Что такое гидроудар в трубопроводе – Гидроудар в трубопроводе: в системе отопления и водоснабжении, защита компенсатора в квартире, как такое избежать

Содержание

Гидроудар в трубопроводе – причины и последствия

Кран с питьевой водой в каждом доме – это не роскошь, а достижение прогресса, но лишиться такого приятного удобства можно в один миг, если образовался гидроудар в трубопроводе. Гидравлический удар может стать причиной не только отсутствия воды, но и привести к затоплению квартиры.

Фото: схема гидравлического удара в трубопроводе

Фото: схема гидравлического удара в трубопроводе

О том, каким образом возникает такое опасное явление и как его избежать, будет подробно рассказано в данной статье.

Природа гидравлического удара в трубопроводах

Гидроудар – это ударная волна, которая распространяется по поверхности водопровода, а также по элементам арматуры. Разрушительное действие такого явления связано, прежде всего, с невозможностью жидкости сжиматься.

Если воду можно было, например, как газ сжать в несколько раз, то трубы не разрывались бы от резкого увеличения давления. Чрезмерное давление возникает в том случае, когда движение жидкости резко останавливается, но вызвать гидроудар могут и другие явления в системе водоснабжения .

Причины

Фото: гидравлический удар в трубопроводе

Фото: гидравлический удар в трубопроводеНаиболее часто гидравлический удар происходит при резком закрытии запорной арматуры. Когда вода течёт по трубам и выливается из крана, то в системе водопровода сохраняется постоянное значение давления, но в момент резкого перекрытия арматуры, это значение может увеличиться в несколько раз, в результате чего, стенки трубы не выдерживают напора и лопаются.

Причиной гидроудара могут также стать:

  • Резкое включение или выключение мощного насоса.
  • Воздушные пробки имеющиеся в контуре водопровода или отопления.

Включение и отключение насоса может быть спровоцировано нестабильным электроснабжением объекта, на котором находятся мощные насосные станции для перекачки воды. Воздушные пробки также занимают не последнее место в возникновении такого опасного явления, поэтому прежде чем эксплуатировать замкнутые системы с жидкостью, следует убедиться в полном отсутствии воздуха в них.

Последствия

фото - разрыв водопроводной трубы

фото - разрыв водопроводной трубы
При многократном воздействии высокого давления, которое возникает в результате гидравлического удара, даже очень надёжные системы могут потерять герметичность. Разрыв трубопровода может произойти и от однократного, но сильного гидравлического удара.

В результате такого воздействия водоснабжение объектов, к которым подведена водопроводная труба, полностью прекращается. К сожалению, последствия такого явления не ограничиваются только отсутствием воды в кране.

Если разрыв трубы произошёл в многоквартирном доме, то после разрыва трубы и попадания жидкости в жилое помещение будет повреждено имущество владельцев квартиры, а также соседей этажом ниже.

Если разрывается магистральная труба водопровода, по которой снабжается водой целый район города, то авария уже может расцениваться как ЧП.

В результате такого происшествия жильцы десятков многоквартирных домов останутся не только без питьевой воды, но и без канализации, так как все бачки унитазов запитываются от трубы холодного водоснабжения. Воспользоваться душем, даже при неповреждённом трубопроводе с горячей водой, также вряд ли получится.

Если в результате гидравлического удара повреждается труба с горячей водой, то такое происшествие, кроме материального ущерба, может привести к серьёзным ожогам. Особенно опасна может быть разгерметизация системы отопления, в которой теплоноситель всегда находится под значительным давлением, а температура жидкости составляет более +70 градусов.

Смотреть видео

Последствия гидроударов в трубопроводах большого диаметра в черте города, могут быть также весьма плачевными. Кроме возможных травм, которые могут получить пешеходы, находящиеся рядом с местом аварии, значительное истечение жидкости очень часто приводит к парализации участка автодороги, особенно в том случае, когда на данном участке осуществляется перевозка пассажиров транспортом работающем на электрической тяге.

Последствия от возникновения гидроудара, могут привести к значительному ущербу, поэтому так важно научиться предотвращать появление резкого усиления давления в трубопроводах.

Способы защиты

Фото: ремонт водопроводной трубы

Фото: ремонт водопроводной трубыСоблюдение правил монтажа водопроводных и отопительных коммуникаций позволяет свести к минимуму вероятность возникновения такого опасного явления, как гидравлический удар, но полностью исключить его только правильно спроектированными системами не получится. Для избегания такой неприятной ситуации необходим комплексный подход и соблюдение правил безопасности и технических инструкций.

Значительно снизить вероятность возникновения гидравлического удара, можно если следовать следующим правилам при проведении монтажа водопроводов и их эксплуатации.

  • При запуске водопровода или отопления в эксплуатацию, запорные элементы арматуры должны открываться очень медленно. Перекрытие подачи жидкости, также должно осуществляться очень плавно. Плавное закрытие и открытие запорной арматуры должно осуществляться не только на промышленных объектах, но и при запуске водоснабжения и отопления в частном доме. Чрезмерное давление при возникновении гидравлического удара способно легко повредить домашние коммуникации, поэтому не стоит пренебрегать правилами технической безопасности, в случае когда вода в частном доме подаётся со значительным давлением.
  • Если в системе водопровода или отопления установить автоматические устройства плавного открытия и закрытия запорной арматуры, то можно полностью исключить человеческий фактор при возникновении гидравлического удара. Конечно, при использовании электроники, водопроводные системы становятся зависимыми от электрического тока, но, чтобы полностью исключить вероятность выхода из строя по причине установленных автоматов, необходимо оборудовать такие механизмы резервным источником электроэнергии. Такая подстраховка абсолютно необходима, как на крупном предприятии, так и для нормального функционирования коммуникаций расположенных в частном доме. Автоматической регулировкой рекомендуется оснастить и насосные станции. В этом случае, также можно избежать гидроудара от резкого перепада давления в результате включения или отключения мощного насосного оборудования.
  • Применение гидроаккумуляторов и демпферных устройств, также позволяет свести к минимуму последствия резкого увеличения давления в водопроводной сети. Такие устройства обычно состоят из металлического корпуса с расположенной внутри мембраной. При возникновении гидроудара, мембрана перемещается, что позволяет вместить излишек жидкости. Когда угроза разрыва трубопровода
    минует и давление уменьшится мембрана будет возвращена в исходное положение за счёт воздуха расположенного с обратной стороны.
  • Для уменьшения давления в водопроводных сетях может быть использован предохранительный клапан, который открывается при достижении жидкости определённого значения. Такие устройства также способны предохранить трубопровод от разрушения, но для организации такого вида защиты, потребуется сделать дополнительную отводку от клапана к канализационной системе
  • Для защиты от гидроудара в частном доме или квартире можно использовать очень простой способ, в котором компенсация чрезмерного давления осуществляется за счёт растяжения стенок трубопровода. Совсем необязательно производить монтаж отопления или водоснабжения с применением таких материалов, но участок трубопровода выполненный с использованием термостойкого каучука, способен полностью принять на себя гидроудар в небольшой системе.Фото - защита трубопроводаФото - защита трубопровода
  • Шунтирование термостата, является эффективной мерой борьбы с гидроударом небольшой силы, поэтому такое “улучшение” автономного отопления может быть произведено только в частной системе отопления. Как правило, достаточно сделать отверстие диаметром 0,5 мм в основном клапане, чтобы при возникновении высокого давления излишек жидкости свободно перемещался в контур с холодной водой.
  • Термостат с защитой установленный в систему отопления, также позволяет избежать такого опасного явления, как гидроудар. Принцип работы такого устройства заключается в том, что в основном клапане термостата располагается дополнительный небольшой механизм, который открывается вне зависимости от температуры жидкости. Такой внутренний клапан начнёт пропускать жидкость, когда давление теплоносителя приблизится к максимально допустимому значению, тем самым предохраняя трубы от разрыва.

Смотреть видео

Как защитить от гидравлического удара коммуникации в квартире

Разгерметизация водопровода в квартире может привести к очень серьёзным последствиям, особенно в том случае, когда вследствие прорыва, был причинён ущерб соседям, квартира которых расположена этажом ниже, где произошла авария.

На участке водопровода находящегося в квартире, могут быть установлены старые металлические трубы, которые со временем ржавеют и могут разрушаться в процессе эксплуатации, не говоря уже об убийственной” силе гидроудара.

ВАЖНО! Чтобы свести к минимуму вероятность возникновения протечки, рекомендуется установить краны вентильного типа, которые в силу конструктивной особенности не способны мгновенно перекрыть воду. Шаровые рычажные краны, которые так удобны не только на кухне, но и душе, могут стать причиной серьёзной аварии.

Несмотря на то что гидроаккумуляторы наиболее часто используются в частных домах, водоснабжение которых осуществляется посредством насоса находящегося в глубокой скважине, такие изделия помогут защитить и водопровод находящийся в квартире от гидроудара.

Фото: винтовой кран для защиты от гидроудара

Фото: винтовой кран для защиты от гидроудара Кроме этого, накопленная жидкость в таких устройствах, можно будет использовать в случае временного отключения водоснабжения. Защитить водопровода от гидроудара можно также с помощью специальных гасителей, которые устанавливаются в трубу холодного или горячего водоснабжения.

Самовольно устанавливать какие-либо приборы в системе централизованного отопления категорически запрещается. Чтобы защитить жилплощадь от возникновения гидроудара, следует допустить специалиста управляющей компании во время тестового запуска отопления.

Если все воздушные пробки будут вовремя удалены из радиаторов и трубопроводов, то можно будет не опасаться гидроудара, по причине соблюдения всех необходимых мер для предотвращения такого явления в котельной и на пути доставки теплоносителя в квартиру.

Чтобы уменьшить риск разгерметизации систем горячего водоснабжения, рекомендуется также заменить краны на винтовые конструкции, а трубопровод сделать из современных материалов, которые позволяют максимально эффективно справляться с избыточным давлением в трубопроводе.

Несколько слов о теории гидроудара

Возникновение гидравлического удара возможно только по той причине, что жидкость не сжимается настолько, чтобы произошла компенсация резкого скачка давления. При увеличении давления в одном месте его сила распространяется на весь участок трубопровода, и найдя “слабое звено” приводит к деформации либо разрушению материала.

Такой эффект возникающий в трубопроводах высокого давления был впервые обнаружен российским учёным Н. Е. Жуковским в конце XIX века. Жуковским также была выведена формула, по которой можно рассчитать минимальное время необходимое для закрытия крана, чтобы избежать опасного повышения давления в замкнутой системе водопровода.

Смотреть видео

Данная формула имеет следующий вид:

где:

  • Dp – увеличение давления в Н/м2;
  • р – плотность жидкость кг/м3.
  • u0 и u1  – среднее значение скорости жидкости в трубопроводе до и после закрытия крана.

Учёный доказал, что скорость распространения ударной волны зависит прежде всего от диаметра и материала трубы. Также этот показатель зависит от степени сжимаемости жидкости.

Расчёт обязательно следует проводить только после того, как будет экспериментально установлена плотность воды, которая в зависимости от количества растворённый в ней солей может существенно различаться. Скорость распространения гидроудара всегда рассчитывается по следующей формуле:

где:

  • с – скорость ударной волны;
  • L – длина трубопровода;
  • T – время.

Подставляя значения в данную формулу можно точно определить скорость распространения гидравлического удара. Гидравлический удар представляет собой волну, которая имеет колебания с определённой частотой.

Вычислить, при необходимости, количество колебаний в единицу времени также не составит большого труда. Достаточно воспользоваться следующей формулой:

где:

  • М – продолжительность цикла колебаний;
  • L – длина трубопровода;
  • а – скорость волны (м/с).

Для упрощения вычислений ниже будут приведены показатели скорости ударной волны при гидравлическом ударе для труб из следующих материалов:

  • Сталь – 900 – 1300 м/с;
  • Чугун – 1000 – 1200 м/с;
  • Пластик – 300 – 500 м/с.

Подставляя эти значения в формулу можно точно рассчитать частоту колебаний гидроудара на участке водопровода определённой длины.

Такова теория гидравлического удара в самых кратких математических описаниях. При проектировании современных инженерных систем, для выполнения подобных расчётов, применяются мощные вычислительные машины, поэтому прибегать к ручному вычислению скорости и силы гидроудара нет никакой необходимости.

Заключение

Гидроудар в водопроводе может стать причиной серьёзных аварий в сфере ЖКХ. Особенно неприятными такие происшествия бывают в зимнее время года. Разрушение трубопровода отопления, может привести к переохлаждению и заболеванию людей, особенно когда без тепла остаются маленькие дети и пожилые граждане.

Смотреть видео

Поэтому чтобы максимально обезопасить себя от такого грозного явления, необходимо применять на практике все советы изложенные в данной статье.

Гидроудар в трубе — причины, защита, компенсаторы

Защита от гидроудара

Чтобы защитить трубопровод от гидравлических ударов, нужно:

  • Плавно открывать/закрывать запорные элементы

При плавном закрывании крана давление в трубопроводе будет постепенно выравниваться. При этом ударная волна будет иметь незначительную силу, а следовательно, мощность гидравлического удара будет минимальной. Но не во всех случаях возможно обеспечить плавное закрывание крана. Далеко не у всех моделей вентильная конструкция, многие современные краны имеют шаровую систему – достаточно одного неосторожного резкого поворота и кран придёт в положение «закрыто».

  • Использовать трубы большого диаметра

В трубопроводах большого диаметра рабочая среда движется с меньшей скоростью, чем в системах с более маленьким диаметром. А чем скорость перемещения потока жидкости меньше, тем слабее сила гидроудара. Однако данный способ гораздо затратнее. Расходы увеличиваются за счёт более высокой стоимости труб и теплоизоляции.

  • Установить амортизирующее устройство

Данное устройство располагается по направлению движения рабочей жидкости. В качестве амортизатора используется отрезок трубы из эластичного пластик либо каучука, которым заменяется часть жёсткой трубы перед термостатом. При возникновении гидравлического удара происходит растяжение эластичного отрезка и частичное гашение силы удара.

  • Использовать компенсаторное оборудование

Для сбрасывания лишней жидкости до момента нормализации давления в трубопроводе используется гидравлический аккумулятор. Данное оборудование выполнено в виде герметичного бака, оснащённого мембраной и воздушным клапаном. Мембрана изготавливается из эластичного материала, бак – из стали.

  • Использовать автоматику насосов

Одной из причин появления гидравлических ударов в трубопроводе является насосное оборудование. Движение рабочей среды зависит от того, насколько быстро вращаются насосные валы. Следовательно, плавное снижение/увеличение скорости вращения позволяет уменьшить силу воздействия и снизить риск появления гидроударов.

На производствах для управления насосным оборудованием используются специальные регуляторы, частотные преобразователи и прочие подобные приборы. Данное оборудование также подходит для использования в бытовых условиях.

Гидравлические удары в коммуникациях появляются при остановке насосного оборудования, например, при исчезновении сети питания. На производствах и в сфере коммунального хозяйства резервные источники используются давно и не раз доказали свою эффективность. Предупреждение аварийных ситуаций и сокращение расходов на ремонтные работы приводят к существенной экономии средств. Включение домашнего насосного оборудования через устройство защиты от гидроударов (стабилизаторы и источники резервного питания) поможет обезопасить внутренние коммуникационные системы.

  • Использовать байпас

Байпас представляет собой дополнительный участок трубопровода, который используется в качестве обходного канала и служит для регулирования пропускной способности сети отопления. Такие устройства можно монтировать, как в новые системы, так и в уже существующие.

  • Гаситель гидроударов

Это простое, но эффективное изобретение, работающее по принципу расширительного бака отопительных коммуникаций. При резком перепаде давления жидкость перемещается в мембранный гаситель. После того, как давление в трубопроводе упадёт до рабочей величины, произойдёт выталкивание жидкости обратно в систему. Возвращение воды обеспечивается благодаря избыточному давлению воздуха, находящегося с противоположной стороны мембраны.

  • Защитный клапан

Клапан защиты от гидроудара располагается в трубопроводной системе рядом с наносом. Он реагирует на скачки давления, принимая обратную волну и предотвращая гидравлические удары. Клапан оснащён специальным регулятором, который при перепаде давления плавно открывает его. Таким образом, когда обратный поток рабочей среды доходит до насосного агрегата, клапан уже находится в открытом состоянии. В результате этого происходит сбрасывание воды, а следовательно, снижение давления до допустимой величины. После нормализации давления регулятор закрывает клапан, чтобы предотвратить опустошение системы.

что это такое и как с этим бороться?

Гидравлический удар представляет собой явление повышения давления жидкости в системе, вызванное крайне быстрым изменением скорости потока этой жидкости за очень малый промежуток времени. Чаще всего причинами возникновения гидроудара являются быстрое закрытие или открытие трубопроводной арматуры, а также остановка, пуск или изменение режима работы насосов. Есть и другие причины, но они не столь часты.

Возникновение в трубопроводе гидравлического удара влечет за собой разрушение трубопроводов, арматуры, насосов и оборудования, образование усталостных трещин и загрязнение окружающей среды.

Для вычисления повышения давления при гидроударе используется формула Н.Е. Жуковского:

  • ρ — плотность жидкости, кг/м3;
  • с — скорость фронта ударной волны м/с;
  • ∆v — изменение скорости жидкости при гидравлическом ударе, м/с.

Скорость фронта ударной волны:

  • Ес — модуль упругости жидкости, кгс /см²;
  • Ет — модуль упругости трубопровода, кгс/см²;
  • t — толщина стенок трубопровода, м;
  • DN — условный диаметр трубопровода, м;

Рис. 1. Зависимость повышения давления в следствие гидроудара от различных параметров.

В качестве примера произведем расчет гидроудара. Исходные данные: вода движется со скоростью 2 м/c по стальному трубопроводу с условным диаметром 500 мм с толщиной стенки 12 мм и длиной 3500 м.

Скорость фронта ударной волны

Увеличение давления при гидроударе

Максимально допустимое время реакции клапана

Таким образом, из расчетов можно сделать вывод, что из-за резкого закрытия задвижки возникает гидроудар, в результате которого развивается ударная волна, движущаяся со скоростью почти 1200 м/с, давление в трубопроводе возрастает на 23,7 бар — и все это происходит почти за 2 с.

Для предотвращения гидроудара применяют ряд методов:

  • обеспечение плавного открытия или закрытия запорной арматуры;
  • увеличение диаметра трубопровода;
  • снижение скорости потока среды;
  • обеспечение плавного пуска и остановки насосов;
  • использование системы защиты от гидравлических ударов;
  • удаление газов из трубопроводов.

Указанные методы активно используются производителями оборудования для систем гашения гидроударов.

Наиболее часто возникающая неисправность в системах перекачивания жидкости — включение насоса при закрытой магистральной задвижке. В этом случае давление очень быстро повышается и происходит разрушение или выход из строя составляющих элементов трубопровода. Для предотвращения аварии используется предохранительный клапан на воду, выполняющий аварийный сброс давления, модели «Гранрег» КАТ10/04, КАТ11/04, «Прегран» КПП. Такие клапаны предотвращают повышение давления, которое происходит при запуске насоса, быстром закрытии крана или задвижки или других действиях, приводящих к резкому скачку давления. Клапаны монтируются на отводе от трубопровода, сбрасывая излишнее давление в атмосферу или резервуар. Когда давление превышает безопасный уровень, клапан открывается сразу же. При нормализации давления запорный орган в клапане медленно закрывается.

Рис. 2. Пример установки клапана быстрого сброса давления.

Вторая частая причина аварий — резкий, незапланированный стоп работающего насоса. При этом в системе сначала возникает разрежение, затем возникает обратный гидроудар. В данном случае помогает установка клапана модели «Гранрег» КАТ10/13 или КАТ11/13. Управление выполняется двумя регуляторами, на которых выставляется нижний и верхний порог срабатывания. Клапан приводится в действие давлением воды в линии. Устанавливается на отводе от трубопровода, после обратного клапана, рядом с насосами. Регулятор срабатывает немедленно, когда давление в трубопроводе падает ниже статического уровня. Когда обратный поток достигает насоса, регулятор уже полностью открыт, поток сбрасывается через него, и всплеск давления ограничивается до безопасной величины. После этого регулятор медленно закрывается, предотвращая опорожнение трубопровода. Клапан также немедленно полностью открывается, когда давление превышает безопасный уровень, и медленно закрывается при падении давления в сети до нормального уровня.

Рис. 3. Пример установки клапана для предотвращения гидроудара.

Использование предохранительных клапанов позволяет увеличить сроки безаварийной работы трубопроводов за счет исключения возникновения гидроударов и сброса давления в системе при его повышении до критических значений. Использование коррозионностойких материалов для изготовления корпуса, запорного элемента и уплотнений также способствует увеличению срока службы.

Из характерных достоинств, которыми отличаются предохранительные клапана можно отметить:

  • простую и надежную конструкцию;
  • простоту монтажа и обслуживания оборудования;
  • низкие значения местных сопротивлений;
  • высокую пропускную способность.

Для обеспечения плавного пуска и остановки насосов в современных системах используются специальные клапаны с пилотным управлением для управления насосами — «Гранрег» КАТ10/11, 10/12, 11/11, 11/12. Принцип действия таких клапанов достаточно прост. Управление работой подобного оборудования осуществляется при помощи электрических сигналов.

При пуске насоса клапан плавно приоткрывается. Останов вызывает плавное закрытие.

Рис. 4. Клапан для управления насосами «Гранрег» КАТ10/11 (слева) и клапан для управления глубинными насосами «Гранрег» КАТ10/12 (справа).

Существуют специальные опции для подобных клапанов, которые позволяют увеличить время открытия/закрытия клапана, обеспечивая таким образом плавное регулирование внутрисетевого давления.

Еще одной из причин возникновения гидроударов в трубопроводе могут служить воздушные пробки. Для удаления газов из трубопроводов используются воздушные клапаны (воздухоотводчики). Воздушные клапаны эффективны и важны для предотвращения возникновения давления ниже атмосферного в трубопроводах. Стандартный автоматический воздушный клапан отводит газы из системы, образующиеся в процессе ее работы. Кроме того, следует понимать, что если у потока воды при движении по трубопроводу не возникает никаких преград, то скорость потока достигает большого значения. И если воздушный клапан неожиданно закроется, это приведет к мгновенной остановке водного потока. Внезапная остановка водяного потока превратит кинетическую энергию в энергетическое давление, что может вызвать гидроудар.

Рис. 5. Клапан воздушный кинетический
с устройством защиты от гидроудара.

Воздушный клапан с функцией защиты от гидроудара серии «Гранрег» КАТ50–53 позволит предотвратить данный эффект.

Благодаря ограничению скорости потока воздуха, между потоком воды и непосредственно воздушным клапаном будет создаваться воздушная подушка, которая замедлит поток воды и предотвратит развитие гидроудара.

Способы борьбы с гидроударами не ограничиваются применением оборудования, рассматриваемого в данной статье. Для того, чтобы корректно подобрать оборудование, смодулировать систему и определить, в каких точках может возникнуть гидроудар, необходимо тщательно проанализировать состав системы, а так же режимы ее работы. В случае возникновения вопросов по подбору регулирующей арматуры просьба обращаться к инженерам отдела регулирующей арматуры компании АДЛ.

39. Гидравлический удар в трубопроводах.

Гидравли́ческий уда́р (гидроудар) — скачок давленияв какой-либо системе, заполненнойжидкостью, вызванный крайне быстрым изменениемскоростипотока этой жидкости за очень малый промежуток времени.

Гидравлический удар способен вызывать образование продольных трещинвтрубах, что может привести к их расколу, или повреждать другие элементытрубопровода. Для предотвращения гидроударов, вызванных резкой переменой направления потока рабочей среды, на трубопроводах устанавливаютсяобратные клапаны.

Явление гидравлического удара открыл в 1897-1899г.Н. Е. Жуковский. Увеличение давления при гидравлическом ударе определяется в соответствии с еготеориейпо формуле:,

где Dp — увеличение давления в Н/м²,ρ — плотностьжидкости вкг/м³,v0 и v1 — средние скорости в трубопроводе до и после закрытия задвижки(запорного клапана) вм/с,с — скорость распространения ударной волнывдоль трубопровода.

Жуковский доказал, что скорость распространения ударной волны c находится в прямо пропорциональной зависимости от сжимаемости жидкости, величины деформациистенок трубопровода, определяемоймодулем упругостиматериалаE, из которого он выполнен, а также от диаметратрубопровода.

Следовательно, гидравлический удар не может возникнуть в трубопроводе, содержащем газ, так как газ легко сжимаем.

Зависимость между скоростью ударной волны c, её длиной и временем распространения (L и τ соответственно) выражается следующей формулой:

Виды гидравлических ударов

В зависимости от времени распространения ударной волны τ и времени перекрытия задвижки (или другой запорной арматуры)t, в результате которого возник гидроудар, можно выделить 2 вида ударов:

При полном гидроударе фронтвозникшей ударной волны движется в направлении, обратном первоначальному направлению движения жидкости в трубопроводе. Его дальнейшее направление движения зависит от элементов трубопровода, расположенных до закрытой задвижки. Возможно и повторное неоднократное прохождения фронта волны в прямом и обратном направлениях.

При неполном гидроударе фронт ударной волны не только меняет направление своего движения на противоположное, но и частично проходит далее сквозь не до конца закрытую задвижку.

Расчет гидравлического удара

Прямой гидравлический удар бывает тогда когда время закрытия задвижки t3 меньше фазы удара T, определяемой по формуле:

Здесь l — длина трубопровода от места удара до сечения, в котором поддерживается постоянное давление, Cu — скорость распространения ударной волны в трубопроводе, определяется по формуле Н.Е. Жуковского, м/с:

где E — модуль объемной упругости жидкости, p — плотность жидкости, — скорость распространения звука в жидкости,Etr — модуль упругости материала стенок трубы, D — диаметр трубы, h — толщина стенок трубы.

Для воды отношение зависит от материала труб и может быть принято; для стальных — 0.01; чугунных — 0.02; ж/б — 0.1-0.14; асбестоцементных — 0.11; полиэтиленовых — 1-1.45

Коэффициент k для тонкостенных трубопроводов применяется (стальные, чугунные, а/ц, полиэтиленовые) равным 1. Для ж/б

,

коэффициент армирования кольцевой арматурой (f — площадь сечения кольцевой арматуры на 1м длины стенки трубы). Обычно a = 0.015 − 0.05 Повышение давления при прямом гидравлическом ударе определяется по формуле:

P = pCuVo

где Vo — скорость движения воды в трубопроводе до закрытия задвижки.

Если время закрытия задвижки больше фазы удара (t3>Т), такой удар называется непрямым. В этом случае дополнительное давление может быть определено по формуле:

Результат действия удара выражают также величиной повышения напора H, которая равна:

при прямом ударе

при непрямом

Способы предотвращения возникновения гидравлических ударов

  • Исходя из формулы Жуковского (определяющей увеличение давления при гидроударе) и величин, от которых зависит скорость распространения ударной волны, для ослабления силы этого явления или его полного предотвращения можно уменьшить скорость движения жидкости в трубопроводе, увеличив его диаметр.

Пример

Наиболее простым примером возникновения гидравлического удара является пример трубопровода с постоянным напороми установившимся движением жидкости, в котором была резко перекрытазадвижкаили закрытклапан.

ЧТО ТАКОЕ ГИДРОУДАР ДВИГАТЕЛЯ КАКИЕ ПОСЛЕДСТВИЯ

Неприятные последствия и методы защиты от гидроудара

Самые страшные последствия после сильного гидроудара — всевозможные разрушения трубопровода

Дело в том, что в теории, внутреннее давление в трубе может расти без остановки, достигая любой силы. Последствия в таких ситуациях будут следующими:

  • Прорыв трубы, разрушение трубопровода или системы подачи тепла;
  • Деформация или уничтожение приборов отопления;
  • Как следствие — прекращение подачи воды и тепла на время ремонта;
  • Получения ожоговых травм жильцами, находившимися в непосредственно близости от тепловых сетей во время гидроудара;
  • Гидравлический удар в трубах приводит к затоплениям вашего имущества и соседей, живущих под вами (в случае с квартирами).

Глядя на этот неполный список возможных последствий, хочется узнать о методах защиты от гидроударов. Как обезопасить себя от возможного несчастья?

Первый и самый весомый аргумент в сторону защиты от гидравлических ударов — компенсаторы трубопроводов. Эти специальные приспособления способны принимать в себя часть жидкости из общей системы при возрастании внутреннего давления, снижая его таким образом. Виды компенсаторов водопроводов бывают разными, но наибольшее распространение получили сильфонные, линзовые и сальниковые, ввиду своих эксплуатационных особенностей.

Еще один метод защиты — клапан для защиты от гидравлических ударов. Этот приспособление устанавливается в системах повышенного давления и при использовании насоса. Этакий гаситель гидроударов, клапан открывается и сбрасывает излишнее давление при его резком скачке.

Касательно больших магистралей и длинных участков трубопровода теплоснабжения, для защиты на них устанавливают неподвижные опоры для труб теплоснабжения, которые фиксируют конструкцию, делая ее более жесткой, устойчивой к вибрации и повышениям давления

ПОСМОТРЕТЬ ВИДЕО

Защита трубопроводов обычными методами, а точнее — мерами предосторожности, обязательна. Закрывайте опорную арматуру постепенно, спускайте воздух из труб заблаговременно и установите компенсатор гидроударов, желательно большого объема

Общие сведения о гидроударах

Гидроудары делятся на:

  • Положительные. Повышение давления. Возникает в следствии включения насосов или резком закрытие задвижек
  • Отрицательные. Остановка насосного агрегата.

Каковы последствия гидроудара

VETER0831                             Блог                                 ЧТО ТАКОЕ ГИДРОУДАР ДВИГАТЕЛЯ КАКИЕ ПОСЛЕДСТВИЯ

VETER0831                             Блог                                 ЧТО ТАКОЕ ГИДРОУДАР ДВИГАТЕЛЯ КАКИЕ ПОСЛЕДСТВИЯДавление выше допустимой нормы критично для труб и их соединений. Запорная арматура тоже может выйти из строя.

Происходит разрыв труб не от первого гидроудара, обычно производители изготавливают изделия с расчетом повышения давления. Каждый последующий удар будет бить в одно и то же самое слабое место. В какой — то момент труба не выдержит и лопнет.

Что такое – прорвало трубу, знает каждый. Затопило соседей, испортилась мебель, обои отклеились и т.д. Нервы потрепаны, бюджет пострадал.

В случае гидравлического удара в теплоснабжении последствия куда плачевние. Человек получит ожоги. Урон жилью поток горячей воды нанесет колоссальный. Устранение последствий потребует серьезных материальных и физических затрат.

В случае возникновения аварии в мороз, произойдет прекращение подачи тепла и замерзание всей системы вместе с котлом.

Потери можно предупредить, чем устранить последствия.

Причины гидроудара

В 60% случаев прорыв труб происходят из-за гидроудара. В своем большинстве авария случается на отрезке со старыми трубами.

Сила удара напрямую зависит от длины трубы, чем больше отрезок, тем сильнее гидроудар. В длинной трубе воды больше, ее вес вызывает ощутимый скачок давления.  Чем дальше кран перекрытия, тем серьезней гидравлический удар.

Для купирования гидроудара в обогреваемых полах, обязательна правильна установка термостатических клапанов. Остановка движения воды по трубам должна осуществляться на входе системы в пол. Перекрытие воды, не влечет последствий. Движение продолжается, но по убывающей.

Вентиля старого образца, гораздо безопаснее в плане гидроударов. Для перекрытия потока требуется несколько оборотов, давление спадает медленно. Резко перекрыть при огромном желании не получится, что не скажешь о шаровых кранах.

Для закрытия шарового крана надо один раз повернуть ручку на 90 градусов. Не знающие пользователи делают это быстро и резко, что категорически запрещено. Перекрытие следует осуществлять плавно.

Конечно, резко закрытый вентиль не единственная причина. В системе отопления разрыв трубы может произойти из-за остатков воздуха в трубах. Воздух имеет свойство под напором давления сжиматься, когда сильный поток воды на него воздействует, он срабатывает как буфер, создавая препятствие.

Также появление гидроударов могут спровоцировать трубы разного диаметра. Перепады давления, если трубы не приведены к общему знаменателю, гарантированы.

Последствия гидроудара

Гидроудар воздействует на соединения труб, вентиля, клапана и прочие элементы системы. Очень часто возникает ситуация – отопление работает, греет дом, но жилец постоянно слышит щелчки или удары – это перепады давления в системе, которые разрушают элементы и рабочие органы. Иногда давление, которое резко повышается может превысить предел прочности трубопровода или их соединения. В этом случае возникает авария. Такое часто случается в система, совсем недавно запущенных в эксплуатацию.

VETER0831                             Блог                                 ЧТО ТАКОЕ ГИДРОУДАР ДВИГАТЕЛЯ КАКИЕ ПОСЛЕДСТВИЯ

VETER0831                             Блог                                 ЧТО ТАКОЕ ГИДРОУДАР ДВИГАТЕЛЯ КАКИЕ ПОСЛЕДСТВИЯ

Авария может возникнуть при постепенном износе тепломагистрали и ее органов или же неожиданно от воздействия очень сильного скачка давления. В том и другом случае последствия гидравлического удара вызывают материальные расходы на устранение наводнения в доме и ремонт системы отопления. Чтобы не стать свидетелем такого происшествия нужно знать причины возникновения этого явления и принять меры по их устранению. Как правило, последствия после гидроудара могут быть разной тяжести начиная от поломки насоса заканчивая затоплением дома и затратами на ремонт после наводнения.

Гидроудар может повлечь за собой следующие неприятности:

  • расходы на покупку новой мебели, которая пришла в негодность после затопления;
  • затраты на ремонт пола или компенсация расходов на восстановление должного вида квартиры после потопа соседям нижнего этажа – если наводнение произошло в городской квартире;
  • оплата услуг специалистов, восстанавливающих работоспособность отопительной системы после аварии;
  • при прорыве трубопровода человек может получить ожоги в попытках устранить аварию;
  • возможные траты на ремонт отопительной системы после восстановления ее работоспособности после аварии, ведь уплотнители и другие элементы были подвержены негативному воздействию давления и скорее всего частично утратили свой рабочий ресурс.

Что такое гидроудар

При переходе теплоносителя из трубопровода одного диаметра в другой, при резком закрытии крана или столкновении жидкости с воздушной пробкой происходит процесс возникновения избыточного давления – это и есть гидроудар в системе отопления. Это явление длится доли секунды, но его сила может быть непредсказуема – в трубопроводе и так находится под постоянным давлением, а при гидроударе оно может подскочить во множество раз, и, если не выведет из строя магистраль, то будет постоянно снижать рабочий ресурс органов и приборов отопительной системы. В системах водоснабжения и отопления причины возникновения этого явления могут быть самыми разными и уровень последствий тоже непредсказуем.

Гидроудары постоянно происходят в водопроводных системах, когда мы открываем и закрываем кран подачи воды. В системах отопления происходит тоже самое, но не так часто. Стоит отметить, что жидкость способна сохранять свое давление и накапливать энергию. Из-за этого в частных домах и квартирах случаются аварии. Особенно там, где в системах используют резиновые шланги в металлической обмотке. Наверное, многие из нас замечали, что такие шланги служат какое-то время, а потом рвутся. Это происходит из-за давления, которое копилось в системе и не уходило в общий водопровод из-за обратного клапана. Со временем давление превышало прочность шланга, и он давал течь.

VETER0831                             Блог                                 ЧТО ТАКОЕ ГИДРОУДАР ДВИГАТЕЛЯ КАКИЕ ПОСЛЕДСТВИЯ

Что такое гидроудар в системе отопления

Гидроудар в системе отопления многоквартирного дома случается не часто. Для жителей квартир проблема гидроудара стоит не так остро, как для владельцев частных домов, потому что ремонтом и обслуживанием этих объектов занимаются компетентные службы

Но все-таки стоит обратить внимание на гибкие шланги при установке водонагревателя, ведь ответственность и материальные затраты возлагаются на плечи жильцов городских квартир

Гидроудары в системе отопления частного дома случаются гораздо чаще, поэтому жителям частного сектора стоит уделить особое внимание при проектировании и установке системы отопления в своем доме. А также использовать средства защиты от этого явления, которые будут описаны далее

Надеюсь доступно объяснил: что такое гидроудар в системе отопления.

Как устранить гидравлические удары

Чтобы не произошло гидроудара в трубах отопления и системе водоснабжения используются несколько методов.

Плавно осуществлять закрытие крана

Если вентиль идет туго, то допустимо его передвижение малыми рывками.

Удар происходит, но разбитый на несколько слабых. Что не влечет последствий.

Амортизация

VETER0831                             Блог                                 ЧТО ТАКОЕ ГИДРОУДАР ДВИГАТЕЛЯ КАКИЕ ПОСЛЕДСТВИЯ

VETER0831                             Блог                                 ЧТО ТАКОЕ ГИДРОУДАР ДВИГАТЕЛЯ КАКИЕ ПОСЛЕДСТВИЯМеханическое перекрытие можно организовать безопасно, а вот системы оснащенные автоматикой (отопительные) этого лишены.

Для смягчения удара в магистраль монтируется устройство амортизации. Перед термостатом, устанавливается отрезок эластичного трубопровода (пластик армированный или каучук устойчивый к высоким температурам).

Благодаря растяжению, при скачке давления, труба на время увеличивается, гасит давление.

0,2-0,3 м достаточный отрезок амортизации.

Шунтирование

Это ручная доработка термоклапана.

Трубку диаметром 0,2-0,4 мм по ходу движения вставляют в клапан. На работоспособность системы не влияет, но при скачке давления перекинуть его за клапан в трубопровод может.

К сведению

Метод продуктивен только в новой системе и не из металла. Наличие коррозии все на нет.

Компенсаторы

Нижняя часть содержит жидкость, верхняя воздух под давлением. Похожая система устанавливается на автоматических насосах для регулировки давления.

В системе отопления компрессор устанавливается в слабой точке, где возможен удар. При скачке давления, вода надавливает на мембрану и смещает ее в сторону воздуха, в результате давление гасится.

Когда давление приходит в норму, гидроудар купируется, мембрана возвращается на прежнее место.

В водопроводной магистрали также применяются специальные гасители.

Защитные клапаны

VETER0831                             Блог                                 ЧТО ТАКОЕ ГИДРОУДАР ДВИГАТЕЛЯ КАКИЕ ПОСЛЕДСТВИЯ

VETER0831                             Блог                                 ЧТО ТАКОЕ ГИДРОУДАР ДВИГАТЕЛЯ КАКИЕ ПОСЛЕДСТВИЯВ былые времена давление пациента понижали путем кровопускания. Схема работы защитного клапана аналогичная.

Установка происходит в потенциально опасных местах. Работают автономно или от контроллера.

При повышении давления, клапан производит сброс воды, разумеется сброс жидкости происходит в допустимых местах.

После прихода давления в норму, кран закрывается.

Автоматическая регулировка

Отключение и включение насосного оборудования «прекрасные» провокаторы гидравлических ударов.

Насос создает давление, которое напрямую связано со скоростью вращения. Разгон происходит молниеносно.  Принудительное замедление процесса набора оборотов в насосе, купирует возникновение гидравлического удара.

Регулировать обороты не получится, изменить частоту возможно, что даст требуемый результат.

Эту функцию выполняют УУЭ (устройство управления электродвигателем), преобразователи частоты и плавного пуска. Гидроудары при установке УУЭ пропадают.

Преследуя эту цель, к преобразователю подключают датчик давления, он будет изменять частоту вращения насоса в зависимости от заданных показателей. Как бонус, происходит экономия электроэнергии.

Минусы агрегата
  • Высокая цена
  • Требуется специалист для установки и наладки.

Если ваши отопительная магистраль и система водоснабжения не оснащены ни одним защитным устройством и в системах присутствуют симптомы гидроудара, стоит задуматься о безопасности.

Как предотвратить гидроудары

Существует несколько видов защиты системы водоснабжения от гидроударов. Рассмотрим основные:

  1. Плавно закрывать кран. Если потребитель закрывает кран постепенно, давление в системе водоснабжения плавно выравнивается и обратная волна формируется небольшой силы, что снижает мощность гидроударов. Однако всегда плавно закрывать кран не получится. Ведь теперь большинство кранов оснащены шаровой конструкцией, а не вентильной (когда приходилось крутить вентили, чтобы закрыть кран). С шаровой конструкцией — одно нечаянное резкое движение и кран закрыт. Кроме того, дети или ваши гости могут не знать, как правильно закрывать кран.
  2. Использование труб большого диаметра. Чем больше диаметр труб, тем ниже скорость потока воды, а, соответственно, и гидроудар. Но этот метод защиты требует повышенных денежных вложений (на трубы, их проведение и теплоизоляцию) и не всегда эстетично выглядит.
  3. Установка амортизирующего устройства по направлению потока воды. Перед термостатом вместо жесткой трубы устанавливается кусок из эластичного пластика или каучука. При гидроударе этот участок растягивается и частично гасит силу удара.
  4. Использование компенсаторного оборудования. Гидроаккумулятор – это бак, куда при гидроударе будет сбрасываться излишняя вода до нормализации давления системы. Реле давление — элемент, который не спасет от гидроудара, но отключит насос, когда вы перекроете кран, и давление превысит определенное значение. При этом надо учитывать, что выключение насоса не произойдет мгновенно.

Система водоснабжения Ermangizer — защита от гидроудара

Система водоснабжения Ermangizer. Если гидравлический удар спровоцирован включением насоса, то наилучшим решением будет комплекс Эрманджайзер. Основной элемент системы – частотный преобразователь, который регулирует работу насоса и обеспечивает плавный пуск. При этом исключается резкое повышение давление в системе, вызывающее гидроудар. Кроме того, частотный преобразователь Ermangizer обеспечивает бесперебойный стабильный напор воды в кране, независимо от объема водопотребления, а так же увеличивает срок службы насоса. Установка системы Эрманджайзер является наиболее эффективным решением.

Узнайте больше о преимуществах системы Ermangizer по телефону: +7 (343) 378-09-50

Защитите систему водоснабжения в своем доме от гидроудара!

http://www.ermangizer.ru

Природа гидроудара

Охарактеризовать или описать гидроудар в системе водоснабжения несложно, рабочее воображение и минимальный багаж знаний по физики помогут в этом. Представьте, как по трубопроводу течет вода, она движется с определенной скоростью и оказывает на стенки труб давление в 2-3 атмосферы.

Но вдруг на пути водяного потока возникает препятствие, это может быть:

  • Завоздушенность — воздушная пробка, возникающая вследствие неправильной эксплуатации водопровода, его неграмотной конструкции и т.д. (все знают, что нужно открывать клапаны в системах водопровода, чтобы спускать воздух перед подачей воды, обычно речь идет о системах отопления).
  • Запорная арматура — элемент крана, вентильного или шарового, перекрывающий трубу с целью остановки воды и препятствования ее дальнейшему течению по системе водоснабжения. Каждая система теплоснабжения и другие водопроводы оснащены такими кранами на определенных участках.

Сталкиваясь с подобным препятствием, водяной поток не может мгновенно снизить свою скорость, а это значит, что при той же скорости на определенном участке возникает попытка увеличения объема жидкости, то есть резкий скачок давления. Труба в такой ситуации испытывается на прочность колоссальным поднятием атмосфер и может не выдержать.

Гидроудар в системе отопления причины возникновения

Магистраль отопления частного дома включает в себя множество элементов: трубопроводы разного диаметра, вентиля и прочие элементы, которые влияют на перепады давления теплоносителя. А также неправильный монтаж или комплектация приборов и устройств системы отопления может спровоцировать появления скачков давления.

Ни какое действие не происходит само по себе, а в случае с гидроударом не остается без последствий. Если произошел скачек давления, значит на это были причины. Самые распространенные из них:

  • насос дал сбой в работе;
  • в системе отопления присутствует воздушные пробки;
  • запорная арматура (вентиль) слишком резко сработала и спровоцировала гидроудар в системе отопления;
  • соединение разных по диаметру трубопроводов;
  • засорение фильтров.

Насос может выйти из строя, не только из-за своего низкого качества, но и по многим другим причинам, например, при падении уровня воды в скважине или если он изначально был подобран неправильно. Существуют способы предотвратить гидравлический удар в системе отопления при отключении насоса, например, источник бесперебойного питания.

Воздушные пробки в системе отопления могут возникнуть не только в жилом частном доме, но и в многоквартирном. В первом случае это происходит, когда не полностью стравили воздух при запуске отопления. А в городской квартире можно слышать грохот от гидроударов при запуске горячей воды при наступлении отопительного сезона. Наверняка вы слышали звуки при запуске отопления – это и есть то самое явление. Для предотвращения прорыва труб в городских квартирах на ТЭЦ вашего города делают первый запуск теплоносителя под небольшим давлением и не очень высокой температурой. А с наступлением холодов повышают эти параметры.

Шаровый вентиль имеет такую конструкцию, что неизменно провоцирует возникновение скачка давления теплоносителя. Ведь закрытие происходит не плавно, как при использовании винтовых кранов, а резко. В результате вода сталкивается препятствием на своем пути из-за чего и происходит гидроудар.

Стыки разных по диаметру трубопроводов сами по себе являются препятствием на пути теплоносителя и слабым звеном во всей системе отопления. Эти места подвергаются воздействию потока теплоносителя и испытывают большие нагрузки. Именно в них чаше всего возникает течь.

Засорение фильтра препятствует нормальному функционированию насоса, что приводит к перепаду давления.

Что должно присутствовать в системе отопления частного дома, чтобы избежать гидроудар

  • специальная запорная арматура с плавным закрытием – при закупке элементов отопительной системы стоит отдать предпочтение кранам с плавным закрытием. Это убережет систему от резкого скачка давления и теплоноситель будет более мягко воздействовать на трубопровод и арматуру при перекрытии кранов, что убережет от сильного гидравлического удара;
  • автоматическая система регулирующая поток теплоносителя – насос с такой модернизации плавно пускает жидкость, тем самым боле бережно воздействует на систему отопления в целом. Работая в автоматическом режиме, такое приспособление самостоятельно регулирует подачу жидкости без участия человека;
  • гидроаккумулятор (расширительный бачек) – это устройство должно обязательно присутствовать в системе отопления частного дома. Ведь оно компенсирует перепады давления, снижая нагрузку. Принцип его действия следующий: при гидроударе внутри бачка резиновая мембрана выдавливается водяным столбом. Этим компенсируется давление внутри отопительной системы;
  • термостат с пружинным механизмом – принцип его действия идентичен гидроаккумулятору с той лишь разницей, что в роли компенсатора давления выступает не резиновая мембрана, а пружинный механизм;
  • мембранный гаситель гидроударов – этот прибор устанавливается на горячую и холодную воды, для того чтобы гасить перепады давления при открытии и закрытии кранов. Принцип действия идентичен двум предыдущим приспособлениям.

Используя эти приспособления можно исключить возникновения гидроударов отопления частного дома, если применить их во время монтажа новой системы. Также существуют способы предотвратить возникновение этого явления в уже функционирующей системе.

Гидравлический удар в трубопроводах » СтудИзба

Гидравлический удар в трубопроводах

Скорость распространения гидравлической ударной волны в трубопроводе

Ударное давление

Протекание гидравлического удара во времени

Разновидности гидроудара

Теоретическое и экспериментальное исследование гидравлического удара в трубопроводах впервые было проведено известным русским учёным Николаем Егоровичем Жуковским в 1899 году. Это явление связано с тем, что при быстром закрытии трубопровода, по которому течёт жидкость, или быстром его открытии (т.е. соединении тупикового трубопровода с источником гидравлической энергии) возникает резкое, неодновременное по длине трубопровода изменение скорости и давления жидкости. Если в таком трубопроводе измерять скорость жидкости и давление, то обнаружится, что скорость меняется как по величине, так и по направлению, а давление — как в сторону увеличения, так и в сторону уменьшения по отношению к начальному. Это означает, что в трубопроводе возникает колебательный процесс, характеризующийся периодическим повышением и понижением давления. Такой процесс очень быстротечен и обусловлен упругими деформациями стенок трубы и самой жидкости.

Подробно рассмотрим его картину для случая полного и прямого гидравли


ческого удара.

Будем считать, что в исходном состоянии трубопровод открыт. Жидкость движется по трубе со скоростью V>0.


Давление в жидкости равно Ро.

Трубопровод мгновенно закрывается. Слои жидкости, натолкнувшись на заслонку крана, останавливаются. Кинетическая энергия жидкости переходит в деформацию стенок трубы (труба у заслонки расширится), и жидкости (давление у заслонки повысится на величину Р). На остановившиеся у заслонки слои жидкости будут набегать следующие, вызывая сжатие жидкости и рост давления, который будет с некоторой скоростью распространяться в сторону противоположную направлению скорости движения жидкости. Переходная область в сечении AA называется ударной волной. Скорость перемещения сечения AA(фронта волны) называется скоростью распростра


нения ударной волны и обозначается буквой а. Такой процесс проходит в период времени .

В момент времени  весь трубопровод окажется расширенным, а жидкость сжатой и неподвижной. Но такое состояние неравновесное. Поскольку у источника давление Ро, а в трубе Р = Ро+Р, то жидкость начнёт двигаться в сторону меньшего давления, т.е. из трубы в резервуар.


Этот процесс начинается от начала трубы. Жидкость будет вытекать из трубы в резервуар с некоторой скоростью V. Сечение AA (ударная волна) начнёт перемещаться к концу трубы со скоростью а. При этом давление в трубе будет снижаться до P0.

Этот процесс будет происходить в период времени  .


Энергия деформации жидкости переходит в кинетическую энергию, и жидкость приобретает некоторую скорость V, но направленную в обратную сторону. Во всём трубопроводе устанавливается давление Ро. По инерции жидкость продолжает двигаться к началу трубы и начинает испытывать деформации растяжения, что приводит к уменьшению давления вблизи заслонки.

Возникает отрицательная ударная волна, движущаяся от конца трубы к началу со скоростью а, и за фронтом волны остается сжатая труба. Кинетическая энергия снова превращается в энергию деформации (сжатия).

В момент времени  вся труба окажется сжатой, а волна достигает начала трубы. Давление вблизи источника выше, чем во фронте. Из-за этого слои жидкости под действием перепада давления начинают двигаться к концу трубы (к заслонке) с некоторой скоростью V>0, а давление поднимается до Ро.


Поэтому период времени  происходит процесс выравнивания давления в трубопроводе. При этом происходит движение ударной волны со скоростью а от начала трубы к её концу.

В момент времени  ударная волна достигает конца трубы.


Далее весь процесс начинается сначала. При исследовании этого процесса возникает три основных вопроса. Первый  — какова скорость протекания этого колебательного процесса и от чего она зависит? Второй вопрос – как сильно меняется давление в трубопроводе за счёт описанного процесса? И третий – как долго может протекать этот процесс?

Скорость распространения гидравлической ударной волны в трубопроводе

Изменения давления и скорости потока в трубопроводах происходят не мгновенно в связи с упругостью твёрдых стенок трубы и сжимаемостью рабочей среды, а с некоторой конечной скоростью, обусловленной необходимостью компенсации упругих деформаций жидкости и трубы. Рассмотрим случай когда в трубопроводе длиной L и площадью сечения ω под давлением Р находится жидкость, плотность которой ρ. Предположим, что в момент времени t в сечении 1 – 1 давление повысится на величину dp. Это повышение вызывает увеличение плотности на величину dρ, а также расширение внутреннего диаметра трубы. Следовательно, площадь проходного сечения увеличится на величину dω. В результате увеличится объём W участка трубы на величину dW. За счёт этого произойдет увеличение массы жидкости находящейся в трубе на участке длиной L. Масса увеличится за счёт увеличения, во-первых, плотности жидкости, во-вторых, за счёт увеличения объёма W.

Такая ситуация рассматривалась при выводе уравнения неразрывности потока в дифференциальной форме, с той только разницей, что там рассматривалось лишь изменение массы во времени, без учёта вызвавших это изменение причин . По аналогии с приведённым уравнением запишем выражение, описывающее изменение массы за счёт изменения давления

.

Жидкость под действием указанного повышения давления устремится с некоторой скоростью а в слои с меньшим давлением, в которых также будет повышаться плотность и увеличиваться напряжение в стенках трубопровода, способствующее увеличению площади трубопровода. В связи с этим потребуется некоторое время на распространение этих деформаций вдоль трубопровода.

С другой стороны, перемещение массы dm за время dt происходит под влиянием результирующей Fр сил давления, действующих вдоль линии движения на торцовые поверхности цилиндрического объёма длиной L

 

В этом случае уравнение импульса силы может быть представлено в следующем виде

.

Отсюда

.

Имея в виду, что , и подставив это в предыдущее выражение, получим

Заметим, что произведение

Приравняем оба выражения для  и получим:

.

Выразим из последнего равенства величину a2

Разделим числитель и знаменатель на W, а первое слагаемое в знаменателе искусственно умножим и разделим на ρ:

.

Обратим внимание на то, что  а . После подстановки этих равенств в последнее выражение и извлечения корня получим выражение для скорости распространения ударной волны, которая, по сути, является скоростью распространения упругих деформаций жидкости в трубе.

Здесь первое слагаемое под корнем характеризует упругие свойства рабочей среды (жидкости), а – второе упругие силы материала трубы.

Рассмотрим подробнее эти слагаемые.

Как известно из гидростатики, сила, действующая на цилиндрическую поверхность, равна произведению давления на проекцию площади этой поверхности в направлении действия силы. На рассматриваемый участок трубы с толщиной стенок δ, длиной L и диаметром D действует изнутри давление P. Вследствие этого возникает разрывающая сила F, равная

.

В стенках трубы возникает сила сопротивления , равная произведению площади сечения стенок трубы  на внутренние напряжения в материале стенок трубы, т.е.

.

Если приравнять две эти силы, получим равенство

,

из которого найдём выражение, определяющее  внутреннее напряжение в стенках трубы :

Полагая, что относительное увеличение диаметра трубы, равное , прямо пропорционально напряжению в стенках трубы, можно записать

где Ет  — коэффициент пропорциональности, который является модулем упругости материала трубы.

Из двух последних выражений следует, что абсолютное приращение радиуса сечения трубы может быть выражено формулой

Запишем выражение, определяющее увеличение площади сечения трубы:

где  ω – начальная площадь сечения трубы,

ωр – площадь сечения трубы при давлении P.

Пренебрегая малой величиной высшего порядка ΔR2 и подставив выражение для ΔR, получим

Продифференцировав это выражение по P и рассматривая ω как функцию, зависящую от P, получим:

В итоге слагаемое, описывающее упругие свойства материала трубы в выражении для скорости распространения ударной волны, можно представить в следующем виде:

Теперь рассмотрим слагаемое, описывающее упругость жидкости . Ранее при рассмотрении свойств жидкости было установлено, что если изменение объёма происходит за счёт изменения плотности, то можно определить коэффициент сжимаемости жидкости βw:

Часто этот коэффициент выражают через обратную величину, называемую модулем упругости жидкости Eж, т. е.:

Отсюда следует, что второе слагаемое, характеризующее упругие свойства рабочей среды, может быть представлено в виде:

Таким образом, окончательно выражение для скорости распространения ударной волны в упругом трубопроводе можно переписать в следующем виде:

где   — плотность жидкости,

D — диаметр трубопровода,

 — толщина стенки трубопровода,

Ет – объёмный модуль упругости материала трубы,

Еж — объёмный модуль упругости жидкости.

Из формулы следует, что скорость распространения ударной волны зависит от сжимаемости жидкости и упругих деформаций материала трубопровода.

Ударное давление

Для выяснения величины подъёма давления Р применим теорему о сохранении количества движения (импульса силы). Для этого рассмотрим элементарное перемещение участка жидкости длинной dL за время dt. Учтём, что  при прямом гидроударе кинетическая энергия ударной волны полностью превращается в потенциальную, т.е. скорость жидкости V становится равной нулю 0.

Импульс силы, под действием которого происходит это движение, равен:

.

Изменение количества движения рассматриваемого объёма длиной dL будет:

,

Повторимся: скорость во второй скобке равна 0, т.к. рассматриваемый объём жидкости останавливается.

Приравнивая эти выражения по теореме о сохранении количества движения, получим:

.

Отсюда выразим  величину повышения давления ΔP:

.

После замены дроби скоростью a, окончательно будем иметь:

,

где  V — скорость жидкости в трубопроводе до возникновения гидроудара,

  — плотность жидкости,

 а – скорость распространения ударной волны.

Если в эту формулу подставить выражение описывающее a, то придём к формуле, носящей имя Жуковского:


Протекание гидравлического удара во времени

Рассмотренный ранее процесс распространения ударной волны в трубопроводе не происходит бесконечно долго. В опытах Жуковского было зарегистрировано по 12 полных циклов. При этом величина ударного давления P постепенно уменьшалась.

Уменьшение давления вызвано трением в трубе и рассеиванием энергии в резервуаре, обеспечивающем исходный напор. На графике сплошной заштрихованной областью показано теоретическое изменение давления при гидроударе. Прерывистой линией показан примерный вид действительной картины изменения давления.

Разновидности гидроудара

Если трубопровод перекрыть не полностью, то скорость жидкости изменится не до нуля, а до значения V1 . В этом случае может возникнуть неполный гидроудар, при котором величина повышения давления (ударное давление) будет меньше, чем в первом случае, а формула Жуковского примет вид

Приведённые формулы справедливы только в том случае, если время закрытия крана tЗАК меньше фазы гидравлического удара , т.е. .

В том случае, если , возникает непрямой гидроудар. Для него характерно то, что отразившаяся от резервуара в начале трубы ударная волна возвращается к заслонке крана раньше, чем он будет полностью закрыт. Величина Р в этом случае будет меньше, чем при прямом гидроударе. Её приближенно (считая, что изменение Р в трубопроводе происходит по линейному закону) можно определить по формуле:


В гидроприводах технологических машин, станков и т.п. очень часто возникает так называемый гидроудар в тупиковом трубопроводе. В этом случае возможно увеличение ударного давления в два раза. Пояснить это можно следующим рисунком.

Трубопровод с низким начальным давлением отделён от источника гидравлической энергии высокого давления. При мгновенном (в реальных гидросистемах 0,008 – 0,001с) открытии заслонки крана давление в начале трубопровода внезапно возрастает на величину Р— РО.

Возникает волна повышенного давления, которая движется к концу трубопровода со скоростью а. Скорость же движения жидкости становится равной , а давление отличается от Р0 на величину Р. В момент времени    волна достигнет тупика, и вся труба окажется расширенной.

Т.к. дальнейшее движение жидкости невозможно, то передние её слои остановятся, а последующие по инерции будут набегать на них. Это вызовет дополнительное повышение давления в конце трубы на величину Р. Возникнет вторая, отражённая волна, которая движется к началу трубопровода со скоростью а. Давление за фронтом ударной волны становится Р2=Ро+2Р, а скорость жидкости V=0.

Далее весь процесс продолжается как в случае полного гидроудара, но колебания давления происходят относительно величины Р1=Ро+Р, а не относительно Ро.

Способы борьбы с ударным повышением давления.

   Самый эффективный способ заключается в оборудовании сети регулирующими устройствами ( вентили и задвижки), которые не позволяют осуществлять  быстрое и изменение скорости в трубах.

   Воздушные колпаки  или компенсаторы ограничивают распространение удара и ослабляют действие.

На незащищенном участке трубы ударное повышение давления действует только в течении  

 Вместо  Таким образом импульс силы ослабевает (уменьшается) и трубы не рвутся.

Что такое гидравлический удар? Причины гидравлического удара в трубах

Гидравлический удар в трубопроводах представляет собой возникающий мгновенно скачок давления. Перепад связан с резким изменением в скорости движения водного потока. Далее подробнее узнаем, как возникает гидравлический удар в трубопроводах.

гидравлический удар

Основное заблуждение

Ошибочно считается гидравлическим ударом результат заполнения жидкостью надпоршневого пространства в двигателе соответствующей конфигурации (поршневом). Вследствие этого поршень не доходит до мертвой точки и начинает сжатие воды. Это, в свою очередь, приводит к поломке двигателя. В частности, к излому штока либо шатуна, обрыву шпилек в головке цилиндра, разрывам прокладок.

Классификация

В соответствии с направлением скачка давления гидравлический удар может быть:

  • Положительным. В этом случае повышение давления происходит вследствие резкого включения насоса либо перекрытия трубы.
  • Отрицательным. В данном случае речь идет о падении давления в результате открытия заслонки либо выключения насоса. гидравлический удар в трубопроводах

В соответствии со временем распространения волны и периодом перекрытия задвижки (либо прочей запорной арматуры), в течение которого образовался гидравлический удар в трубах, его разделяют на:

  • Прямой (полный).
  • Непрямой (неполный).

В первом случае фронт образовавшейся волны двигается в сторону, обратную первоначальному направлению водяного потока. Дальнейшее движение будет зависеть от элементов трубопровода, которые располагаются до закрытой задвижки. Вполне вероятно, что фронт волны пройдет неоднократно прямое и обратное направление. При неполном гидравлическом ударе поток не только может начать двигаться в другую сторону, но и частично пройти далее через задвижку, если она закрыта не до конца.

гидравлический удар в трубах

Последствия

Самым опасным считается положительный гидравлический удар в системе отопления либо водоснабжения. При слишком высоком скачке давления может повредиться магистраль. В частности, на трубах возникают продольные трещины, что приводит впоследствии к расколу, нарушению герметичности в запорной арматуре. Из-за этих сбоев начинает выходить из строя водопроводное оборудование: теплообменники, насосы. В связи с этим гидравлический удар необходимо предотвращать либо снижать его силу. Давление воды становится максимальным в процессе торможения потока при переходе всей кинетической энергии в работу по растяжению стенок магистрали и сжатия столба жидкости.

Исследования

Экспериментально и теоретически изучал явление в 1899 г. Николай Жуковский. Исследователем были выявлены причины гидравлического удара. Явление связано с тем, что в процессе закрытия магистрали, по которой идет поток жидкости, либо при ее быстром закрытии (при присоединении тупикового канала с источником гидравлической энергии), формируется резкое изменение давления и скорости воды. Оно не одновременно по всему трубопроводу. Если в данном случае произвести определенные измерения, то можно выявить, что изменение скорости происходит по направлению и величине, а давления – как в сторону снижения, так и увеличения относительно исходного. Все это означает, что в магистрали имеет место колебательный процесс. Он характеризуется периодическим понижением и повышением давления. Весь этот процесс отличается быстротечностью и обуславливается упругими деформациями самой жидкости и стенок трубы. Жуковским было доказано, что скорость, с которой осуществляется распространение волны, находится в прямой пропорциональной зависимости от сжимаемости воды. Также значение имеет величина деформации стенок трубы. Она определяется модулем упругости материала. Скорость волны зависит и от диаметра трубопровода. Резкий скачок давления не может возникнуть в магистрали, наполненной газом, поскольку он достаточно легко сжимается.

гидравлический удар в системе отопления

Ход процесса

В автономной системе водяного снабжения, например загородного дома, для создания давления в магистрали может использоваться скважинный насос. Гидравлический удар возникает при внезапном прекращении потребления жидкости – при перекрытии крана. Водяной поток, совершавший движение по магистрали, неспособен останавливаться мгновенно. Столб жидкости по инерции врезается в водопроводный «тупик», который образовался при закрытии крана. От гидравлического удара реле в данном случае не спасает. Оно только лишь реагирует на скачок, отключая насос после того, как будет перекрыт кран, а давление превысит максимальное значение. Выключение, как и остановка водяного потока, не осуществляется мгновенно.

причины гидравлического удара

Примеры

Можно рассмотреть трубопровод с постоянным напором и движением жидкости, имеющим постоянный характер, в котором был резко закрыт клапан или внезапно перекрыта задвижка. В скважинной системе водоснабжения, как правило, гидравлический удар возникает в случае, когда обратный затворный элемент располагается выше, чем статический уровень воды (на 9 метров и более), либо имеет утечку, в то время как находящийся выше следующий клапан удерживает давление. И в том, и в другом случае имеет место частичное разряжение. В следующем пуске насоса протекающая с высокой скоростью вода будет заполнять вакуум. Жидкость соударяется с закрытым обратным клапаном и потоком над ним, провоцируя скачок давления. В результате происходит гидроудар. Он способствует не только образованию трещин и разрушению соединений. При возникновении скачка давления повреждается насос или электродвигатель (а иногда и оба элемента сразу). Такое явление может возникнуть в системах объемного гидравлического привода, когда применяется золотниковый распределитель. При перекрытии золотником одного из каналов нагнетания жидкости возникают процессы, описанные выше.

защита от гидравлических ударов

Защита от гидравлических ударов

Сила скачка будет зависеть от скорости потока до и после перекрытия магистрали. Чем интенсивнее движение, тем сильнее удар при внезапной остановке. Скорость самого потока будет зависеть от диаметра магистрали. Чем больше сечение, тем слабее движение жидкости. Из этого можно сделать вывод о том, что использование крупных трубопроводов снижает вероятность гидроудара или ослабляет его. Еще один способ заключается в увеличении продолжительности перекрытия водопровода либо включения насоса. Для осуществления постепенного перекрытия трубы используются запорные элементы вентильного типа. Специально для насосов применяются комплекты по плавному пуску. Они позволяют не только избежать гидроудара в процессе включения, но и существенно увеличивают эксплуатационный срок насоса.

Компенсаторы

Третий вариант защиты предполагает применение демпферного устройства. Оно представляет собой мембранный расширительный бак, который способен «гасить» возникающие скачки давления. Компенсаторы гидравлического удара работают по определенному принципу. Он заключается в том, что в процессе увеличения давления происходит перемещение поршня жидкостью и сжатие упругого элемента (пружины или воздуха). В результате ударный процесс трансформируется в колебательный. Благодаря рассеиванию энергии последний затухает достаточно быстро без существенного повышения давления. Компенсатор применяют в линии наполнения. Его заряжают сжатым воздухом при давлении 0,8-1,0 МПа. Расчет производится приближенно, в соответствии с условиями поглощения энергии движущего столба воды от наполнительного бака или аккумулятора до компенсатора.

Отправить ответ

avatar
  Подписаться  
Уведомление о