 галлона неэтилированного газа.)

Назад к основам

Как и большинство хороших идей, конструкция закачки воды Гудмана представляет собой удивительно простой подход к пугающе сложной проблеме. На самом деле производственная система намного менее сложна, чем модель-прототип.Он состоит только из распылительной форсунки, а также двух односторонних клапанов от распылительных пистолетов, некоторого шланга (для подачи воды в «распылитель» и снятия давления из системы выброса) и резервуара для воды на один галлон.

Форсунка ввинчивается в верхнюю часть корпуса воздухоочистителя и разбрызгивает мельчайшие капли воды в горловину карбюратора в ответ на команды заводских устройств контроля смога.

Несмотря на его периодические критические замечания в адрес регулирующей бюрократии правительства, Пэт милостиво благодарен за все время и деньги, которые они потратили на разработку устройства регулирования громкости его системы: насоса для смога.Этот механизм впрыска воздуха тщательно контролирует частоту вращения двигателя и нагрузку, а также обеспечивает давление для активации водяной форсунки устройства Goodman!

Путем ограничения давления воздуха от насоса (либо с помощью клапана, либо путем обжатия шланга) до примерно 2 1/2 фунтов на квадратный дюйм при примерно 3000 об / мин (измерено манометром давления топлива), надлежащее соотношение 5% воды к 95% бензин уверен. А при 5% — например, если двигатель сжигает галлон газа каждые 45 миль — галлона воды хватит на 900 миль.

Как это работает?

Итак, вы можете спросить, как вода улучшает расход бензина? В конце концов, старый добрый h30 не горит.Однако, поскольку вода не горит, жидкость (по сути) повышает октановое число топлива!

Эта более высокая «точка воспламенения» дает три конкретных преимущества (а также некоторые побочные эффекты). Во-первых, поскольку вода охлаждает газо-воздушную смесь, существует больший потенциал расширения (поскольку давление прямо пропорционально температуре). Во-вторых, сгорание превращает капли воды в пар, что также помогает создать бонус к давлению (подобно тому, как это же вещество приводит в движение паровой двигатель).

Наконец, и это наиболее важно, при преобразовании воды в пар в очень критический момент расходуется тепло (из расчета около 1100 калорий на грамм жидкости).Это поглощение тепла предотвращает скачок температуры сгорания до резкого пика (как в стандартном двигателе), а затем ее быстрое падение. Вместо этого температура в машине увеличивается медленнее, достигает более низкого пика и спадает гораздо более плавно. (Кроме того, более длительная общая продолжительность сгорания создает большее давление, чем при стандартном цикле двигателя.)

Таким образом, впрыск воды может сделать ваш двигатель более эффективным (и экономичным), но хороший механик может легко улучшить эти преимущества! Гудман, например, ездит на своей Fiesta с 12 баллами.Степень сжатия 7: 1. Он может это сделать, потому что пониженная температура сгорания предотвращает обычные проблемы, связанные с преждевременным воспламенением и выбросами закиси азота (которые образуются в условиях высокой температуры): на самом деле, маленький Ford Пэта недавно прошел через строгие (и — 3000 долларов) –Дорогой) тест на закись азота с половиной максимально допустимого уровня выбросов.

Высокая степень сжатия может иметь много преимуществ, но по большей части такие «плюсы» связаны с повышенной мощностью. Большинство людей полагают — или их заставили поверить — что чем больше мощность, тем больше расход бензина.Не так! Повышение степени сжатия не влияет ни на рабочий объем, ни на расход топлива, а только позволяет лучше использовать имеющееся топливо. В Goodman Fiesta большая мощность означает, что для движения с той же скоростью можно использовать меньше газа. Такое эффективное использование бензина приводит к увеличению пробега… а также к увеличению производительности. (Кстати, поршни, которые Пэт использовал для повышения компрессии в своем маленьком Форде, можно купить в его магазине автозапчастей.)

Если вы не хотите заниматься заменой поршня, вы все равно можете получить примерно 20% -ное повышение MPG, установив систему впрыска воды на свой серийный двигатель.Поскольку Пэт планирует продавать установочный комплект, включающий форсунку, односторонние клапаны, резервуар для воды, сопутствующее оборудование и подробную инструкцию, который будет доступен (к тому моменту, когда вы это прочтете) по цене менее 50 долларов, система впрыска воды должна окупиться. для себя (из расчета примерно пенни за милю) всего в 5 000 миль по дороге.

Кроме того, система настолько проста в установке, что ее можно подготовить к работе менее чем за два часа, а единственное рекомендуемое техническое обслуживание — это чистка форсунки (уксусом) каждые 20 000 миль.

Однако будущее системы закачки воды Пэта Гудмана все еще не определено. В ходе переговоров о распространении с крупной нью-йоркской фирмой Пэт получил известие о возможности рассмотрения иска Агентства по охране окружающей среды против лиц, производящих аксессуары для автомобильных двигателей.

В то время как MOTHER EARTH NEWS может полностью понять, почему следует контролировать устройства, которые издают шум, выделяют смог или глотают бензин, необходимо сделать поправку для мелких производителей, которые могут искренне помочь всем нам.Сегодня Пату не разрешают устанавливать форсунки (как и никакому профессиональному механику без теста на закись азота за 3000 долларов), несмотря на их кажущуюся пользу. Завтра ему, возможно, вообще не разрешат их делать.

Опубликовано 1 сентября 1979 г.

СТАТЬИ ПО ТЕМЕ

Мы решили построить автономную хижину в лесу на нашей усадьбе площадью 20 акров, которая могла бы принести нам дополнительный доход.

Для удаления вредных вирусов в вашем доме, аллергенов, спор плесени или летучих органических соединений система EnviroKlenz Air Purifier Plus поможет очистить воздух.

Когда вам исполнится 9 лет, игровой домик из переработанных бревен может стать замком, крепостью или чем угодно, что вы только можете себе представить.

Нагревательные ванны и цистерны с помощью нагнетания пара

Пример 2.11.1 — Определение паровой нагрузки для нагрева резервуара с водой путем нагнетания пара

Эти расчеты (шаги с 1 по 5) основаны на примерах 2.9.1 и 2.10.1 в том, что касается тепловых потерь, но с резервуаром, содержащим воду (cp = 4,19 кДж / кг ° C), а не слабым кислотным раствором. и вода нагревается за счет впрыска пара, а не с помощью парового змеевика.

Шаг 1 — найдите энергию, необходимую для нагрева 12 000 кг воды с 8 ° C до 60 ° C за 2 часа, используя уравнение 2.6.1:

К регулирующему клапану подается пар под давлением 2,6 бар изб. Чтобы рассчитать средний расход пара, необходимо определить общую энтальпию пара (hg) при этом давлении. Из таблицы 2.11.1 (выдержка из таблиц пара) видно, что полная энтальпия пара (hg) при 2,6 бар изб. Составляет 2733,89 кДж / кг.

Шаг 2 — найдите средний расход пара для нагрева воды с помощью уравнения 2.11.1:

Шаг 3 — найдите средний расход пара для нагрева материала резервуара (стали).

Из Примера 2.9.1, средняя скорость теплопередачи для материала резервуара = (резервуар) = 14 кВт

Средний расход пара для нагрева материала резервуара снова рассчитывается с использованием уравнения 2.11.1:

Шаг 4 — найти средний расход пара для компенсации тепловых потерь из бака во время прогрева. Из Примера 2.9.1:

Хотя разумно допустить, что энтальпия жидкости пара будет способствовать повышению температуры воды и материала резервуара, труднее принять, как энтальпия жидкости пара добавляется к теплоте, теряемой из резервуара из-за излучения. .Следовательно, уравнение для расчета водяного пара, используемого для тепловых потерь (уравнение 2.11.2), учитывает только энтальпию испарения пара при атмосферном давлении.

Шаг 5 — Определите паровую нагрузку для нагрева резервуара с водой путем впрыска пара. Общий средний расход пара можно рассчитать следующим образом:

При использовании систем впрыска пара важно помнить, что конечная масса жидкости равна массе холодной жидкости плюс масса добавленного пара.

В этом примере процесс начался с 12 000 кг воды. За необходимый период прогрева 2 часа закачан пар со скоростью 569 кг / час. Таким образом, масса жидкости увеличилась на 2 часа x 569 кг / час = 1 138 кг.

Конечная масса жидкости: 12 000 кг + 1138 кг = 13 138 кг

Дополнительные 1138 кг конденсата имеют объем около 1 138 литров (1,138 м³) и также увеличивают уровень воды на:

Очевидно, что в технологическом резервуаре должно быть достаточно места над начальным уровнем воды, чтобы обеспечить такое повышение.В целях безопасности в конструкции резервуара всегда должен быть предусмотрен перелив, в котором используется нагнетание пара.

В качестве альтернативы, если бы требовалось закончить процесс с массой 12 000 кг, масса воды в начале процесса была бы:

.

Leave Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *