Заземление глубинное: Что такое глубинное заземление

Содержание

Что такое глубинное заземление

Заземление – это практически основной элемент любой системы молниезащиты, который  повышает электробезопасность любого здания. Глубинное заземление позволяет собрать заземляющее устройство любой сложности, способное обеспечить безопасность, как частного загородного домика, так и склада быстровоспламеняющихся веществ. Подробнее о такой системе мы поговорим в данной статье.

Глубинное заземление. Общее понятие.

С того момента, как была изобретена эта система, работа монтажников стала значительно проще. Она может быть разновидностью модульно-штыревой системы и включает в себя набор специальных оцинкованных либо омедненных стержней. Длина их обычно составляет не более 1,5 м. Соединяются они между собой при помощи резьбовой муфты.

Таким образом, на смену системы заземления, которая представляла из себя несколько заземлителей разной формы, располагающихся друг от друга на определенном расстоянии, мы получаем систему из одного длинного стержня.

Процесс монтажа

В этом процессе нет ничего сложного. Происходит такая установка в несколько этапов, которые мы опишем далее:

  • Вначале копается яма, глубина которой равна длине двух штырей.
  • Далее при помощи перфоратора в землю забивается штырь. На него накручивается заземлитель, который снова забивается. Эта очередность действий повторяется до тех пор, пока не будет достигнута требуемая глубина. Как правило, она составляет 10 или 15 м.
  • При помощи соединителя теперь необходимо подключить проводник к глубинному заземлению, который будет идти непосредственно в электрощит здания. Место соединения следует тщательно изолировать лентой.

Основные преимущества системы

Глубинное заземление, хоть и стоит немного дороже своих аналогов, имеет ряд преимуществ перед ними, которые мы рассмотрим далее.

  • Во-первых, это высокая степень устойчивости к коррозии.
  • Срок службы может достигать 100 лет. И не может быть менее 40 лет. Зависит это от качества конкретного материала, а также от особенностей его эксплуатации.
  • Существует возможность достижения весьма низкого уровня сопротивления. К тому же достигнутое значение стабильно сохраняется.
  • Наконец, самое главное преимущество – это возможность использования в стесненных условиях. В современных городах этот параметр можно считать основополагающим.

Стандартный набор глубинного заземления

Пожалуй, стоит остановиться подробнее на том, что входит в такой готовый набор. Перечислим основные его элементы:

  • Наконечник, который призван облегчить прохождение в грунт;
  • Стержень с двусторонней резьбой;
  • Насадка на перфоратор, которая делает возможным использование ударных устройств;
  • Крестовой зажим для сварного соединения;
  • Втулка переходная, которая соединяет стержни;
  • Удароприемная головка;
  • Стальная полоса, которая соединяет заземлитель с заземляемым устройством;
  • Лента-герметик;
  • Цинковой спрей для дополнительной защиты сварного соединения.
 Цены на компоненты глубинного заземления

Подорать необходимый вид заземления могут только специалисты, т.к. необходимо расчитать множество параметров здания и окружающего пространства. Полный комплекс услуг по проектированию, монтажу и обслуживанию систем заземления любых сооружнеий можно заказать в компании «МЗК-Электро».

Глубинное заземление

Вертикальные комплекты глубинного заземления с резьбой состоят из металлических стержней, из различных материалов. Заводские стержни отличаются высокой прочность, это дает возможность забивть их на большую глубину с помощью перфоратора.

В натоящее время метод грубинного монтажа имеет широкое применение в частных домах — для заемления электроустановок, газовых котлов.


Начало работ для установки глубинного заземлителя.

Выкапывается приямок для места установки вертикального заземлителя на 0,5/0,7-0,5/0,7 м. В частном доме, как правило, эта работа выполняется выполняется вручную. При копании траншей обустройство откосов и угол их крутизны нужно обустраивать так, чтобы можно было удобно произвести подсоединение глубинного заземлителя к заземляющему проводнику.

Установка частей глубинной конструкции.

На резьбы нужно нанести антикоррозиойную смазку. На первый стержень закрутить наконечник острый стартовый. На 2 сторону стержня накрутить муфту соединительную. В муфту вкрутить до упора головку для передачи ударной нагрузки на глубинный заземлитель от перфоратора.

Установить собранную первую часть конструкции наконечником вниз в точку на дне приямка и воткнуть в грунт. В перфоратор посадочным гнездом sds(max) вставить насадку. Установить отбойный молоток вертикально, вставив острие насадки в углубление в направляющей головке. Забить первый стержень глубинного заземления, оставив над уровнем дна прямка 0,15-0,2 метра части электрода.

Выкрутить направляющую насадку из соединительной муфты первошо стержня.

Вкрутить в муфту второй стержень со смазанной резьбой, на противоположный конец нарутить вторую муфту, а в неё насадку приёмную до упора. С помощью пефоратора с насадкой забить следующий стержень для глубинного заземления в грунт. Затем повторять монтаж до достижения всей нужной длины констукции

Подключение проводников к глубинному заземлителю.

Соединение деталей осуществляется универсальным зажимом. Болтовые соединение затягиваются гаечными ключами и изолируются гидроизоляционной лентой.

Зажим(под 4 болта) для присоединения к губинному заземлителю;

  • подходит для подсоединения круглого проводника d=8-10 мм, или плоского проводника до 40×4;
  • промежуточная пластина;
  • монтируется 4 шестигранными болтами шестигранными гайками.

Приямок засыпается грунтом без камней и мусора.


Стержни различаются по соединениюотдельных типов, по внешнему диаметру и материалу. Заземлители состоят из комбинируемых отдельных стержней длиной 1,5 м. Соединение состоит из муфты или с отверстием и цапфы. Это имеет свое преимущество, выражаемое в том, что при прокладке муфта сама замыкается, и устанавливается оптимальное механическое и электрическое соединение. При установке глубинного заземлителя необходимо уплотнить грунт вокруг заземлителя. В результате будет обеспечен оптимальный электрический контакт. Для установки проводника используются ударные инструменты. Возможная глубина погружения зависит от различных геологических условий. Поскольку глубинные электроды проникают в слои почвы, в которых присутствует постоянная по влажности и температуре среда, достигаются стабильные значения сопротивления.

Глубинный анодный заземлитель: особенности, применение

Ещё в первой половине XX века выяснилось, что практически невозможно победить коррозию трубопроводов, металлических свайных фундаментов и других, заглублённых в землю металлоконструкций одним лишь нанесением защитного покрытия. Из-за неоднородности структуры, влажности, кислотности грунта на поверхности трубопровода появляются области с противоположным электродным потенциалом, что приводит к возникновению гальванических коррозионных элементов.

Электрокоррозионное разрушение металла усиливается под действием блуждающих токов, неизбежно возникающих в грунте, по поверхности которого перемещается электротранспорт.

История создания глубинных анодных заземлителей

Для предотвращения коррозии металла применяются УКЗ – установки катодной защиты. Защищаемый объект отрицательно поляризуется, ему отводится роль катода, в качестве анода используется специальный заземлитель. В результате электролиза на поверхности объекта происходят восстановительные процессы, коррозия значительно замедляется, а анод постепенно разрушается (поэтому его называют жертвенным электродом).

Но в условиях плотной городской застройки сложно разместить анодный заземлитель горизонтально. К тому же, при таком его расположении возникает опасность негативного влияния на другие объекты. Поэтому американский учёный Роберт Кун предложил устанавливать заземлители на большой глубине и вертикально. Впервые идея была реализована в 1952 году в Новом Орлеане, где анод опустили в скважину глубиной 90 м.

Позднее выяснилось, что глубинный анодный заземлитель – оптимальный вариант не только для городов, но и в тех случаях, когда верхние пласты грунта характеризуются высоким удельным сопротивлением, а по мере удаления от поверхности оно уменьшается. Эта технология не подходит лишь для скальных пород и заболоченных участков.

Конструкция изделий

Глубинными называются те заземлители, которые устанавливаются вертикально в скважину глубиной более 15 м. Такое оборудование должно поддерживать уровень сопротивления растеканию анодного тока не выше 4 Ом.

Первые из заземляющих анодов представляли собой цельные чугунные трубы или старые рельсы. Однако обычный металл разрушается очень быстро, а для того, чтобы стоимость бурения и оборудования скважины окупалась, анод должен прослужить как можно дольше. Поэтому учёные постоянно экспериментируют с материалами и конструкцией заземлителей.

Современный глубинный анодный заземлитель – это гирлянда из электродов, объединённых при помощи кабелей. Длину кабелей рассчитывают при проектировании оборудования.

Для производства электродов используют:

  1. Металлосодержащие материалы: титаново-вольфрамовые сплавы, ферросилид, магнетит.
  2. Неметаллические материалы: графитированные, графитопласты.

Электроды из конструкционного графита выгодно отличаются от металлосодержащих высокой устойчивостью к действию агрессивных сред. Графит экологически безвреден, удобен в хранении и перевозке. При эксплуатации трубчатые графитовые электроды (ЭГТ) растворяются равномерно и очень медленно.

Чтобы анодное оборудование прослужило дольше, каждый электрод заключают в корпус из оцинкованной стали. Пространство между сердечником и цилиндром засыпают коксовой или графитной крошкой. Наполнитель защищает электрод от разрушения и продлевает срок его службы.

Особенности проектирования и монтажа

При проектировании и монтаже глубинного анодного заземлителя следует придерживаться нескольких правил:

  • все электроды в гирлянде должны располагаться ниже уровня промерзания грунта. Особенно важно соблюдать это условие для многолетнемёрзлых грунтов;
  • если сила тока катодной станции больше 25 А, необходимо оснастить гирлянду перфорированной трубкой для отвода газов, выделяющихся при эксплуатации оборудования. Газовая оболочка, образующаяся вокруг анода, повышает сопротивление среды и уменьшает радиус действия УЗК;
  • электроды прослужат дольше, если скважину заполнить не грунтом, а коксовой крошкой.

Установка катодной защиты с глубинным анодным оборудованием позволяет значительно продлить срок эксплуатации трубопроводов, промплощадок и других важных объектов.

Глубинное заземление жилого дома цена, схема подключения, спецификация, описание

Глубинное заземление жилого дома позволяет с минимальными трудозатратами произвести монтаж заземления в сложных грунтах, в том числе на большую глубину (до достижения требуемого сопротивления растекания тока). Оно имеет высококачественное антикоррозийное покрытие элементов системы заземления.

За счет модульности вертикальных заземлителей присутствует возможность монтажа системы на ограниченных площадях в подвалах домов и вблизи стен зданий. Данный проект предусматривает минимальный комплекс земляных работ. Срок эксплуатации модульного заземляющего контура составляет не менее 30 лет.

Глубинное заземление жилого дома гарантирует защиту человека или животного от поражения электрическим током при контакте с неисправными электроприборами, а также обеспечивает безопасную работу бытовой техники. В случае неисправности электрических устройств, система выполняет безопасный отвод электрического тока в землю, посредством токоотводов.

Проект позволяет достичь необходимой величины сопротивления контура в независимости от типа грунта и других внешних факторов. Предусмотрена возможность доступа к системе для проведения регламентных работ.

Проект глубинного заземления жилого дома предусматривает:

  • заземление в здании;
  • антикоррозийную защиту;
  • сопротивление контура до 4 Ом;
  • глубину установки 15 метров;
  • одну точку рассеивания.

Преимущества: Высокая сопротивляемость почвенной и электролитической коррозии, большой срок службы.

Недостатки: Сложность монтирования в каменистую почву.

Технические особенности: Стальная оцинкованная система.

Монтажные работы проводятся на предварительно подготовленном месте, в метровом растоянии от отмостки дома. С целью повышения надежности системы, стержни забиваются ударным перфоратором при помощи специальной насадки, ниже уровня промерзания грунта. При забивании каждого из последующих стержней делаются контрольные замеры сопротивления растекания.

Выполняются работы по присоединению стальной ленты к заземлителям и дальнейшей ее прокладки к шине уравнивания потенциалов.

Установка глубинного заземления жилого дома включает в себя:

  • подготовку рабочего места;
  • забивание стержней;
  • установку ревизионного колодца;
  • прокладку токоотвода;
  • подключение к внутреннему заземлению;
  • измерение сопротивления контура.

По окончанию работ, предоставляется следующая техническая документация:

  • акт скрытых работ;
  • протокол электрических измерений.
Сфера применения:

Реализованная система глубинного заземления построена по модульно-штыревому принципу на базе оборудования и материалов немецкой фирмы J.Propster. В нее включены стержни заземления J.Propster 110020. Они имеют длину 1500 мм и изготовлены из оцинкованной стали. В комплексе данные заземлители обеспечивают защитное заземление сопротивлением до 4 Ом. Решение построено при помощи сборных, не требующих сварочных работ, элементов, которые изготовлены на промышленных площадях в Германии.

В состав системы глубинного заземления жилого дома включено:

Монтаж глубинного заземлителя своими руками

В этой статье вы найдете инструкцию. Как делать монтаж глубинного заземлителя для заземления частного дома.

Вступление

Глубинный заземлитель это неплохой вариант для заземления частного дома. Применяется глубинный заземлитель на суглинках, легкой глине, торфе. Можно использовать на твердой глине. Нельзя использовать на каменистых и песчаных почвах. Для этих почв делается электролитическое заземление.

Для организации защитного заземления частного дома, можно использовать глубинный заземлитель заводского производства. Его длина может достигать 30 метров и его одного достаточно для защитного заземления частного дома. в отличие от заземлителя треугольником не требует большой площадки.

Эксплуатация спецтехники в строительстве и других отраслях промышленности требует от их владельцев постоянного обслуживания. Важнейшими деталями любой спецтехники являются разнообразные фильтры. Задача фильтров защита узлов и двигателя машин от загрязнений и ненужных примесей. Если вам нужно купить топливные, масляные, воздушные и фильтра для гидравлики спецтехники обратите внимание на компанию “ИмпортТехПродукция” с доставкой в ваш город в России и Казахстане.

Монтаж глубинного заземлителя – этапы робот

Разобьем монтаж глубинного заземлителя на следующие этапы:

  • Подготовка места для монтажа;
  • Сборка заземлителя;
  • Вбивание заземлителя;
  • Подключение заземлителя к ГЗШ (главной заземляющей шине).

Но для начала подготовим инструмент и материал для работ

Из инструмента понадобится:

  • Кувалда;
  • Два ключа для затягивания контактной пластины.

Из материала приготовьте медный провод заземления сечение 16 мм2. Если планируете прокладывать провод в траншее от заземлителя до ввода в дом, то нужен провод 25 мм2.

Подготовка места для монтажа заземлителя

Будем монтировать заземлитель вне дома. Для заземлителя готовим  яму, как на рисунке, со скошенными краями глубиной 70 см. От ямы роем траншею до места ввода заземляющего проводника в дом. Глубина траншеи 70 см.

Сразу делаем ввод для провода заземления в дом. В фундаменте или его цоколе сверлим сквозное отверстие для заземляющего проводника. В отверстие вставляем стальную гильзу. Закрепляется гильза на цементном растворе или запенивается монтажной пеной.

Траншея и ввод готовы, переходим к сборке глубинного заземлителя.

Сборка глубинного заземлителя

  • Откройте упаковку заземлителя;
  • На штырях вы видите уплотняющие втулки из стали, их нужно снять;
  • Берем нагель (специальная насадка для ударов кувалдой) и вставляем его в отверстие на штыре;

  • Первый штырь вбиваем в грунт. При этом кувалдой бьем по нагелю;
  • Вбив первый штырь, снимаем нагель. Вместо нагеля на штырь надеваем втулку, юбкой вниз;
  • Во втулку вставляем второй штырь, острием во втулку. Сверху надеваем нагель. Вбиваем второй штырь. При ударах соединение штырей через втулку впрессовывается;

Некоторые глубинные заземлители соединяются на резьбе, что не очень хорошо для плотных грунтов, типа плотная глина. От сильных ударов резьба может сорваться.

  • Продолжаем вбивать штыри через втулки до получения нужной глубины заземлителя. Глубину берем из расчета заземлителя или измеряем сопротивление заземлителя на каждом вбитом электроде.

На последний штырь, вместо втулки надеваем зажим для подключения заземляющего провода.

Подключение провода заземления

  • Провод заземления зачищаем от изоляции. Вставляем в зажим и максимально протягиваем все болтовые соединения зажима.
  • В штыре остается отверстие. Его нужно закрыть силиконовым герметиком, чтобы влага не попадала внутрь заземлителя.

  • Заземляющий провод укладываем в траншею, которую засыпаем после введения провода в дом.
  • В дом заземляющий проводник подсоединяем к ГЗШ в щите дома.

На этом монтаж глубинного заземлителя закончен.

©Ehto.ru

Полезно почитать

  • Записи не найдены

Поделиться ссылкой:

Похожее

Комплект заземления в частном доме

Комплекты заземление в частном доме


Защита человека от поражения током.
Надежная работа домашней электроники

Комплект заземления КЗЦ-5 для заземления коттеджа или дачи своими руками

Комплекты заземления КЗЦ-5 – надежное, доступное и очень простое в монтаже решение  для построения качественного защитного заземления частного дома, коттеджа или дачи.

Комплект заземления КЗЦ-5   представляет собой набор стальных штырей с  покрытием цинком, муфты оцинкованные, предназначенные для размещения в грунте.

Комплект поставки КЗЦ-5

Комплекты заземления КЗЦ-5   содержит все необходимые, легко соединяемые друг с другом детали для сооружения системы заземления:

  • оцинкованный стальной штырь длиной 1,5 м – 5 шт.;
  • муфта соединительная – 5 шт.; 
  • направляющая головка – 1 шт.;
  • паста антикорозийная – 1 шт.;
  • наконечник заземления– 1 шт.;  
  • зажим для подключения проводника – 1 шт.

Подробная информация о комплекте КЗЦ-5    и его монтаже: www.energomag.net

Преимущества комплекты заземления КЗЦ-5

  • Срок службы заземления до 20 лет
    Благодаря покрытию цинком штырей срок службы системы заземления достигает 20 лет, а качество заземления не зависит от погоды и времени года.
  • Доступная цена заземления дома
    Розничная стоимость комплекта заземления составляет всего 1990 грн. Партнерам предоставляются специальные условия.
  • Монтаж заземления своими руками
    Монтаж системы заземления выполняется одним человеком: полутораметровые штыри последовательно заглубляют в землю с помощью вибромолота и ударная насадка под SDS-max патрон. Соединяясь между собой, они образуют одиночный электрод глубиной 7,5 м.Все детали монтируются без сварки.
  •   Монтаж заземления в любом месте
    Систему заземления КЗЦ-5 можно монтировать даже в подвалах зданий и в непосредственной близости от стен домов. Компактность сводит к минимуму необходимые земляные работы. 

Комплект модульного заземления КЗЦ-10    – универсальный заземлитель для монтажа в виде одного сборного электрода глубиной 15 м или трех глубиной 4,5; 4,5 и 6 м. Используется в качестве заземлителя с низким сопротивлением растеканию и заземлителя для молниезащиты объекта.

Комплекты заземления глубинного КЗЦ-20    – универсальный заземлитель для монтажа в виде одного сборного электрода глубиной 30 м или трех глубиной 10,5; 10,5 и 9 м. Используется в качестве заземлителя с очень низким сопротивлением растеканию и заземлителя для молниезащиты объекта.

Мы предлагаем монтаж контура заземления дома с выдачей протокола проверки контура заземления, также Вы можете купить комплект заземления для заземления дома или дачи. Мы работаем в Киеве, Одессе, Днепре,Харькове, Виннице, Житомире, доставка комплекта заземления в любой город Украины. Звоните по телефонам указанным в разделе Контакты нашего сайта.  

Вернутся назад

Анодное заземление, бурение скважин под анодное заземление

Электрохимическая (катодная) защита, основу которой составляет анодное заземление, считается наиболее действенным способом, защищающим металлические сооружения от разрушающего действия подземной коррозии. Также достаточно эффективны изолирующие покрытия. Анализируя причины, которые привели к повреждению установок катодной защиты, можно сделать вывод, что практически половина отказов происходит из-за выхода из строя именно анодных заземлителей.

Так как данные заземлители представляют собой один из самых сложных, ответственных и дорогостоящих элементов электрохимической защиты, становится понятно, как важно обеспечить им долгий срок эксплуатации. Современные анодные заземлители изготавливаются из материала, отличающегося низкой скоростью растворения и стабильностью работы в течение продолжительного времени – ферросилида. К тому же ферросилид имеет низкое удельное сопротивление, которое обеспечивает довольно равномерное растворение заземлителя, а его прочностные характеристики достаточны для того, чтобы сохранить элементы анодного заземлителя при изготовлении, последующей транспортировке и монтаже конструкции.

Бурение скважины под глубинное анодное заземление

Для монтажа глубинного и свайного заземления необходимо произвести бурение скважины под анодное заземление, протяженное заземление выполняется в траншеи.

Установка глубинного заземления начинается с важнейшего этапа работ – бурения скважины. После окончания бурения нельзя допускать перерывов в процессе установки и монтажа оборудования. От того, насколько короткий срок прошел между бурением скважины и установкой анодного заземлителя, зависит качество и продолжительность работы последнего.

Глубинный анодный заземлитель устанавливается в скважину, предварительно проработанную глинистым раствором. Монтаж ведется блоками с использованием монтажного стола. После проверки качества изоляции (используется искровый дефектоскоп), скважина заполняется коксом или глинистым раствором, а верхняя часть – в соответствии с техническим проектом песком или гравием.

Бурение скважины под свайное анодное заземление

После подготовки свай, которые, как правило, изготавливаются из некондиционных отходов труб, выполняется бурение скважины под анодное заземление. После того, как бурение под сваи закончено, необходимо погрузить сваи в скважину и подвергаются специальной солевой обработке. Затем выполняется электрическое соединение свай, после чего они подключаются к заземлителю кабеля.  

Сваи погружаются в скважину методом вибровдавливания, для чего используется паровоздушный молот, либо аналогичное другое оборудование. Токоведущий кабель подсоединяется болтовым соединением или при помощи сварки к соединительной полосе из стали возле оголовка центральной сваи. Оголовки свай обваловуются грунтом на 30-сантиметровую высоту.

Для упрощения монтажа и увеличения срока службы анодного заземлителя применяется устьевой кондуктор. При эксплуатации происходит проседание анодных заземлителей, особенно если вблизи  находятся родники или подземные реки. Вымывание грунта из-под нижних электродов приводит к тому, что анодный заземлитель постепенно погружается вниз. Как результат – появление обрывов соединительных кабелей. Большая нагрузка (до 400 кг), которая действует на нижний соединительный узел, может стать причиной перегибов соединительных шин и разгерметизации мест соединения электродов.  Как следствие, анодный заземлитель полностью выходит из строя.

Для того чтобы избежать нежелательных последствий, после бурения скважины размещают в ней электроды и заполняют скважину от устья до забоя неметаллическим материалом, непроводящим ток. На скважине монтируется помост, диэлектрическая подкладка и электротехнический «ковер», роль которого играет монтажный устьевой кондуктор. Такой электротехнический ковер обеспечивает доступ к узлу крепления заземлителя. При повреждении анодного заземлителя он применяется для его монтажа, а также для заливки раствора или воды в скважину.  

Несмотря на то, что стоимость бурения скважин под анодные заземлители на порядок меньше стоимости бурения скважин на воду, процесс установки анодных заземлителей с бурением скважин ведет к увеличению стоимости монтажа. При том, что монтаж анодного заземление поверхностного залегания дешевле, глубинное анодное заземление гораздо эффективнее. Поэтому, невзирая на более высокие капиталовложения при установке глубинных анодных заземлений, их использование наиболее эффективно.

ГЛУБОКОЕ ЗАЗЕМЛЕНИЕ

Этот технический документ был представлен на конференции Power Quality ’93. и опубликованы в официальном сборнике трудов.

ГЛУБОКОЕ ЗАЗЕМЛЕНИЕ в сравнении с ЗАЗЕМЛЕНИЕМ МАЛОГО ЗАЗЕМЛЕНИЯ

по
Мартин Д. Конрой и Пол Г. Ричард

Computer Power Corporation
Омаха, Небраска

РЕФЕРАТ

Заземление с низким сопротивлением необходимо для безопасности и защита чувствительного электронного оборудования.Это основа мощности любого объекта. программа обеспечения качества.

В данной статье представлены преимущества глубоко забитых электродов по сравнению с мелкими (10 фут или меньше) электроды. В этой статье будет продемонстрировано, что электроды с глубокой забивкой обеспечивают низкое сопротивление заземления, экономичны в установке, сохраняют низкое сопротивление с течением времени, являются не требуют обслуживания и не имеют проблем с окружающей средой. В этой статье используются полевые данные снято с более чем 140 глубоко забитых электродов, установленных за 5-летний период в нескольких состояния.Обсуждение включает разработку оборудования, материалов и процесса. Используется для установки и испытания электродов с глубокой забивкой. В процесс входит новая техника введения бентонита в полость муфты для поддержания полного контакта стержня со всем длина. Представлены и обсуждены несколько отчетов об объектах. Эта бумага будет полезен для всех, кто отвечает за определение, установку или тестирование низких системы сопротивления заземления.

ЗАДАЧИ

Цели этого документа:

  1. определить глубину электрода, необходимую для достижения низких значений сопротивления
  2. определяет, соответствуют ли стандартные заземляющие стержни от 8 до 10 футов минимальным требованиям кода
  3. оценить стабильность мелких электродов
  4. представляет новый процесс установки заземляющих стержней с глубоким забиванием

ВПЕРЕД

Запутанные стандарты, разные философии и противоречивые мнения преследовали область заземления много лет.Большинство этих проблем связано с как и зачем заземлять электрические, компьютерные и коммуникационные системы. Мало информации и обсуждений было сосредоточено на сопротивлении заземления система заземляющих электродов. Большинство планов и спецификаций мало ориентированы на установка и испытание системы заземляющих электродов, и многие просто заявляют «земля по NEC». В одной известной публикации по заземлению [1] говорилось, что инженеры, которые пишут такие спецификации, «не берут на себя полную ответственность для безопасности »и оставляем установку« эффективного »заземления на шанс! Согласно исследованиям, проведенным авторами по качеству электроэнергии, 90-95% всех объектов у проверяемых отсутствует эффективная система заземления.Кроме того, ни один из объектов Проверяемые когда-либо проверяли сопротивление заземления своей электродной системы.

Эффективное заземление необходимо для заземления переменного и постоянного тока. электрооборудование и системы распределения. Эффективное заземление обеспечивает уровень безопасность, необходимая для защиты персонала и оборудования от поражения электрическим током и возгорания. В понимание и оценка системы заземления объекта должны быть частью любого энергетического программа обеспечения качества.

Для понимания процедуры заземления и испытаний необходимо рассмотрите, почему важно заземление. В приведенном ниже списке приведены некоторые из основных требований к эффективная система заземления.

Система заземления должна соответствовать статье NEC (Национальный электротехнический кодекс). 250 требований. В стандарте NEC [2] термин «заземленный» определяется как « Connected». к земле или к какому-либо соединительному телу, которое служит вместо земли » и «обосновано» как « намеренно подключен к земле через заземление или соединения достаточно низкого сопротивление и достаточная пропускная способность по току, чтобы предотвратить накопление напряжения, которые могут привести к чрезмерной опасности для подключенного оборудования или людей. »

Заземление электрической системы на землю осуществляется соответствующим соединением. компоненты распределительной системы к «системе заземляющих электродов». Этот Система указана в NEC 250-81 и 83 и включает комбинацию доступных элементов указаны в таблице 1.

Металлическая водопроводная труба, 10 футов в земле
Металлический каркас здания
Электрод в бетонном корпусе
Кольцо заземления
Электроды стержневые и трубчатые
Пластинчатые электроды

Таблица 1. Компоненты системы заземляющих электродов

NEC не указывает максимальное сопротивление заземления для система заземляющих электродов, требуемая статьей 250-81. Единственное место, где указано сопротивление заземления согласно статьям 250-84, для «изготовленных» (стержень, труба и пластина) электроды. Здесь NEC указывает сопротивление земли не более 25 Ом для одного электрод. Если электрод не соответствует 25 Ом, его необходимо дополнить одним дополнительный электрод.Однако комбинация двух электродов не обязательно должна соответствовать требование 25 Ом! Можно только предполагать, что авторы NEC предполагают комбинация элементов, перечисленных в таблице 1, будет соответствовать стандарту 25 Ом или меньше. За Проблемы с качеством электроэнергии, это предположение оставляет сопротивление заземления на волю случая.

Согласно IEEE Green Book [3] заземляющий электрод сопротивление крупных электрических подстанций должно быть не более 1 Ом.Для коммерческих и для промышленных подстанций рекомендуемое сопротивление заземления составляет 2-5 Ом и менее. Этот низкий сопротивление требуется из-за высокого потенциала заземления электрической системы.

Многим поставщикам оборудования и коммуникационным компаниям требуются наземные системы сопротивление менее 3 Ом.

С современными методами строительства и материалами становится все труднее получить систему заземления с низким сопротивлением.Многие муниципалитеты изолируют металлическую воду сети для защиты от коррозии или переходят на неметаллические водопроводные трубы. Строительство сталь может использоваться только тогда, когда она «эффективно заземлена» [4]. На большинстве объектов это не является. Электроды в бетонных оболочках (грунты Уфер) не распространены во многих регионах. Звенеть заземления и пластинчатые электроды используются редко из-за дороговизны их установки. А непроверенный заземляющий стержень длиной 8–10 футов — это типичный «сделанный» электрод для большинства удобства.

На многих объектах с минимальными или отсутствующими системами заземления установка нового Система заземляющих электродов непомерно высока или непрактична.По этой причине был разработан процесс установки заземляющих стержней с глубоким забиванием в качестве низкоэффективного решение.

ВВЕДЕНИЕ

Начиная с 1986 г. было проведено исследование по определению наиболее эффективного метода установка заземления с низким сопротивлением. Были применены различные методы и материалы заземления. оценен. Большинство стандартных методов было отклонено из-за практичности или стоимости. причины.Рассмотрены новые способы применения химических стержней и материалов для улучшения почвы. многообещающие, но оставшиеся без ответа вопросы относительно воздействия на окружающую среду и обязательств. Когда на вопрос о «секретном» химическом составе продукта одного поставщика, Был дан ответ, что объект был одобрен EPA для размещения на свалке. Проблема на свалках не требуется заземление с низким сопротивлением! Один государственный инженер-эколог предостерегается от использования химических средств улучшения почвы возле муниципальных водопроводов.Он был обеспокоены загрязнением грунтовых вод химическими веществами.

На основании исследования было определено, что заземляющие стержни с глубоким забиванием лучшее решение для заземления с низким сопротивлением, если может быть поддерживается.

В 1988 году был разработан новый процесс установки заземляющих стержней с глубоким забиванием. Этот процесс преодолел проблемы, связанные с установкой стержней глубокого заземления.

В этой статье оцениваются полевые данные, полученные с 140 глубинных штанг. установлен в период с мая 1988 г. по июль 1993 г.Стержни заземления были установлены в 6 состояниях с большинство сделано в Небраске. Глубина грунтовых штанг варьировалась от 15 до 90 футов. Все сопротивление измерения проводились методом трехточечного падения потенциала с использованием прибора Биддла. Megger, Модель № 250220-1, Тестер заземления с нулевым балансом.

ОБСУЖДЕНИЕ

Полевые данные включают значения сопротивления заземления для каждых 5 футов глубины грунта. установка стержня.Глубина заземляющей штанги определялась путем достижения желаемого сопротивления или наезд на препятствие. Сопротивление стержня было нанесено на график зависимости глубины от сопротивления. график, как показано на рисунке 1.


Рис. 1. Пример графика сопротивления заземляющего стержня. Ом в зависимости от глубины

Данные сопротивления более 140 заземляющих стержней усреднены и представлены на рисунке. 2. Обратите внимание, что средний стержень заземления длиной 5 футов имеет сопротивление 66 Ом, а на высоте 10 футов — 29 Ом.8 Ом, по интерполяции стержень заземления длиной 8 футов в среднем будет составлять примерно 40 Ом. В среднем 8 и 10-футовый заземляющий стержень не соответствовал минимуму 25 Ом NEC. Глубина 30 ножки требуются для 5 Ом или меньше. Первые 20 футов глубины представляли наибольшую изменение сопротивления заземления.

Окончательная глубина и сопротивление каждого стержня показаны на Рисунке 3. Большинство Сопротивление стержней составляло 0,9–2,0 Ом на глубине 40–60 футов.

Сравнение сопротивления в разное время показано на рисунке 4. Это На графике показано среднее сопротивление стержней, установленных за каждый год периода обследования. Обратите внимание на то, как сопротивление значительно меняется на глубине 10 футов или меньше. Ранняя часть 1993 год был очень «влажным» периодом и характеризовался гораздо более низким сопротивлением.


Рисунок 2 График среднего сопротивления


Рисунок 3.Диаграмма с разбросом

На глубине 30 футов годовая разница уменьшается до менее 10 Ом сопротивление. Глубина ниже 30 футов увеличивает устойчивость и снижает сопротивление даже дальше.


Рисунок 4. График сравнения по годам

ПРИМЕР 1

В данном случае была установлена ​​система глубинного заземления. для нового центра телемаркетинга и бронирования.Объект, построенный в начале 1991 г., представляет собой трехэтажное здание площадью 60 000 квадратных футов, расположенное недалеко от вершины холма. Дизайн здание включало заливной бетонный фундамент со стальными опорными колоннами, прикрепленными болтами к бетонные опоры. В конструкции не предусмотрена система заземляющих электродов. документы. При строительстве здания металлическая водопроводная магистраль была испытана на наличие земли. сопротивление до того, как он был подключен к внутреннему трубопроводу. Водопровод протестирован более 10 Ом сопротивление.Был установлен 10-футовый заземляющий стержень, который испытал сопротивление 45 Ом. А Оценка риска молнии оценила объект в категорию от умеренной до тяжелой [5].

Новый электрод для решения проблем безопасности и защиты. система была предложена и установлена. Новая система заземляющих электродов состояла из кольцевое заземление и заземляющие стержни с глубоким забиванием. Всего было изготовлено 4 стержня глубиной 70-78 футов. установлены, по одной в каждом углу здания. Среднее сопротивление 4 стержней было 1.57 Ом и при соединении проверял ниже 1 Ом. Кольцо образовалось путем захоронения обнаженного тела №2. отожженный медный проводник по периметру здания. Каждый из 4-х глубоко забитых заземляющие стержни были соединены с кольцевым заземлением с помощью разъема болтового типа и закрыты. с корпусом из стекловолокна. Это обеспечило возможность периодического отключение и проверка каждого электрода.

Строительная сталь была приклеена к каждой угловой колонне и чередование столбцов с кольцевой землей с помощью экзотермического соединения.Кольцо земли было подключен к основной электросети и водопроводу. Дополнительные системы, подключенные к земля включала телефонную молниезащиту, телефонную систему, резервный генератор, фальшпол компьютерного зала и оборудование защиты электропитания.

Невозможно сравнить результаты до и после, так как это новый средство. Однако можно сделать некоторые общие наблюдения. Объект показал историю бесперебойной работы без каких-либо известных потерь или повреждений оборудования из-за источника питания или помехи, связанные с молнией.Интересно отметить, что в начале 1993 г. погода с большим количеством электрических / молний. Локальный компьютер и телекоммуникации поставщики имели рекордные пики запросов на обслуживание и отказов оборудования в той же местности, что и средство.

ПРИМЕР 2

Это дело касалось существующего объекта, расположенного в полузасушливом горный регион. Одноэтажное здание площадью 40 000 квадратных футов было первоначально спроектировано для коммерческое использование офиса.Приблизительно 30 000 квадратных футов было арендовано и реконструировано для телемаркетинговая компания. На объекте имелась история проблем с оборудованием и отказами, так как а также жалобы сотрудников на поражение электрическим током. Компания испытала 200% ежегодная частота отказов их 300 компьютерных терминалов. Другие проблемы включали данные ошибки связи и повреждение оборудования.

Обследование качества электроэнергии и электротехническая проверка выявили несколько источников питания и Проблемы с заземлением на объекте.Среди наиболее серьезных проблем были нарушения NEC, включая неправильное заземление и отсутствие системы заземляющих электродов. Интерьер в качестве основного заземляющего электрода использовался металлический водопровод. Однако было обнаружено, что Металлическая труба проходила всего в 5 футах под землей, где была преобразована в пластмассу. Здание сталь не была эффективно заземлена, и никакой другой заземляющий электрод не был установлен.

План обеспечения качества электроэнергии был разработан для решения безопасность и функциональность системы распределения электроэнергии.Этот план включал Электрооборудование и модернизация системы заземляющих электродов. Местная электрическая подрядчики заявили, что заземление в регионе было очень трудным из-за плохих сопротивление почвы и сложность забивания заземляющих стержней. Они предложили химическое заземляющий стержень в качестве решения. Стержни этого типа снижают сопротивление электродов за счет выщелачивания. химические вещества (электролитические соли) в окружающую почву. Клиент отказался от химического вещества. стержни для обслуживания и защиты окружающей среды.

Система электродов с глубоким зазором была выбрана как лучшее решение для этого объекта. Чтобы преодолеть сложность проезда по твердой почве, были пробурены пилотные ямы для стержни. Две испытательные скважины глубиной 60 футов и диаметром 4 дюйма были пробурены на высоте 70 футов. интервалы. Первые 30 футов состояли из песчано-гравийного слоя, последние 30 футов были покрыты слоем песка и гравия. сланец. Согласно стандартам ANSI / IEEE [6] сопротивление песчаных и гравийных грунтов составляет от 15800 до 135000 Ом / см.Сопротивление сланца колеблется от 4060 до 16 300 Ом / см. В нижний слой сланца обеспечивает снижение сопротивления примерно в 10 раз по сравнению с верхний слой.

Контрольные отверстия были заполнены гидратированным бентонитом натрия в который приводили в движение заземляющий стержень (-ы). Оба стержня состояли из 6 штанг 3/4 дюйма на 10 футов каждая. стержни плакированные медью с приводом на муфтах. Конечное сопротивление двух стержней составило 0,88 и 0,48 Ом соответственно.

В целом объект пережил драматический сокращение отказов оборудования и ошибок связи.С точки зрения клиента объект стал одним из их наиболее безотказных участков.

ПРИМЕР 3

Это исследование включает военный компьютерный комплекс, который был расположен на переоборудованном авиазаводе. Выделенная подстанция с первичной обмоткой 13 800 вольт и вторичная обмотка 480/277 вольт была обеспечена для объекта. Электрозащита объекта система включала в себя статические ИБП с параллельным резервированием и резервные дизель-генераторы.В согласно спецификациям система заземляющих электродов должна иметь сопротивление заземления не более 3 Ом. сопротивление. Система заземляющих электродов состояла из заземляющих стержней размером 6 3/4 дюйма на 10 футов. устанавливается через цокольный этаж здания. Установлены все 6 заземляющих стержней. в пределах 6 дюймов друг от друга и прикручены к медной шине заземления. Электрическая подстанция использовали ту же наземную систему. В конструкции объекта исключено использование строительной стали, водопроводные трубы или кольцевые заземления в качестве заземляющих электродов.

На сайте возникли проблемы с компьютерным оборудованием, в которых поставщик обвинил питание и заземление. Система заземляющих стержней была испытана персоналом объекта и измерена. 0,0 Ом. Исследование качества электроэнергии показало, что наземные испытания были проведены. неправильно и что существует угроза безопасности. Стандартные методы проверки сопротивления заземления потребовать, чтобы заземляющие стержни были отключены во время испытания, чтобы предотвратить ложные показания.

Две заземляющие стержни глубиной 70 футов были установлены с интервалами 90 футов для расширения существующей системы.Сопротивление заземления проверено на 1,1 и 0,8 Ом. соответственно. Новые стержни были подключены к существующей шине заземления, чтобы обеспечить заземление объекта. Затем 6 старых стержней были отключены и испытаны на 27-32 Ом. сопротивление.

После установки заземляющих стержней с глубокой забивкой поставщик компьютерных услуг сообщил о меньшем количестве проблем с оборудованием.

Этот случай иллюстрирует проблему, связанную с неправильным сопротивлением заземления. тестирование.Оригинальная конструкция установки заземляющих стержней рядом друг с другом нарушает Требование NEC о минимальном расстоянии 6 футов [7]. Как правило, заземляющие стержни должны быть разнесены с интервалом не менее их глубины. Плохая стойкость Оригинальная система заземления создавала угрозу безопасности как для персонала, так и для оборудования. Земля неисправность на первичной обмотке подстанции могла вызвать чрезмерное напряжение в система заземления объекта.

СПОСОБ УСТАНОВКИ

Сопротивление заземления электрода зависит от нескольких факторов, включая: сопротивление почвы, сопротивление контакта электрода с землей и сопротивление стержень (ы), муфты и соединения.

Устройство глубокого заболоченного грунта включает в себя следующие позиции:

Установка заземляющих стержней глубиной более 10 футов представляет несколько проблем. Секционный должны использоваться стержни (обычно длиной 10-12 футов) и соединяться вместе для достижения желаемого глубина. Муфта имеет больший диаметр, чем стержень, и поэтому образует отверстие большего размера. чем сам стержень. Это создает пустоту в муфте, ограничивающую контакт почвы с поверхностью штанги. дополнительных разделов.Только первая секция будет поддерживать полный контакт стержня с почвой.

Ручное забивание штанг кувалдами, трубопроводами и другими средствами не может обеспечить достаточную силу для проникновения в твердые почвы. Механические или механические драйверы необходимо для стержней с глубоким забиванием.

Материал стержня и конструкция муфты должны выдерживать силу необходимо проехать по твёрдым недрам.

Первые стержни, установленные в 1988 году, были сделаны путем подъема по лестнице и удерживания электрический молоток на стержне.Эта процедура была одновременно неудобной и опасной для установщик. Затем была сконструирована приводная машина, чтобы лучше облегчить эту часть процесс. Эта машина состоит из опорной рамы с выравнивающими домкратами и колесами. А вертикальная сборка удерживает электрический ударный молот и может вручную подниматься и опускаться оператором. Электромолот снабжен специальным забивным орудием, предотвращающим «грибовидный» стержень и фактически переформирует конец стержня.

Из-за экстремальных сил, необходимых для проникновения в твердые почвы, было обнаружено, что Муфты винтового типа выходили из строя механически.Обрывались нити, в результате чего плохой контакт стержня со стержнем. Новый тип конической шлицевой муфты оказался наиболее эффективным. используется надежная стяжка. Был проведен испытательный стержень, который затем потянул, чтобы проверить механическое долговечность стяжки. Эта конструкция соединительной муфты упростила процесс, поскольку возможность использования гладких стержней любой длины. Это позволило установить системы с глубоким приводом. внутри зданий с минимальной высотой потолков (как в примере 3).

Для обеспечения полного контакта стержня с почвой суспензионная смесь натриевого бентонита ( природная глина) закачивается в полость муфты при установке штанг.Это обеспечивает токопроводящий материал между поверхностью стержня и почвой на глубине стержень. Для типичного 60-футового заземляющего стержня требуется от 2 до 5 галлонов бентонита. Был проведен тест определить эффект сопротивления бентонита в полости соединителя. На рисунке 5 показан сравнительный график трех установок заземляющих стержней без бентонита. Обратите внимание, как «Сухие» стержни показали колеблющееся сопротивление по сравнению с графиком на Рисунке 1.

ВЫВОДЫ

Как показывают представленные данные, средний стержень заземления от 8 до 10 футов не соответствовать минимальным требованиям норм NEC по сопротивлению заземления.Сопротивление мелководья (10 фут или меньше), будет сильно отличаться в зависимости от сезонных условий. Из-за высокого сопротивление заземления, типичный мелкий электрод не может поддерживать электрическую систему при потенциале земли в условиях переходного напряжения и грозовых скачков.

Если требуются стабильные значения сопротивления менее 5 Ом, электрод необходимы глубины 30-60 футов.

Тематические исследования показали, что установка электродов с глубокой эффективен и практичен как для новых, так и для существующих объектов.

Новый метод установки заземляющих стержней с глубоким забиванием обеспечивает универсальное средство эффективного заземления.


Рисунок 5. График сопротивления «сухого» стержня

БЛАГОДАРНОСТИ

Авторы выражают особую благодарность г-ну Ричарду Тибкену. (Infraspec, Омаха, Небраска) за предоставление полевых данных, фотографий и техническую поддержку.

ССЫЛКИ

[1] Книга IAEI Soares по заземлению, 4-е издание, стр. 128

[2] ANSI / NFPA 70-1991, Национальный электротехнический кодекс, статья 250

[3] Зеленая книга ANSI / IEEE, Std 142-1982

[4] Статья 250-81 NEC, (b), (FPN)

[5] NFPA 78, Приложение 1

[6] ANSI / IEEE Std 142-1982, Зеленая книга, раздел 4.1 Таблица 5

[7] Статья 250-84 NEC

БИОГРАФИИ

Мартин Д. Конрой — генеральный директор Computer Power Corporation в г. Омаха, Небраска.

Он основал CPC в 1981 году для предоставления услуг по обеспечению качества электроэнергии и оборудования для удовлетворения растущие потребности клиентов. За последние 5 лет он активно участвовал в обеспечение обследований качества электроэнергии и консультационные услуги для крупных клиентов.Мартин имеет специализируется в области контроля качества электроэнергии, заземления, гармоник и норм. У него есть разработал и провел семинары по качеству электроэнергии как для коммерческих, так и для коммунальных служб.

До основания CPC Мартин работал в сфере заключения контрактов на электроэнергию в 8 лет.

Мартин является инспектором по электрике IAEI и имеет степень A в штате Небраска. Лицензия электрического подрядчика.

Пол Г.Ричард проработал в Computer Power Corporation 12 лет.

Он присоединился к фирме в 1986 году. Пол занимался как маркетингом, так и проведение обследований качества электроэнергии и консультационные услуги. Он вел семинары по качеству электроэнергии. и учебные классы. Пол также специализировался на разработке и тестировании статического контроля.

Пол получил степень бакалавра в Университете Небраски в Омахе в 1985 году.

НАЗАД БЕЛАЯ БУМАГА

Система глубокого заземления — Элпресс

Заземление является важной частью большинства электронных приложений, как в электрических сетях, так и в электронике, производстве поездов, производстве трансформаторов и автомобилестроении.Эквипотенциальное соединение различных электропроводящих объектов для защиты людей и имущества. Elpress адаптировал системы заземления для различных целей и нужд.

Глубокое заземление без заделки жил

Система глубокого заземления Elpress особенно полезна для заземления, когда есть необходимость в непрерывном измерении значений заземляющей пластины, в то же время, когда точка контакта погружается в землю.


Принцип

Электрод состоит из медной линии, которая опускается вниз системой, состоящей из соединяемых стальных труб длиной 0,8 метра и наконечника из закаленной стали спереди, который прокладывает путь для заземляющего провода и вводит его в земля.
Сопротивление нагнетания непрерывно измеряется на одном конце линии, и когда достигается подходящее значение, вставка останавливается и последний удлинитель вытягивается вверх. Вставка происходит с помощью колотушки с приспособленной шейкой молотка или кувалды с ударной гильзой.

Преимущества
• отсутствие соединения заземляющего электрода / заземляющего провода
• большой диапазон площади: 16-95 мм²
• может использоваться для различных типов проводов
• коррозионностойкий — очень долгий срок службы
• контроль провода и наконечника нет ударная порода
• возможность непрерывного измерения сопротивления разряду
• небольшое количество деталей делает установку несложной и надежной
• низкая стоимость и вес по сравнению с другими системами

Система Railbond

Elpress System Railbond предназначена для крепления к рельсам.Соединение обеспечивает безопасную и надежную связь между клеммой и шиной для подключения сигнала или заземления

Испытанная программа со ссылками из нескольких европейских стран и задокументированными испытаниями в соответствии с применимыми стандартами, помимо Railbond, состоит из клемм, обжимного инструмента, сверлильного станка и инструмента для удаления заусенцев.

Щелкните здесь, чтобы просмотреть брошюру по системе Railbond

(PDF) Снижение сопротивления заземления подстанции методом глубоких скважин

744 IEEE TRANSACTIONS ON POWER POWER, VOL.20, NO. 2, АПРЕЛЬ 2005 г.

ССЫЛКИ

[1] Руководство IEEE по безопасности при заземлении подстанций переменного тока, Стандарт IEEE

80-2000, 2000.

[2] QB Meng, JL He, FP Dawalibi, and J. Ma,

«Новые методы понижения

сопротивления заземления систем заземления подстанций в областях с высоким сопротивлением

», IEEE Trans. Электроснабжение, т. 14, вып. 2, pp. 911–916,

1999.

[3] Дж. Х. Ли, З. К. Лю и Х. Чжан, «Применение и управление водными ресурсами».Пекин, Китай: Tsinghua Univ. Press, 1998.

[4] Руководство IEEE по измерению удельного сопротивления земли, импеданса земли и потенциалов поверхности земли

системы заземления, ANSI / IEEE Std. 81-1983,

1983.

[5] Ф. П. Давалиби и Ф. Доносо, «Интегрированное программное обеспечение для анализа заземления

, ЭМП и ЭМП», IEEE Comput. Applicat. Мощность, об. 6, вып.

2, pp. 19–24, 1993.

Цзиньлян Хэ (M’02 – SM’02) родился в Чанша, Китай, в 1966 году. Он

получил B.Sc. степень от Уханьского университета гидравлики и электротехники

Инженерное дело, Ухань, Китай, степень магистра наук. степень от Университета Чунцина,

Чунцин, Китай, и докторская степень. Получил степень в Университете Цинхуа, Пекин,

Китай, все в области электротехники, в 1988, 1991 и 1994 годах соответственно.

Он стал лектором в 1994 году и адъюнкт-профессором в 1996 году в отделении электротехники De-

Университета Цинхуа. С 1994 по 1997 год он

был руководителем лаборатории высокого напряжения в университете Цинхуа.С апреля

1997 по апрель 1998 года он был приглашенным научным сотрудником в Корейском научно-исследовательском институте электротехнологии

в Чангвоне, Корея, участвовал в исследованиях варисторов на основе оксидов металлов

и высоковольтных полимерных металлооксидных ограничителей перенапряжения. В 2001 году он

был назначен профессором Университета Цинхуа. Сейчас он заместитель начальника

научно-исследовательского института высокого напряжения в университете Цинхуа. Его исследования включают в себя перенапряжения и электромагнитную совместимость в энергосистемах и электронных системах, технологию заземления

, силовые устройства, диэлектрические материалы и автоматизацию распределительных сетей.Он является автором четырех книг и множества технических статей.

Доктор Хэ является старшим членом Китайского электротехнологического общества и членом

Международного общества Compumag. Он является китайским представителем

IEC TC 81, заместителем начальника Китайского комитета по стандартизации технологий молниезащиты

, а также членом комитета по защите от электромагнитных помех

и комитета по линиям электропередачи Китайского энергетического общества,

, член Китая. Комитет по технологиям стандартизации ограничителей перенапряжения и

член Технического комитета по стандартизации по перенапряжению и координации изоляции —

Комитет по технологиям и Комитет по стандартизации ограничителей перенапряжения

в электроэнергетике.Он является главным редактором журнала Lightning

Protection and Standardization (на китайском языке).

Ган Ю родился в Шаньдуне, Китай, в 1961 году. Он получил степень бакалавра наук. степень

от Шаньдунского технологического университета в 1972 году, а также M.Eng. степень от

Китайский научно-исследовательский институт электроэнергетики в 1998 году. Он проводит исследования на неполный рабочий день

для получения степени доктора философии. степень в Университете Цинхуа.

В настоящее время он является заместителем президента China Power Engineering Consulting (Group).

Его область исследований включает проектирование энергосистемы, электромагнитную среду

энергосистемы и технологию заземления.

Цзинпин Юань родился в 1966 году в городе Хэюань, провинция Гуандун, Китай. Он получил

степени бакалавра наук. от кафедры электротехники Южно-Китайского университета

технологий, Гуанчжоу, июль 1988 г., и M.Eng. от Департамента

электротехники Университета Цинхуа, Пекин, в 2002 году.

В настоящее время он является старшим инженером в Heyuan Electric Power Company, Гуан-

донг, Китай.Его исследовательские интересы включают высоковольтную технику, технологию заземления

, силовую электронику и автоматизацию распределительных систем, а также управление энергетической системой

.

Жун Цзэн (M’02) родился в Шэньси, Китай, в 1971 году. Он получил степень бакалавра наук,

магистра и доктора философии. степени от факультета электротехники Цинхуа университета Цинхуа

, Пекин, соответственно, в 1995, 1997 и 1999 годах.

Он стал преподавателем кафедры электротехники Университета Цинхуа

в августе 1999 года и Доцент той же кафедры

Университета Цинхуа в декабре 2002 г.Его исследовательские интересы включают

высоковольтные технологии, заземление, силовую электронику и автоматизацию распределительных систем.

Бо Чжан родился в Датуне, Китай, в 1976 году. Он получил степень бакалавра наук. и

Ph.D. Степень в области теоретической электротехники в Электроэнергетическом университете Северного Китая, Баодин, в 1998 и 2003 годах, соответственно.

В настоящее время он является научным сотрудником отделения электротехнической инженерии в Университете Цинхуа.Его исследовательские интересы включают вычислительную

электромагнетизм, технологию заземления и электромагнитную совместимость в энергосистемах.

Цзюнь Цзоу родился в Ухане, Китай, в 1971 году. Он получил степень бакалавра наук. и М.С.

степени от Университета Чжэнчжоу, Чжэнчжоу, провинция Хэнань, в июле 1994 г.

и июль 1997 г., соответственно, и докторская степень. Получил степень в Университете Цинхуа в

Пекине, июль 2001 г., все по специальности «Электротехника».

В августе 2001 года он стал преподавателем кафедры электротехники Университета Цинхуа

в Пекине.Его области исследований включают вычислительную

электромагнетизм и электромагнитную совместимость.

Чжичэн Гуань родился в городе Цзилинь, Китай, в 1944 году. Он получил степень бакалавра наук,

магистра и доктора философии. степени от кафедры электротехники,

Университета Цинхуа, Пекин, Китай, соответственно, в 1970, 1981 и 1984 годах.

С 1984 по 1987 год он был лектором и директором лаборатории высокого напряжения в оратории. Кафедра электротехники Университета Цинхуа.С

с 1988 по 1989 год он был приглашенным научным сотрудником в Институте науки и технологий Манчестерского университета

(UMIST), Великобритания. С 1989 по 1991 год он был доцентом As-

и директором лаборатории высокого напряжения. В 1991 году ему было

присвоено звание профессора Университета Цинхуа. С 1992 по 1993 год он был

заведующим кафедрой электротехники Университета Цинхуа. С

1993 по 1994 год он был помощником президента Университета Цинхуа, с

с 1994 по 1999 год он был вице-президентом Университета Цинхуа, а с

1999 года он был вице-президентом Совета Университета Цинхуа. .Его основные области исследований

включают в себя изоляцию высокого напряжения и электрический разряд, электрические

изоляторов и устранение загрязненных изоляторов, электрические технологии, измерение высокого напряжения, а также применение плазменных технологий и технологий высокого напряжения

в биологии. и экологическая инженерия. Ему принадлежит

титулов в академических обществах. Он автор более 150 научных работ.

Как установить заземляющие стержни: 10 шагов (с изображениями)

Об этой статье

Соавторы:

Электрик и строитель, CN Coterie

Соавтором этой статьи является Ricardo Mitchell.Рикардо Митчелл — генеральный директор CN Coterie, полностью лицензированной и застрахованной строительной компании, сертифицированной Агентством по охране окружающей среды (EPA), расположенной на Манхэттене, штат Нью-Йорк. CN Coterie специализируется на полном ремонте домов, электромонтажных работах, сантехнике, столярных изделиях, столярных изделиях, реставрации мебели, устранении нарушений OATH / ECB (Управление административных разбирательств и слушаний / Комиссия по экологическому контролю) и устранении нарушений DOB (Департамент строительства). Рикардо имеет более 10 лет опыта работы в области электротехники и строительства, а его партнеры имеют более 30 лет соответствующего опыта.Эта статья была просмотрена 245 791 раз (а).

Соавторы: 6

Обновлено: 11 ноября 2021 г.

Просмотры: 245,791

Сводка статьи X

Перед установкой заземляющих стержней позвоните на местную горячую линию по раскопкам, чтобы они могли послать кого-нибудь для определения местоположения любых проводов или труб, находящихся на пути к месту, где вы хотите разместить заземляющий стержень. Убедившись, что поблизости нет труб или проводов, купите утвержденный комплект заземляющих стержней.Затем выкопайте яму глубиной 2-4 фута, куда вы хотите вставить стержень. Вбейте стержень в землю с помощью молотка, дрели или забивного инструмента, пока он не войдет полностью. После того, как вы вставите стержень, вам нужно будет подключить его к электрической системе здания. Если вы не знаете, как это сделать, подумайте о найме электрика, который безопасно поможет вам завершить процесс. Чтобы узнать, как выбрать подходящее место для заземляющего стержня, читайте дальше!

  • Печать
  • Отправить письмо поклонника авторам
Спасибо всем авторам за создание страницы, которую прочитали 245 791 раз.

Все о системах электрического заземления

Дата публикации: 26 сен 2020 г. Последнее обновление: 26 сен 2020 г. Абдур Рехман

В этом блоге мы рассмотрим необходимость системы электрического заземления, ее важность, типы заземленной системы, общие методы и факторы, влияющие на установку заземленной системы, советы по безопасности и т. Д. Проще говоря, этот блог посвящен системе электрического заземления.

Земля — ​​это обычная точка возврата электрического потока.Система заземления — это резервный путь, по которому электрический ток может протекать на землю по альтернативному пути из-за любого риска в электрической системе до того, как произойдет возгорание или поражение электрическим током.

W Что это за электрическое заземление?

Проще говоря, «заземление» означает, что был проложен путь с низким сопротивлением для прохождения электричества в землю. «Заземленное» соединение включает соединение между электрооборудованием и землей через провод. После правильного подключения это обеспечивает вашим устройствам и приборам безопасное место для разряда избыточного электрического тока.Это потенциально предотвратит ряд рисков для электрического оборудования. Провод заземления в розетке — это, по сути, предохранительный клапан.

Мы только что выпустили нашу серию видеоблогов Power Systems Engineering Vlog , и в этой серии мы поговорим о всевозможных различных исследованиях и комментариях по проектированию энергосистем. Мы рассмотрим различные блоги, написанные AllumiaX. Это весело, это весело, по сути, это видеоблог, и мы надеемся, что вы, , присоединитесь к нам, , и извлечете из этого пользу.

Национальный электротехнический кодекс определяет заземление как «проводящее соединение, намеренное или случайное, между электрической цепью или оборудованием и землей или каким-либо проводящим телом, которое служит вместо земли». NEC также заявляет, что «земля не должна использоваться в качестве единственного заземляющего проводника оборудования». (NEC) ограничивает напряжение от молнии, скачков напряжения в сети и контакта с линией более высокого напряжения с помощью заземляющих проводов оборудования.

Целью заземления электрической системы является повышение безопасности всей системы и обеспечение защиты от колебаний в электросети.Система должна быть идеально заземлена, если вы хотите иметь безопасную и надежную сеть и избегать рисков для жизни людей.

Зачем нужно заземлять электрическую систему?

В частности, в крупных жилых или коммерческих проектах, некоторые люди думают, что установка системы заземления и любых дополнительных конструкций из электрических материалов будет сложной и трудоемкой, если будет выполнено своевременное техническое обслуживание. Это чрезвычайно опасная практика, которая может привести к поражению электрическим током в случае короткого замыкания внутренней проводки в приборе.

По словам Джона Гриззи Грзивача, почетного профессора Национального учебного института OSHA, «большинство несчастных случаев и смертельных случаев в связи с контактом с линией являются результатом отсутствия соответствующих средств индивидуальной защиты, изолированного покрытия линии или надлежащего заземления. »

Распространенные риски незаземленной электрической системы — поражение электрическим током и возгорание, поскольку электрический ток всегда проходит через путь с низким сопротивлением. Рабочие на рабочем месте подвергаются более высокому риску, когда незаземленное устройство разряжает избыточное электричество.В результате электричество передается человеку, причинившему травму или ведущему к смерти. Вероятность неисправности в незаземленной системе очень высока. Чтобы обеспечить максимальную защиту человека и электрического оборудования, убедитесь, что ваша система заземлена.

Как правило, системы питания подключаются к земле через емкость между линиями и землей, и нет прямого физического соединения между какими-либо линиями питания и землей.

Типы заземленных систем:

Три важных типа систем заземления перечислены ниже.

  • Незаземленные системы
  • Системы с заземлением через сопротивление
  • Системы с глухим заземлением

Когда система электроснабжения работает и нет преднамеренного подключения к земле, это называется незаземленной системой. Хотя эти системы были нормальными в 40-х и 50-х годах, они все еще используются в наши дни.

В незаземленной системе током замыкания на землю можно пренебречь, поэтому его можно использовать для снижения риска поражения людей электрическим током.При возникновении неисправности два провода должны пропускать ток, который был назначен для трех проводов: повышение тока и напряжения вызовет нагрев и приведет к ненужному повреждению электрической системы.

Поскольку ток замыкания на землю незначителен, поиск неисправности становится очень трудным и трудоемким процессом. Альтернативные издержки отказа в незаземленной системе чрезвычайно высоки.

Системы с заземлением через сопротивление:

Заземление сопротивления — это когда в системе электроснабжения имеется соединение между нейтралью и землей через резистор.Здесь резистор используется для ограничения тока короткого замыкания через нейтраль.

Существует два типа резистивного заземления: заземление с высоким сопротивлением и заземление с низким сопротивлением.

Заземление с высоким сопротивлением:

Ограничьте ток замыкания на землю до <10 ампер.

Системы заземления с высоким сопротивлением (HRG) обычно используются на заводах и фабриках, где текущая работа процессов вмешивается в случае неисправности.

Заземление с низким сопротивлением:

Ограничивает ток замыкания на землю в пределах от 100 до 1000 ампер.

С другой стороны, системы заземления с низким сопротивлением (LRG) используются в системах среднего напряжения 15 кВ или менее и срабатывают защитные устройства при возникновении неисправности.

Системы с глухим заземлением:

Твердое заземление означает, что система электроснабжения напрямую подключена к земле, и в цепи нет преднамеренного добавления импеданса. Эти системы могут иметь большой ток замыкания на землю, поэтому повреждения легко обнаруживаются.

Обычно используется в промышленных и коммерческих энергосистемах.Есть резервные генераторы на случай, если в результате неисправности производственный процесс остановится.

Общие методы для систем электрического заземления:

Наиболее распространенные методы электрического заземления:

  • Пластины заземления
  • Трубки и стержни заземления

Пластины заземления:

Заземляющие пластины изготовлены из меди или оцинкованного железа (GI) и помещаются вертикально в землю в яме (заполненной слоями древесного угля и соли) глубиной более 10 футов.Для более высокой системы электрического заземления необходимо поддерживать влажность земли вокруг системы заземляющих пластин.

Согласно требованиям Национального электротехнического кодекса, заземляющие пластины должны иметь площадь поверхности не менее 2 футов, контактирующую с окружающей почвой. Черные металлы должны иметь толщину не менее 0,20 дюйма, а цветные материалы (медь) должны быть толщиной не менее 0,060 дюйма.

Сопротивление заземлению (RTG) Плохо
Коррозионная стойкость Плохо
Увеличение РИТЭГа в холодной воде Сильно пораженные
Увеличение количества РИТЭГов с течением времени РИТЭГ усиленный
Максимальное сопротивление электрода Среднее значение
Стоимость установки Ниже среднего
Ожидаемая продолжительность жизни Бедные 5-10 лет

Трубки и стержни заземления:

Труба из оцинкованной стали (смесь соли и древесного угля) укладывается вертикально в почву путем просверливания для подключения заземляющих проводов.Длина и диаметр трубы в основном зависит от типа почвы и электроустановки (силы тока). Влажность почвы будет определять длину трубы для укладки в землю.

Медный стержень с оцинкованной стальной трубой вертикально помещается в землю. Это очень похоже на заземление трубы. Здесь стержни имеют форму электродов, поэтому сопротивление земли снижается до определенного значения. Национальный электротехнический кодекс (NEC) требует, чтобы длина приводных штанг была не менее 8 футов, а длина 8 футов должна находиться в непосредственном контакте с почвой.

Сопротивление заземлению (RTG) Плохо
Коррозионная стойкость Плохо
Увеличение РИТЭГа в холодной воде Сильно пораженные
Увеличение количества РИТЭГов с течением времени РИТЭГ ухудшается
Максимальное сопротивление электрода Плохо
Стоимость установки Среднее значение
Ожидаемая продолжительность жизни Бедные 5-10 лет

Фактор, влияющий на установку системы заземления:

Ниже перечислены факторы, которые влияют на работу любого заземляющего электрода:

  • Материал, используемый в системе заземления
  • Заземляющий электрод (длина или глубина, диаметр, количество заземляющих электродов)
  • Почва (тип, влажность, температура, удельное сопротивление, количество соли)
  • Проектирование наземной системы
  • Расположение котлована

источник изображения: https: // www.ppindustries.com.au/

Важность заземления электрических токов:

Защита от перегрузки:

На электрическом рабочем месте, когда по какой-либо причине происходит чрезмерный скачок напряжения, в системе вырабатывается электричество высокого напряжения, вызывающее поражение электрическим током и пожар. В этом сценарии значительно помогает заземленная система, вся эта избыточная электроэнергия уходит в землю. Эта простая форма защиты от перенапряжения потенциально может спасти рабочих, электрические приборы, данные и устройства, а не повредить все, что подключено к электрической системе.

Стабилизация напряжения:

Заземленная система гарантирует, что цепи не будут перегружены и не будут работать, за счет распределения нужного количества мощности между источниками напряжения. Земля обеспечивает общую точку отсчета для стабилизации напряжения.

Защита от поражения электрическим током:

Обычные риски незаземленной электрической системы — серьезное поражение электрическим током или возгорание. В худшем случае незаземленная система вызывает возгорание, повреждение оборудования, потерю данных и травмы или смерть персонала.Система с заземлением обеспечивает бесчисленные преимущества, устраняет опасность поражения электрическим током, защищает оборудование от напряжения, предотвращает электрические пожары, снижает затраты на ремонт оборудования и время простоя, снижает уровень электрического шума (колебания электрического сигнала).

Советы по безопасности при электрическом заземлении:

В электрической системе поддержание заземления должно быть первоочередной задачей с точки зрения безопасности. Чтобы обеспечить безопасность сотрудников и рабочих мест, повсюду соблюдаются меры предосторожности.Некоторые советы по безопасности упомянуты ниже:

  • Перед тем, как начать, ознакомьтесь с правилами электробезопасности (см. OSHA 29 CFR 1910.269 (a) (3) и .269 (c))
  • Заземляющий конец должен устанавливаться первым и удаляться последним при удалении заземления (OSHA 29CFR 1910.269 (n) (6)).
  • Убедитесь, что рабочее место электрооборудования оборудовано датчиками напряжения, токоизмерительными клещами и тестерами розеток.
  • Используйте устройство защиты от перенапряжения для отключения электропитания на рабочем месте при возникновении неисправности, устройства защиты кабеля для пола для предотвращения срабатывания на рабочем месте и прерыватели цепи замыкания на землю для всех розеток для предотвращения поражения электрическим током.
  • Выберите правильное оборудование при заземлении электрической системы. Помните, что ваше оборудование настолько сильное, насколько самое слабое в системе.
  • Убедитесь, что рабочие знают, как правильно использовать каждый инструмент, особенно при работе с постоянным электрическим током.
  • Используйте автоматический выключатель или предохранитель с соответствующим номинальным током.
  • Регулярная чистка наземных гарнитур продлевает срок их службы и продлевает их безопасность.
  • Никогда не используйте оборудование с изношенными шнурами, поврежденной изоляцией или сломанными вилками.
  • Осматривайте, обслуживайте и организуйте ремонт проводов в местах, где они входят в металлическую трубу, в прибор или в местах, где кабели, проложенные в стене, входят в электрическую коробку.

ВЫВОД:

Система электрического заземления обеспечивает безопасность персонала и оборудования при работе на линии. Помните, что обесточенная линия просто активируется в мгновение ока, поэтому электрическая система должна быть надежно заземлена в любое время.

Проверенный опыт нашей команды сертифицированных профессиональных инженеров поможет в оценке вашей системы и предоставит современные решения по заземлению для защиты вашей энергосистемы.Мы тесно сотрудничаем с нашими клиентами в сборе данных, моделировании системы, моделировании наихудших условий и отклонений, построении ступенчатого и контактного потенциалов и предоставлении рекомендаций в соответствии с последними промышленными стандартами.

Если у вас остались вопросы о системах заземления или наших услугах, оставьте их в комментариях ниже, и мы поможем вам ответить.


  • Об авторе

    Абдур Рехман — профессиональный инженер-электрик с более чем восьмилетним опытом работы с оборудованием от 208 В до 115 кВ как в сфере коммунальных услуг, так и в промышленных и коммерческих помещениях.Особое внимание он уделяет исследованиям в области защиты энергосистем и инженерии.

Понимание нашего электрического мира: 8 элементов, образующих систему заземляющих электродов

NFPA 70®, Национальный электротехнический кодекс® (NEC®) имеет множество областей интересов, которые заставляют технический персонал NFPA быть в напряжении. Одна из областей, которая, кажется, всегда вызывает много вопросов в Службе технических вопросов NFPA, доступной для членов и AHJ, связана с заземлением электрической системы.Вопросы варьируются от выбора размеров различных заземляющих проводов и перемычек до того, что можно использовать для заземления системы. Прежде чем мы перейдем к выяснению того, какого размера должен быть провод для проводника заземляющего электрода, очень важно понять, как именно мы будем подключать нашу электрическую систему к земле и почему.

Во-первых, нам нужно понять несколько терминов, которые используются в NEC, когда речь идет о заземлении и соединении, чтобы мы могли полностью понять цель того, что требуется.Когда мы слышим термин «заземленная электрическая система», что это вообще значит? Ну, поскольку NEC определяет «землю» как землю, а «заземленный» — как соединение с землей или проводящий объект, который расширяет заземление, наличие заземленной системы означает, что у вас есть электрическая система, которая подключена к земле. . Другие термины, с которыми мы должны ознакомиться, — это заземляющий электрод и система заземляющих электродов. По сути, заземляющий электрод — это проводящий объект, который устанавливает прямое соединение с землей или землей.Важной частью является то, что заземляющий электрод имеет прямой контакт с землей. Внутри конструкции много токопроводящих объектов, однако не все из них напрямую связаны с землей. Здесь начинает формироваться система заземляющих электродов.

NEC содержит список элементов, которые разрешено использовать в качестве заземляющих электродов, и требует, чтобы они, если таковые имеются, использовались для формирования системы заземляющих электродов. Всего 8 предметов включены в список 250.52 в качестве допустимых заземляющих электродов, вот список:

  1. Металлическая труба для подземного водоснабжения
  2. Электрод в бетонном корпусе
  3. Металлическая опорная конструкция в земле
  4. Кольцо заземления
  5. Электроды стержневые и трубчатые
  6. Пластинчатые электроды
  7. Электроды из других списков
  8. Прочие местные подземные металлические системы или сооружения

Любой из этих электродов, имеющихся в здании или сооружении, должен быть соединен вместе, чтобы образовать систему заземляющих электродов.Для каждого пункта в списке есть некоторые квалификационные условия, которые мы рассмотрим в ближайшее время, но важно отметить, что первые три в списке являются компонентами самого здания, а остальные — это то, что иногда называют «изготовленными электродами». ” Другими словами, в здании либо будут первые три, либо их не будет, но 4-8 — это элементы, которые установщик закладывает в землю, чтобы установить систему заземляющих электродов. Давайте посмотрим на каждый из пунктов в списке:

  1. Металлическая труба для подземного водоснабжения
    Металлический электрод для подземной водопроводной трубы многие в этой области часто называют «водяной связкой».Чтобы металлическая подземная водопроводная труба считалась электродом, нам необходимо иметь прямой контакт с Землей на расстоянии не менее 10 футов. Он также должен быть электрически непрерывным или электрически непрерывным до точки крепления проводника заземляющего электрода или соединительной перемычки.
  2. Металлическая опорная конструкция в земле
    Металлический опорный электрод в земле часто называют «строительной сталью», но важно отметить, что не все стальные каркасы здания можно квалифицировать как электрод этого типа.Чтобы считаться заземляющим электродом, должен быть прямой контакт с землей или бетонным покрытием, которое имеет прямой контакт с землей. Стальные каркасы зданий часто прикручиваются к болтам, которые вделаны в бетонный фундамент и не имеют физического контакта с самой Землей. Чтобы металлический каркас здания считался электродом, он должен иметь контакт с землей не менее 10 футов по вертикали, с бетонным покрытием или без него. Если существует множество металлических свай, соответствующих этому критерию, к системе заземляющих электродов необходимо подключить только одну.Однако ничто не может помешать использованию нескольких металлических электродов в земле как части системы заземляющих электродов здания.
  3. Электрод в бетонном корпусе
    Электрод в бетонном корпусе — это электрод, в котором используются бетонные конструктивные элементы здания для установления связи с Землей. Этот метод, часто называемый землей Уфера, очень эффективен для подключения к Земле. Есть два разных метода установки этого электрода.Этот электрод может представлять собой как минимум неизолированный медный провод # 4 AWG, или это могут быть неинкапсулированные арматурные стержни с минимальным диаметром ½ дюйма. Любой метод должен быть не менее 20 футов в длину и заключен в бетон толщиной не менее 2 дюймов, который находится в прямом контакте с Землей. Когда этот электрод состоит из арматурной стали, разрешается соединять вместе несколько более коротких секций стержней обычными методами, но окончательная собранная длина должна соответствовать или превышать 20 футов.Опять же, в зданиях с несколькими доступными электродами разрешается просто использовать один электрод в общей системе.
  4. Кольцевой электрод заземления
    Кольцевой электрод заземления — это заземляющий электрод, который полностью окружает здание или конструкцию. Он состоит из неизолированного медного проводника сечением не менее 2 AWG и длиной не менее 20 футов. Этот тип электродов должен быть установлен и не является частью здания или конструкции, как первые три электрода.
  5. Стержневые или трубчатые электроды
    Стержневые и трубчатые электроды — это еще один тип электрода, который можно установить для создания более надежной системы заземляющих электродов, или когда здание или конструкция не содержит компонента, который квалифицируется как электрод, например, когда водоснабжение дома выполнено из ПВХ, опоры не имеют прямого контакта с землей. Эти электроды должны быть минимум 8 футов в длину и контактировать с землей и иметь торговый размер не менее ¾ дюйма, если они состоят из трубы или кабелепровода, и 5/8, если электрод стержневого типа.Можно использовать заземляющие стержни меньшего диаметра, если они указаны как заземляющие электроды. Если используются коррозионные материалы, такие как сталь, их необходимо оцинковать или принять другие меры для защиты от коррозии.
  6. Пластинчатые электроды
    Заземляющее соединение также может быть выполнено с помощью токопроводящей пластины. Пластина должна иметь площадь не менее 2 квадратных футов для контакта с Землей. Это может означать, что заземляющая пластина может иметь размеры 12 на 12 дюймов, поскольку у пластины есть две стороны, контактирующие с Землей.Для пластин, изготовленных из железа или стали без покрытия, минимальная толщина пластины составляет ¼ дюйма с учетом коррозии пластины с течением времени. Листы из цветных металлов могут иметь толщину всего 1,5 миллиметра.
  7. Другие электроды
    Разрешается использовать другие электроды, и в 250.52 перечислены две категории, которые подпадают под термин «прочие». Если электрод не упомянутого ранее типа указан в признанной на национальном уровне испытательной лаборатории как заземляющий электрод, AHJ может разрешить использование такого электрода.Существуют также другие местные подземные металлические конструкции и системы, которые разрешено использовать, такие как системы трубопроводов, металлические обсадные трубы, не прикрепленные к металлическому водопроводу, и подземные резервуары. Однако имейте в виду, что существуют определенные системы, которые не разрешается использовать в качестве заземляющих электродов, такие как металлические подземные газовые линии и система уравнивания потенциалов, необходимая для подземных бассейнов. AHJ должен определить, соответствует ли такой объект требованиям к заземляющему электроду.

Мы также должны поговорить о том, как эти электроды будут установлены, чтобы сформировать систему заземляющих электродов. Как указывалось ранее, металлическая подземная водопроводная труба, металлическая опорная конструкция в земле и электроды в бетонном корпусе обычно либо являются частью здания и, следовательно, должны использоваться, либо их нет в наличии, а один из других установлен или «изготовлен» необходимо использовать электроды. Есть одно исключение из общего правила: если электрод существует, его необходимо использовать, и это для существующих зданий.NEC не намерен требовать, чтобы бетонное основание было нарушено, чтобы обнажить арматурную сталь внутри и соединиться с ней. Исключение позволяет установщику не использовать существующий электрод в бетонном корпусе, если это потребует нарушения бетона.

Стержневые, трубные, пластинчатые и металлические электроды для подземных водопроводов требуют использования дополнительного заземляющего электрода. Важно понимать, что также можно использовать в качестве дополнительного электрода. Например, заземляющий стержень может использоваться в качестве дополнения к металлической подземной водопроводной трубе, однако металлическая подземная водопроводная труба не может дополнять заземляющий стержень.Тем не менее, 250,53 (А) по-прежнему требует наличия стержневого, трубчатого и пластинчатого электродов с дополнительным заземляющим электродом. Это означает, что мы часто устанавливаем второй заземляющий стержень или пластину в дополнение к заземляющему стержню, который был установлен в дополнение к металлической подземной водопроводной трубе. Это связано с тем, что металлическая подземная водопроводная труба может быть заменена водопроводом на ПВХ, и домовладелец не часто осознает тот факт, что впоследствии он поместит их только с одним заземляющим стержнем.Однако металлические опорные конструкции в земле, электроды в бетонном корпусе и заземляющие кольца не требуются для дополнения и, следовательно, могут быть жизнеспособным вариантом.

У нас также есть требования к физической установке каждого электрода. Помимо необходимости контакта с землей, мы должны соблюдать определенные требования, такие как глубина залегания. Стержневые и трубчатые электроды должны иметь контакт с Землей не менее 8 футов и устанавливаться вертикально, если только коренная порода не встречается на глубине менее 8 футов.В этом случае электрод можно установить под углом или горизонтально, если это необходимо. В случае, если стержень должен быть уложен горизонтально, его необходимо закопать на глубину 30 дюймов. Это обычная глубина залегания большинства «готовых» электродов. Пластинчатые и заземляющие кольцевые электроды также должны быть установлены на минимальной глубине 30 дюймов.

Наконец, необходимо учесть подключения проводов заземляющего электрода и перемычки. Как и в случае с любым другим соединением в мире электричества, нам необходимо, чтобы любые механические соединения оставались доступными после установки.За некоторыми исключениями для тех, которые указаны для бетонирования или прямого захоронения. Имейте в виду, что, поскольку эти доступные места больше не контактируют с Землей, в NEC есть разделы, дающие разрешение на использование таких предметов, как первые 5 футов внутренней металлической водопроводной трубы, строительная сталь или открытая арматурная сталь для расширения соединения. к электроду тоже.

Понимание того, как наши электрические системы соединяются с землей, помогает нам лучше достичь цели, изложенной в 250.4 заземления системы таким образом, чтобы ограничить напряжение, вызываемое молнией, скачками напряжения в сети или непреднамеренным контактом с линиями более высокого напряжения, и которое будет стабилизировать напряжение относительно земли во время нормальной работы. Что, в свою очередь, в конечном итоге поможет достичь цели, заявленной самой NEC, а именно практической защиты людей и имущества от опасностей, возникающих в результате использования электричества. Умение правильно применять эти концепции ведет нас всех по пути к защите мира от опасностей, возникающих при проникновении электричества в наш мир.В NFPA мы не можем сделать это в одиночку, и нам нужна ваша помощь, чтобы выполнить нашу миссию по спасению жизней! Помните, это большой мир, давайте защитим его вместе!

Визуальный контент, включенный в этот блог, предоставлен NFPA LiNK ™, вашим настраиваемым инструментом изучения кода по запросу, предоставленным вам NFPA. Узнайте больше о NFPA LiNK ™ и подпишитесь на бесплатную пробную версию здесь: www.nfpa.org/LiNK

Важное примечание: эта переписка не предназначена и не должна использоваться для предоставления профессиональных консультаций или услуг .

5-футовый заземляющий стержень и его малоизвестное использование в NEC

Если я слышал это однажды, я слышал это тысячу раз. Единственный законный стержень заземления должен быть установлен на высоте не менее 8 футов в земле. Длина стержневых и трубчатых электродов составляет 250,52 (A) (5) в Национальном электротехническом кодексе (NEC) от 2017 г. Требования к разделам см. На рисунках 1 и 2.

Однако что, если бы я сказал вам, что это утверждение не совсем верно? Что, если бы был пример, а может быть, два, где 5-футовая заземляющая удочка была приемлемой? Чтобы найти эту неуловимую информацию, нужно посетить последние главы NEC .Чтобы понять, почему существует такая разная длина, вам нужно знать историю.

Статья 250 NEC — 8-футовая заземляющая штанга

Статья 250 содержит общие требования к заземлению и соединению электроустановок. Разделы 250.52 (A) (1) — (A) (7) инструктируют пользователей, что все заземляющие электроды, имеющиеся в каждом обслуживаемом здании или сооружении, должны быть соединены вместе, чтобы сформировать систему заземляющих электродов. Если ни один из этих заземляющих электродов отсутствует, следует использовать один или несколько заземляющих электродов, указанных в пункте 250.52 (A) (4) — (A) (8) должны быть установлены и использованы (см. Рисунок 3).

Рисунок 1. Требования к заземляющим стержням.

Рисунок 2. Требования к заземляющим стержням (продолжение). Рисунок 3. Требования к системе заземляющих электродов.

Информацию о заземляющих электродах можно найти в 250.52. В этом разделе подробно объясняются различные типы заземляющих электродов. В этой статье обсуждается тот, который расположен по адресу 250,52 (A) (5). См. Язык ниже, а также рисунок 4.


(5) Стержневые и трубчатые электроды. Стержневые и трубчатые электроды должны быть не менее 2,44 м (8 футов) в длину и состоять из следующих материалов.

(a) Заземляющие электроды трубы или кабелепровода не должны быть меньше метрического обозначения 21 (торговый размер 3-4), а в случае стальных электродов они должны иметь гальванизированную внешнюю поверхность или иное металлическое покрытие для защиты от коррозии.

(b) Стержневые заземляющие электроды из нержавеющей стали и меди или стали с цинковым покрытием должны быть не менее 15.Диаметр 87 мм (5∕8 дюймов), если не указан. (2017 NEC)


Рисунок 4. Различные стержни заземления.

Другая информация, относящаяся к установке заземляющих стержней, такая как установка и минимальное сопротивление, может быть найдена в Разделах 250.53 (G) и 250.53 (A) (2). См. Рисунки 5, 6 и 7 для получения дополнительной информации.

Рисунок 5. Варианты установки ведомого заземляющего стержня. Рисунок 6. Основное правило для дополнения стержневого, трубчатого или пластинчатого электрода. Рисунок 7. Это исключение из основного правила для дополнения стержневого, трубчатого или пластинчатого электрода. если гарантировано, сопротивление одиночного стержня, трубы или электрода составляет 25 Ом или меньше.

Путешествие к главе 8 NEC — В поисках 5-футовой заземляющей штанги

Теперь вот информация, которую вы все ждали. Где я могу найти эту информацию «только для участников, строго засекреченную», где я могу установить 5-футовый заземляющий стержень? Я устал вбивать 8-футовые заземляющие стержни в землю. Эта информация может сэкономить мне годы, не говоря уже о деньгах. Неужели все так просто? Есть ли место, где можно установить более короткие заземляющие стержни для электрических служб?

Ответ: «Да, нет и не так быстро.«Необходимо иметь полное представление о NEC , чтобы понимать, где эти 5-футовые заземляющие стержни допустимы и при каких конкретных обстоятельствах.

Статья 800 озаглавлена ​​«Цепи связи». Цель данной статьи — охватить различные схемы и оборудование связи. Раздел 800.2 определяет цепь связи как цепь, которая распространяет голос, аудио, видео, данные, интерактивные услуги, телеграф (кроме радио), внешнюю проводку для пожарной сигнализации и охранной сигнализации от коммуникационного предприятия до коммуникационного оборудования клиента до терминала включительно. оборудование, такое как телефон, факс или автоответчик.На эту статью не распространяются требования глав с 1 по 7 NEC , за исключением случаев, когда требования конкретно упомянуты в главе 8 (см. Рисунок 8).

Рис. 8. Расположение кода, приведенное в NEC 2017 г., раздел 90.3.

NEC состоит из различных частей; нам нужно в следующий раз взглянуть на Часть IV, озаглавленную «Методы заземления». В разделе 800.100 обсуждается подключение и заземление кабеля и первичной защиты. Здесь говорится, что первичное устройство защиты и металлический элемент (-ы) оболочки кабеля должны быть соединены или заземлены, как указано в 800.От 100 (A) до 800,100 (D).

Требования к заземляющему электроду приведены в 800.100 (B). В этом разделе говорится, что заземляющий проводник или провод заземляющего электрода должен быть подключен в соответствии с 800.100 (B) (1), 800.100 (B) (2) или 800.100 (B) (3). Давайте посмотрим на информацию, содержащуюся в 800.100 (B) (3).


(3) В зданиях или сооружениях без оконечных устройств для межсистемных соединений или средств заземления. Если в обслуживаемом здании или сооружении нет оконечных устройств для межсистемного соединения или заземления, как описано в 800.100 (B) (2), провод заземляющего электрода должен быть подключен к любому из следующего:

(1) К любому из отдельных заземляющих электродов, описанных в 250.52 (A) (1), (A) (2), (A) (3) или (A) (4).

(2) Если обслуживаемое здание или конструкция не имеет оконечной нагрузки для межсистемного соединения или средств заземления, как описано в 800.100 (B) (2) или (B) (3) (1), к любому из отдельных заземляющих устройств). электроды, описанные в 250.52 (A) (7) и (A) (8), или к заземляющему стержню или трубе не менее 1.5 м (5 футов) в длину и 12,7 мм (1-2 дюйма) в диаметре, загнанные, где это практически возможно, в постоянно влажную землю и отделенные от проводников системы молниезащиты, как указано в 800.53, и не менее 1,8 м (6 футов) от электродов других систем. Паровые трубы, трубы с горячей водой или проводники системы молниезащиты не должны использоваться в качестве электродов для защитных устройств и заземленных металлических элементов. (2017 NEC)


Вау, вы это видели? В одном из мест указано использование и установка 5-футового заземляющего стержня.Однако вы также видели специфику этого языка? Во-первых, это допустимо только в том случае, если в здании или сооружении нет оконечных устройств для межсистемного соединения или заземления. В этом случае допускается использование 5-футового заземляющего стержня.

Заземляющий стержень или труба:

  1. должна быть не менее 1,5 м (5 футов) в длину и 12,7 мм (1/2 дюйма) в диаметре;
  2. забиты, где это возможно, в постоянно влажную землю; и
  3. отделен от проводников системы молниезащиты, как указано в 800.53 и не менее 1,8 м (6 футов) от электродов других систем.

Следующее использование 5-футового заземляющего стержня можно найти в статье 830, которая касается систем широкополосной связи с питанием от сети. Эти системы предоставляют любую комбинацию голоса, аудио, видео, данных и интерактивных услуг через блок сетевого интерфейса (NIU).

Типичная базовая конфигурация системы включает кабель, по которому подается питание и широкополосный сигнал на блок сетевого интерфейса, который преобразует широкополосный сигнал в компонентные сигналы.Типичные кабели представляют собой коаксиальный кабель с широкополосным сигналом и питанием по центральному проводнику, композитный металлический кабель с коаксиальным элементом (ами) или элементы витой пары для широкополосного сигнала и элементы витой пары для питания, а также композитный оптоволоконный кабель с пара проводников для питания. Более крупные системы могут также включать сетевые компоненты, такие как усилители, которым требуется питание от сети.

Статья 830 состоит из различных частей. В части IV статьи 830 вы найдете способы заземления.Язык здесь гласит, что блоки сетевого интерфейса, содержащие устройства защиты, NIU с металлическими корпусами, первичные устройства защиты и металлические элементы сетевого широкополосного коммуникационного кабеля, которые предназначены для соединения или заземления, должны быть подключены, как указано в 830.100 (A), через 830.100 (Д).

Информация об электроде также находится по адресу 830.100 (B). Давайте посмотрим на язык по адресу 830.100 (B) (3) (2).


(3) В зданиях или сооружениях без оконечных устройств для межсистемных соединений или средств заземления.
Если обслуживаемое здание или сооружение не имеет оконечной нагрузки для межсистемного соединения или заземления, как описано в 830.100 (B) (2), провод заземляющего электрода должен быть подключен к одному из следующих компонентов:

(1) К любому из отдельных заземляющих электродов, описанных в 250.52 (A) (1), (A) (2), (A) (3) или (A) (4).

(2) Если обслуживаемое здание или сооружение не имеет клемм для межсистемных соединений или средств заземления, как описано в 830.100 (B) (2) или (B) (3) (1), к любому из отдельных заземляющих электродов, описанных в 250.52 (A) (7) и (A) (8), или к заземляющему стержню или трубе не менее 1,5 м (5 футов) в длину и 12,7 мм (1∕2 дюйма) в диаметре, загнанные, где это практически возможно, в постоянно влажную землю и отделенные от молниеотводов, как предусмотрено в 800.53, и не менее 1,8 м (6 футов) ) от электродов других систем. Паровые трубы, трубы с горячей водой или проводники системы молниезащиты не должны использоваться в качестве заземляющих электродов для протекторов, NIU со встроенной защитой, заземленных металлических элементов, NIU с металлическими кожухами и другого оборудования.(2017 NEC)


Вау, вы видели это еще раз? Это второе место, где говорится об использовании и установке 5-футового заземляющего стержня. Но вы тоже видели специфику этого языка? Во-первых, это допустимо только в том случае, если в здании или сооружении нет оконечных устройств для межсистемного соединения или заземления. В этом случае допускается использование 5-футового заземляющего стержня. Заземляющий стержень или труба:
1. должны быть не менее 1,5 м (5 футов) в длину и 12,7 мм (1-2 дюйма) в диаметре;
2.по возможности забиты на постоянно влажную землю; и
3. отделены от проводников системы молниезащиты, как указано в 800.53, и не менее 1,8 м (6 футов) от электродов других систем.

Рисунок 9 пытается показать требования, содержащиеся в статье 250, и требования, содержащиеся в статьях 800 и 830, в том, что касается использования 8-футовой или 5-футовой заземляющей штанги.

Рис. 9. 8-футовые и 5-футовые установки на земле.

История 5-футовой штанги заземления

Ходят слухи, что длина 5-футового стержня заземления существует исключительно потому, что это была длина пространства в задней части служебных автомобилей Bell Telephone.Однако так ли это полностью? Исследование, предоставленное мне г-ном Уильямом МакКоем из Telco Sales, Inc., который представляет Институт инженеров по электротехнике и электронике (IEEE), показывает, что были проведены научные исследования использования этих стержней. Исследования показали, что широко распространенное использование 5-футового стержня для релейной защиты от короткого замыкания было признано удовлетворительным для нормальных почвенных условий (см. Рисунок 10).

Рисунок 10. Информация о стержнях с низким сопротивлением из совместного исследования, озаглавленного «Технический отчет №31 ”между Эдисонским электрическим институтом (EEI) и телефонной системой Bell с 1935 года.

Изучая историю NEC , я также обнаружил, что первые 8 футов длины, указанные для заземляющего стержня, были найдены в 1940 NEC . В NEC 1937 года существовала формулировка приемлемых заземляющих электродов: 2571 для водопровода и 2572 для искусственного грунта. В тексте здесь искусственное заземление называется землей, электрод которой состоит из ведомой трубы, ведомого стержня, заглубленной пластины или другого устройства, одобренного для этой цели.Пользователю Кодекса не было предоставлено никакой дополнительной информации о необходимой длине этого стержня (см. Рисунок 11).

В 1940 NEC требования к установке были помещены на 2583 для искусственных электродов. Одним из условий является то, что стержень должен быть погружен на глубину не менее 8 футов независимо от размера или количества используемых электродов. См. Рисунок 12 для получения дополнительных сведений.

Для тех, кто помоложе, пользователи Code, ниже фото NEC 1937 и 1940 годов, ранее принадлежавшее Mr.Сесил Т. Джонс. Интересно отметить, что издание 1937 года было дополнением таких гигантов электротехники, как Cutler-Hammer, Inc., Square D Company, Trumbull Electric Manufacturing Company и Westinghouse Electric and Manufacturing Company.

Рисунок 11. Требования к заземляющему электроду NEC 1937 года. Рисунок 12. Требования к заземляющему электроду NEC 1940 года.

Я благодарен г-ну Джонсу, а также г-ну Филипу Х. Коксу, бывшему генеральному директору Международной ассоциации электротехнических инспекторов (IAEI), за то, что они передали мне эту историю для использования в моей карьере.Хотя действия этих двух джентльменов, такую ​​информацию, как история, найденная выше, можно исследовать и довести до нового поколения профессионалов в области электротехники. Если мы не знаем, не уважаем и не ценим нашу электрическую историю и работу других новаторов, которые были до нас, мы позорим электрическую промышленность (см. Рисунок 13).

Рисунок 13. NEC 1937 и 1940 годов.

Заключение

На этапе первого чернового варианта для NEC 2020 года я представил общественные материалы с просьбой к группе разработчиков кода (CMP), отвечающей за главу 8 NEC , обеспечить согласованность, удалив 5-футовую длину стержня и заменив ее на длина 8 футов в вышеупомянутых двух секциях.

Leave Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *