Что является заземляющим контуром: Что является заземляющим контуром — Стройпортал Biokamin-Doma.ru – Вопрос: Что является заземляющим контуром? : Смотреть ответ

Содержание

Что является заземляющим контуром — Всё о электрике

Что является заземляющим контуром?

ОтветРезультат
Проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через проводящую средуНеправильный ответ
Совокупность заземлителя и заземляющих проводниковНеправильный ответ
Заземляющийпроводник в виде замкнутой петли вокруг здания в земле или на ее поверхностиПравильный ответ

2. Какую группу по электробезопасности должен иметь наблюдающий, осуществляющий наблюдение за работающими, выполняющими неотложные работы в электроустановках напряжением выше 1000 В?

ОтветРезультат
Группу IIIНеправильный ответ
Группу IVПравильный ответ
Группу VНеправильный ответ

Допускается ли установка штепсельных розеток в помещениях складов?

ОтветРезультат
При подводе проводов сверху допускается установка на высоте до 1,5 мНеправильный ответ
Допускается установка штепсельных розеток в специально приспособленных для этого плинтусах, выполненных из несгораемых материаловНеправильный ответ
Запрещается в помещениях складов устанавливать штепсельные розеткиПравильный ответ

4. На какой срок разрешается выдавать наряд со дня начала работ в действующих электроустановках?

ОтветРезультат
На срок не более 15 календарных днейПравильный ответ
На срок не более 18 календарных днейНеправильный ответ
На срок не более 20 календарных днейНеправильный ответ
На срок не более 25 календарных днейНеправильный ответ

5. Что является определением понятия “Эксплуатация”?

ОтветРезультат
Стадия жизненного цикла изделия, на которой реализуется, поддерживается или восстанавливается его качествоПравильный ответ
Комплекс мероприятий, включающий в себя техническое обслуживание инженерных систем и коммуникацийНеправильный ответ
Поддержание жизненного цикла изделия с целью его соответствия установленным требованиям технической документацииНеправильный ответ

В каких случаях накладывают кровоостанавливающий жгут?

ОтветРезультат
При носовом кровотеченииНеправильный ответ
При большой кровопотери (лужа крови диаметром более метра), независимо от типа кровотечения (венозное или артериальное)Правильный ответ
При венозном кровотеченииНеправильный ответ
При ампутации пальцев кисти или стопыНеправильный ответ

Какие требования предъявляются к внешнему виду диэлектрических ковров?

ОтветРезультат
Они должны быть с ровной поверхностью, разноцветные, шириной до 1 мНеправильный ответ
Они должны быть с рифленой лицевой поверхностью, разноцветные, длиной до 3 мНеправильный ответ
Они должны быть с рифленой лицевой поверхностью, одноцветные с минимальными размерами 500 на 500 ммПравильный ответ
Особых требований не предусмотреноНеправильный ответ

8. Кто утверждает список работников, имеющих право выполнять оперативные переключения?

ОтветРезультат
Ответственный за электрохозяйство ПотребителяНеправильный ответ
Главный энергетик ПотребителяНеправильный ответ
Руководитель ПотребителяПравильный ответ
Никто не утверждаетНеправильный ответ

9. Являются ли лакокрасочные покрытия изоляцией, защищающей от поражения электрическим током?

ОтветРезультат
Не являютсяНеправильный ответ
ЯвляютсяНеправильный ответ
Не являются, за исключением случаев, специально оговоренных техническими условиями на конкретные изделияПравильный ответ

10. Какую группу по электробезопасности должны иметь члены бригады, выполняющие неотложные работы в электроустановках до и выше 1000 В?

ОтветРезультат
Не ниже IVНеправильный ответ
Группу IIIПравильный ответ
Группу II или IIIНеправильный ответ

Билет 87

1. В каком случае допускающему из числа оперативного персонала разрешается предоставлять право после окончания работы в электроустановке включить ее без получения дополнительного разрешения или распоряжения (если к работам на электроустановке или ее участке не допущены другие бригады)?

Дата добавления: 2019-07-15 ; просмотров: 76 ; ЗАКАЗАТЬ РАБОТУ

Контур заземления

Система подачи электроэнергии соединяется через распределительный щит с внутренней проводкой помещений и обеспечивает питанием все имеющиеся бытовые приборы и оборудование. В процессе эксплуатации вполне возможно возникновение неисправностей и аварийных ситуаций, приводящих к токовым утечкам. В связи с этим в каждом доме выполняются защитные мероприятия, среди которых важную роль играет контур заземления, устанавливаемый отдельно или совместно с устройствами защитного отключения.

Данные системы монтируются в соответствии с ПУЭ, защищая людей и оборудование от поражающего действия электротока.

Общие сведения о заземляющем контуре

Стандартный контур заземления представляет собой комплекс металлических конструкций, размещенных в земле, на определенных расстояниях между собой и незначительном удалении от защищаемого объекта.

Данная схема выполняет следующие функции:

  • Защищают людей от поражения электротоком, а приборы и оборудование – от перепадов напряжения.
  • За счет сопротивления не дают энергии бесконтрольно растекаться в окружающей среде.
  • Обеспечивают защиту от последствий ударов молнии.

Если требуется сделать наружный контур заземления в этом случае большинство конструкций изготавливается из стальных труб, уголков, гладких прутков и других профильных материалов. Длина каждого элемента не превышает 3 метров. Они забиваются кувалдой в твердый грунт, засыпаются землей и утрамбовываются. Нежелательно использовать бетон, поскольку в дальнейшем ремонт таких конструкций будет невозможен.

Забитые электроды соединяются между собой тонкой стальной полосой, толщиной не менее 4 мм. Крепления осуществляются сваркой или болтовыми соединениями. Далее конструкция соединяется специальным заземляющим кабелем со всеми приборами, находящимися в доме, в первую очередь с высоким потреблением нагрузки. Для повышения качества работы системы нередко на объекте дополнительно устраивается внутренний контур заземления.

Данные для расчетов конструкции можно получить путем проведения необходимых исследований. В соответствии с типом и характером грунта определяется глубина залегания электродов, их количество и другие параметры. Выбирается наиболее подходящий материал для изготовления конструктивных элементов. Идеальными вариантами под контур заземляемого объекта считаются глинистые грунты, суглинки и черноземы.

Запрещается устанавливать заземление в каменистых или скальных грунтах, поскольку они являются проводниками тока и обладают низким сопротивлением.

Требования ПУЭ к контуру заземления

Прежде чем проектировать и на практике осуществлять устройство контура заземления, следует внимательно изучить требования ПУЭ по данному вопросу. Это позволит избежать ошибок, качественно выполнить соединения и подключения, соблюдая все нормативы и стандарты. Изучив нормативную документацию, вполне возможно самостоятельно изготовить внешний контур заземления, при наличии теоретических знаний и практических навыков.

В соответствии с ПУЭ, каждый выход из здания должен иметь повторный контур заземления. Для этих целей рекомендуется воспользоваться естественными заземлителями из числа расположенных рядом металлических и железобетонных конструкций. Большая часть их поверхности должна контактировать с грунтом. Если контур заземления дома соединяется с конструкциями, расположенными в условиях агрессивной среды, они должны быть защищены специальным покрытием.

Правилами определяются и те элементы, которые не могут служить контуром заземления. В первую очередь, это изделия из железобетона, находящиеся под напряжением, трубопроводы для транспортировки горючих веществ, трубы канализации и отопления. Если без естественных заземлителей никак не обойтись, необходимо выполнить предварительные расчеты и решить, как правильно сделать выбор той или иной конструкции, после чего выбирается наиболее оптимальная схема подключения.

При возведении новых зданий применяются искусственные заземляющие контуры, монтируемые в процессе строительства. Данный способ заземления используется чаще всего, поскольку на местах не всегда имеется возможность воспользоваться естественными факторами. Следует учитывать и сопротивление грунтов, непосредственно влияющее на работоспособность систем, в том числе и на контур заземления ТП.

Если почва постоянно влажная, то ее сопротивление всегда будет ниже допустимого уровня. Эти и другие параметры нужно брать во внимание при расчетах и разработке конструкции заземляющего контура.

Типы и конструкции заземления

В частных домах требования ПУЭ допускают использование различных типов заземлений. В конструкцию обычного контура входят вертикальные электроды и одна горизонтальная перемычка. Все элементы должны быть одного размера и с круглым сечением в разрезе. Обычно они изготавливаются из толстой арматуры, труб или стальных прутьев.

Классической фигурой является контур заземления с конфигурацией треугольник, состоящий из арматурных прутьев в количестве 3 штук, размером 2 метра и более. Чем больше расстояние между прутками, тем эффективнее будет работать система. Минимальная дистанция составляет 1,5 м.

После того как электроды забиты в грунт, они соединяются между собой. На каждую сторону устанавливается отдельная полоса, закрепляемая на одной и той же высоте. Это и есть медные или стальные горизонтальные заземлители устанавливаемые на верхнюю часть штырей.

Место для установки контура в частном доме выбирается там, куда люди заходят очень редко. Предпочтение отдается северной стороне, которая плохо освещается и способствует сохранению в почве большого количества влаги. Расстояние от контура до стены дома должно быть не менее 1 метра.

В другом варианте заземление имеет конструкцию глубинного типа. В нем практически отсутствуют минусы, характерные для обычного способа, поскольку используется модульно-штыревая система. Весь комплект для сборки, сделанный на заводе, в техническом плане подтверждается сертификатом. Основным преимуществом данных систем является их соответствие нормативам, они отличаются повышенным сроком службы – от 30 лет и выше.

Электрический заряд стабильно растекается, независимо от погодных условий. Глубина залегания электродов достигает 30 метров, обеспечивая качество и надежность заземления, а вся собранная схема не требует постоянных проверок.

Инструменты и материалы

Для расчета материалов проводятся необходимые измерения, после чего составляется подробная схема контура с привязкой к конкретному зданию.

Затем нужно подготовить инструменты. Обязательно понадобится лопата, кувалда, набор гаечных ключей, перфоратор, болгарка с отрезными кругами, сварочный аппарат с электродами, измерительные приборы для замеров тока, напряжения и сопротивления.

Перечень материалов состоит из следующих наименований:

  • Стальные уголки для электродов с полками 50х50 или 60х60 мм, длиной от 2 метров и выше. Технические требования ПУЭ допускают использование вместо них стальных труб в качестве заземлителя, диаметром не ниже 32 мм. Средняя толщина стенок составляет 3-4 мм и более.
  • Материалы для горизонтальных заземлителей в количестве 3 металлических полос. Длина соответствует размеру стороны треугольника, толщина – 4-6 мм, ширина – от 4 до 6 см.
  • Соединительная полоса из нержавеющей стали, соединяющая заземляющий контур с крыльцом здания. Размеры сечения составляют 40х4 или 50х5 мм.
  • Медный токопровод, сечением не менее 6-7 мм 2 .
  • Набор болтов М8, М10.

Технические характеристики проводников выбираются по специальным таблицам. Их размеры должны быть не меньше указанных, все отклонения допускаются только в большую сторону.

Монтажные работы

После того как было определено место установки заземляющего контура, составлен чертеж, выполнены все расчеты и подготовительные работы, можно приступать к непосредственному монтажу конструкций и решать, как сделать контур заземления в данных условиях.

Вначале нужно выкопать траншею глубиной от 70 до 100 см. В вершинах треугольника с помощью кувалды забиваются уголки, обеспечивающие первоначальное сопротивление системы. Средняя глубина забивки составляет 2-3 м. Если грунт слишком твердый и электроды в него входят плохо, необходимо использовать специальный бур, высверлить отверстия и уже в них вставить заземлители.

Перед монтажом концы металлических электродов рекомендуется заострить, чтобы они легче входили в грунт. Штыри не нужно забивать полностью в землю, над ее поверхностью должно оставаться примерно 30 см для крепления. Далее горизонтальные и вертикальные части свариваются между собой, и вся конструкция подключается к металлической полосе, которая, в свою очередь, соединяется с заземляющим проводником.

Затем этот заземлительный провод соединяется с шиной, установленной в распределительном щитке. В местах соединений производится обработка антикоррозийными составами.

Проверка заземляющего контура

После решения, как сделать контур заземления, следует проверить работоспособность полученной конструкции. Проверка начинается с мест соединений. С этой целью выполняется простукивание молотком сварных швов, а болтовые соединения проверяются гаечными ключами.

Для замеров сопротивления привлекаются квалифицированные специалисты, которые составляют акт по итогам проверки. В системе ТТ этот показатель должен быть низким, а в системе TN-C-S, наоборот, с более высоким значением.

Если нет возможностей для официальной проверки, она легко делается своими силами. В этом случае следует выяснить, смогут ли бытовые приборы нормально работать при токе, максимальном для установленного автоматического выключателя. С этой целью используется специальная схема, когда берется переносная розетка, от которой один провод подключается к фазе, а второй – к заземляющему контуру.

После этого в розетку включается заданная нагрузка мощностью в пределах 2 кВт. Если она работает устойчиво, а падение напряжения между фазным и заземляющим проводником не превышает 10В, значит заземление хорошее, выполняет требования ПУЭ и свои функции в полном объеме. Данная операция требует осторожности и соблюдения мер электробезопасности, особенно в местах непосредственного расположения защитного контура.

Контур заземления

Контур заземления классически представляет собой группу соединенных горизонтальным проводником вертикальных электродов небольшой глубины, смонтированных около объекта на относительно небольшом взаимном расстоянии друг от друга.

В качестве заземляющих электродов в таком заземляющем устройстве традиционно использовали стальной уголок либо арматура длинами 3 метра, которые забивали в грунт с помощью кувалды.

В качестве соединительного проводника использовали стальную полосу 4х40 мм, которая укладывалась в заранее подготовленную канаву глубиной 0,5 – 0,7 метра. Проводник присоединялся к смонтированным заземлителям электро- или газосваркой.

Контур заземления для экономии места обычно «сворачивают» вокруг здания вдоль стен (по периметру). Если взглянуть на этот заземлитель сверху, можно сказать, что электроды смонтированы по контуру здания (отсюда и название).

Таким образом контур заземления – это заземлитель, состоящий из нескольких электродов (группы электродов), соединенных друг с другом и смонтированных вокруг здания по его контуру.

Контур заземления: классический или современный?

Большая площадь установкиКрайне малая площадь установки (вплоть до монтажа в подвале дома)Необходимы сварные работыВсе элементы заземлителя легко соединяются резьбовыми соединениями (не влияет на механические и электрические свойства заземлителя)Требуется резка материалаВсе детали изготовлены промышленным способом с гарантировано высоким качествомТребуется транспортировка грузовым автомобилемПолутораметровая упаковка штырей и коробка с дополнительными элементами умещается в обычный легковой автомобильДлительный и физически тяжелый процесс установки, требующий привлечения сварщикаБыстрая установка своими силами. Для установки заземлителя требуется только один человек.
Элементы конструкции имеют вес не более 2х килограмм.

Классический контур заземления

Классический контур заземления из стального уголка и арматуры имеет один большой плюс – его цена. Использование дешевого стального проката (уголок и полоса) удешевляет стоимость деталей до минимума. Но с другой стороны у классической схемы есть масса минусов:

  • большая площадь заземлителя (часто необходимо более 10 электродов)
  • необходимость резки материала на куски нужного размера (по 2-6 метра)
  • необходимость транспортировки материала до места установки грузовым автомобилем
  • трудоемкий и длительный процесс установки, требующий забивания уголков-электродов и проведения сварочных работ, требующих квалифицированных специалистов и специального оборудования
  • недолгий срок службы такого заземления
  • необходимость получения множества разрешений при строительстве заземления в городской черте (особенно при плотной застройке)

Современный контур заземления

Преодолеть недостатки классического контура заземления помогли технологии и промышленное производство компонентов. Заложив в основу системы нового типа идею обычного «конструктора», разработчики создали набор унифицированных элементов. С помощью этих элементов / модулей можно легко и быстро самостоятельно построить контур заземления из очень глубоких (до 30 метров) электродов без необходимости применения специальной техники, оборудования и навыков.

Система нового типа получила название – «Модульное заземление ZANDZ».

Заземлитель современного контура заземления представляет собой одиночный составной электрод глубиной до 30 метров, состоящий из легко соединяемых между собой полутораметровых отрезков – стержней / штырей.

Монтаж заземления из такого электрода осуществляется обыкновенным бытовым строительным электрическим отбойным молотком.

Строительство современного контура заземления не требует специальных навыков и может осуществляться силами одного человека.

{SOURCE}

Контур заземления — требования, виды и монтаж

Содержание:

  1. Общие сведения о заземляющем контуре
  2. Требования ПУЭ к контуру заземления
  3. Типы и конструкции заземления
  4. Инструменты и материалы
  5. Монтажные работы
  6. Проверка заземляющего контура

Система подачи электроэнергии соединяется через распределительный щит с внутренней проводкой помещений и обеспечивает питанием все имеющиеся бытовые приборы и оборудование. В процессе эксплуатации вполне возможно возникновение неисправностей и аварийных ситуаций, приводящих к токовым утечкам. В связи с этим в каждом доме выполняются защитные мероприятия, среди которых важную роль играет контур заземления, устанавливаемый отдельно или совместно с устройствами защитного отключения.

Данные системы монтируются в соответствии с ПУЭ, защищая людей и оборудование от поражающего действия электротока.

Общие сведения о заземляющем контуре

Стандартный контур заземления представляет собой комплекс металлических конструкций, размещенных в земле, на определенных расстояниях между собой и незначительном удалении от защищаемого объекта.

Данная схема выполняет следующие функции:

  • Защищают людей от поражения электротоком, а приборы и оборудование – от перепадов напряжения.
  • За счет сопротивления не дают энергии бесконтрольно растекаться в окружающей среде.
  • Обеспечивают защиту от последствий ударов молнии.

Если требуется сделать наружный контур заземления в этом случае большинство конструкций изготавливается из стальных труб, уголков, гладких прутков и других профильных материалов. Длина каждого элемента не превышает 3 метров. Они забиваются кувалдой в твердый грунт, засыпаются землей и утрамбовываются. Нежелательно использовать бетон, поскольку в дальнейшем ремонт таких конструкций будет невозможен.

Забитые электроды соединяются между собой тонкой стальной полосой, толщиной не менее 4 мм. Крепления осуществляются сваркой или болтовыми соединениями. Далее конструкция соединяется специальным заземляющим кабелем со всеми приборами, находящимися в доме, в первую очередь с высоким потреблением нагрузки. Для повышения качества работы системы нередко на объекте дополнительно устраивается внутренний контур заземления.

Данные для расчетов конструкции можно получить путем проведения необходимых исследований. В соответствии с типом и характером грунта определяется глубина залегания электродов, их количество и другие параметры. Выбирается наиболее подходящий материал для изготовления конструктивных элементов. Идеальными вариантами под контур заземляемого объекта считаются глинистые грунты, суглинки и черноземы.

Запрещается устанавливать заземление в каменистых или скальных грунтах, поскольку они являются проводниками тока и обладают низким сопротивлением.

Требования ПУЭ к контуру заземления

Прежде чем проектировать и на практике осуществлять устройство контура заземления, следует внимательно изучить требования ПУЭ по данному вопросу. Это позволит избежать ошибок, качественно выполнить соединения и подключения, соблюдая все нормативы и стандарты. Изучив нормативную документацию, вполне возможно самостоятельно изготовить внешний контур заземления, при наличии теоретических знаний и практических навыков.

В соответствии с ПУЭ, каждый выход из здания должен иметь повторный контур заземления. Для этих целей рекомендуется воспользоваться естественными заземлителями из числа расположенных рядом металлических и железобетонных конструкций. Большая часть их поверхности должна контактировать с грунтом. Если контур заземления дома соединяется с конструкциями, расположенными в условиях агрессивной среды, они должны быть защищены специальным покрытием.

Правилами определяются и те элементы, которые не могут служить контуром заземления. В первую очередь, это изделия из железобетона, находящиеся под напряжением, трубопроводы для транспортировки горючих веществ, трубы канализации и отопления. Если без естественных заземлителей никак не обойтись, необходимо выполнить предварительные расчеты и решить, как правильно сделать выбор той или иной конструкции, после чего выбирается наиболее оптимальная схема подключения.

При возведении новых зданий применяются искусственные заземляющие контуры, монтируемые в процессе строительства. Данный способ заземления используется чаще всего, поскольку на местах не всегда имеется возможность воспользоваться естественными факторами. Следует учитывать и сопротивление грунтов, непосредственно влияющее на работоспособность систем, в том числе и на контур заземления ТП.

Если почва постоянно влажная, то ее сопротивление всегда будет ниже допустимого уровня. Эти и другие параметры нужно брать во внимание при расчетах и разработке конструкции заземляющего контура.

Типы и конструкции заземления

В частных домах требования ПУЭ допускают использование различных типов заземлений. В конструкцию обычного контура входят вертикальные электроды и одна горизонтальная перемычка. Все элементы должны быть одного размера и с круглым сечением в разрезе. Обычно они изготавливаются из толстой арматуры, труб или стальных прутьев.

Классической фигурой является контур заземления с конфигурацией треугольник, состоящий из арматурных прутьев в количестве 3 штук, размером 2 метра и более. Чем больше расстояние между прутками, тем эффективнее будет работать система. Минимальная дистанция составляет 1,5 м.

После того как электроды забиты в грунт, они соединяются между собой. На каждую сторону устанавливается отдельная полоса, закрепляемая на одной и той же высоте. Это и есть медные или стальные горизонтальные заземлители устанавливаемые на верхнюю часть штырей.

Место для установки контура в частном доме выбирается там, куда люди заходят очень редко. Предпочтение отдается северной стороне, которая плохо освещается и способствует сохранению в почве большого количества влаги. Расстояние от контура до стены дома должно быть не менее 1 метра.

В другом варианте заземление имеет конструкцию глубинного типа. В нем практически отсутствуют минусы, характерные для обычного способа, поскольку используется модульно-штыревая система. Весь комплект для сборки, сделанный на заводе, в техническом плане подтверждается сертификатом. Основным преимуществом данных систем является их соответствие нормативам, они отличаются повышенным сроком службы – от 30 лет и выше.

Электрический заряд стабильно растекается, независимо от погодных условий. Глубина залегания электродов достигает 30 метров, обеспечивая качество и надежность заземления, а вся собранная схема не требует постоянных проверок.

Инструменты и материалы

Для расчета материалов проводятся необходимые измерения, после чего составляется подробная схема контура с привязкой к конкретному зданию.

Затем нужно подготовить инструменты. Обязательно понадобится лопата, кувалда, набор гаечных ключей, перфоратор, болгарка с отрезными кругами, сварочный аппарат с электродами, измерительные приборы для замеров тока, напряжения и сопротивления.

Перечень материалов состоит из следующих наименований:

  • Стальные уголки для электродов с полками 50х50 или 60х60 мм, длиной от 2 метров и выше. Технические требования ПУЭ допускают использование вместо них стальных труб в качестве заземлителя, диаметром не ниже 32 мм. Средняя толщина стенок составляет 3-4 мм и более.
  • Материалы для горизонтальных заземлителей в количестве 3 металлических полос. Длина соответствует размеру стороны треугольника, толщина – 4-6 мм, ширина – от 4 до 6 см.
  • Соединительная полоса из нержавеющей стали, соединяющая заземляющий контур с крыльцом здания. Размеры сечения составляют 40х4 или 50х5 мм.
  • Медный токопровод, сечением не менее 6-7 мм2.
  • Набор болтов М8, М10.

Технические характеристики проводников выбираются по специальным таблицам. Их размеры должны быть не меньше указанных, все отклонения допускаются только в большую сторону.

Монтажные работы

После того как было определено место установки заземляющего контура, составлен чертеж, выполнены все расчеты и подготовительные работы, можно приступать к непосредственному монтажу конструкций и решать, как сделать контур заземления в данных условиях.

Вначале нужно выкопать траншею глубиной от 70 до 100 см. В вершинах треугольника с помощью кувалды забиваются уголки, обеспечивающие первоначальное сопротивление системы. Средняя глубина забивки составляет 2-3 м. Если грунт слишком твердый и электроды в него входят плохо, необходимо использовать специальный бур, высверлить отверстия и уже в них вставить заземлители.

Перед монтажом концы металлических электродов рекомендуется заострить, чтобы они легче входили в грунт. Штыри не нужно забивать полностью в землю, над ее поверхностью должно оставаться примерно 30 см для крепления. Далее горизонтальные и вертикальные части свариваются между собой, и вся конструкция подключается к металлической полосе, которая, в свою очередь, соединяется с заземляющим проводником.

Затем этот заземлительный провод соединяется с шиной, установленной в распределительном щитке. В местах соединений производится обработка антикоррозийными составами.

Проверка заземляющего контура

После решения, как сделать контур заземления, следует проверить работоспособность полученной конструкции. Проверка начинается с мест соединений. С этой целью выполняется простукивание молотком сварных швов, а болтовые соединения проверяются гаечными ключами.

Для замеров сопротивления привлекаются квалифицированные специалисты, которые составляют акт по итогам проверки. В системе ТТ этот показатель должен быть низким, а в системе TN-C-S, наоборот, с более высоким значением.

Если нет возможностей для официальной проверки, она легко делается своими силами. В этом случае следует выяснить, смогут ли бытовые приборы нормально работать при токе, максимальном для установленного автоматического выключателя. С этой целью используется специальная схема, когда берется переносная розетка, от которой один провод подключается к фазе, а второй – к заземляющему контуру.

После этого в розетку включается заданная нагрузка мощностью в пределах 2 кВт. Если она работает устойчиво, а падение напряжения между фазным и заземляющим проводником не превышает 10В, значит заземление хорошее, выполняет требования ПУЭ и свои функции в полном объеме. Данная операция требует осторожности и соблюдения мер электробезопасности, особенно в местах непосредственного расположения защитного контура.

контур заземления — это… Что такое контур заземления?


контур заземления

 

контур заземления
заземляющий контур

[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

контур заземления
заземлитель

Система расположенных в земле неизолированных горизонтальных и вертикальных проводников (электродов), объединенных между собой и обеспечивающих контакт с землей заземляемых конструкций.
[Инструкция по заземлению устройств электроснабжения на электрифицированных железных дорогах]

Синонимы

  • заземлитель
  • заземляющий контур

Справочник технического переводчика. – Интент. 2009-2013.

  • контур загрузки грузовой кабины транспортного самолета
  • контур зоны дренирования скважины

Смотреть что такое «контур заземления» в других словарях:

  • контур заземления тяговой подстанции — 3.6.11 контур заземления тяговой подстанции: Совокупность соединенных между собой проводников (электродов), находящихся в соприкосновении с землей, на которую заземлено все электрооборудование тяговой подстанции (на подстанции постоянного тока… …   Словарь-справочник терминов нормативно-технической документации

  • внешний контур заземления — Имеет то же определение, что и контур заземления; термин применяется как отличительный в установках, имеющих внутренний контур заземления. [Инструкция по заземлению устройств электроснабжения на электрифицированных железных дорогах] Тематики… …   Справочник технического переводчика

  • внутренний контур заземления тяговой подстанции [линейного устройства] системы тягового электроснабжения железной дороги постоянного тока — Изолированный от земли проводник, прокладываемый внутри тяговой подстанции [линейного устройства] системы тягового электроснабжения железной дороги постоянного тока, к которому подключаются заземляющие проводники электрооборудования напряжением… …   Справочник технического переводчика

  • внутренний контур заземления тяговой подстанции постоянного тока — 3.6.3 внутренний контур заземления тяговой подстанции постоянного тока: Магистраль заземления, к которой подключается оборудование 3,3 кВ, соединенная с внешним контуром заземления через реле земляной защиты. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Заземляющий контур (контур заземления) — 3.14 Заземляющий контур (контур заземления) : Заземляющий проводник в виде замкнутой петли вокруг здания (сооружения) в земле или на ее поверхности. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Внутренний контур заземления — (применяется для распредустройства постоянного тока) заземляющая магистраль, прокладываемая внутри подстанций, постов и т.п., к которой подключаются заземляющие проводники электрооборудования, обеспечивает связь заземляемого оборудования с… …   Официальная терминология

  • внутренний контур заземления — (применяется для распредустройства постоянного тока) Заземляющая магистраль, прокладываемая внутри подстанций, постов и т.п., к которой подключаются заземляющие проводники электрооборудования, обеспечивает связь заземляемого оборудования с… …   Справочник технического переводчика

  • внешний контур заземления тяговой подстанции [линейного устройства] системы тягового электроснабжения железной дороги постоянного тока — Система неизолированных проводников погруженных в землю на тяговой подстанции [линейного устройства] системы тягового электроснабжения железной дороги постоянного тока, к которой подключаются заземляющие проводники электрооборудования до и свыше… …   Справочник технического переводчика

  • контур тока замыкания на землю — Параллельные тексты EN RU The fault loop comprising 1) the source; 2) the line conductor up to the point of the fault; 4) the protective conductor of the exposed conductive parts; 4) the earthing conductor; 5) the earth electrode of the… …   Справочник технического переводчика

  • Заземляющий контур — заземляющий проводник в виде замкнутой петли вокруг здания в земле или на ее поверхности. Источник: СО 153 34.21.122 2003: Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций Смотри также родственные термины …   Словарь-справочник терминов нормативно-технической документации

Что является заземляющим контуром?


⇐ ПредыдущаяСтр 25 из 26Следующая ⇒
  • Проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через проводящую среду
  • Совокупность заземлителя и заземляющих проводников
  • Заземляющийпроводник в виде замкнутой петли вокруг здания в земле или на ее поверхности

Что является заземлителем?

  • Заземляющий проводник в виде замкнутой петли вокруг здания в земле или на ее поверхности
  • Проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через проводящую среду
  • Совокупность соединенных между собой проводящих частей, сечением не менее 50 мм2

Какие объекты относятся к специальным объектам по степени опасности поражения молнией?

  • Жилые и административные строения
  • Объекты, представляющие опасность для непосредственного окружения, социальной и физической окружающей среды, прочие объекты, для которых может предусматриваться специальная молниезащита, например, строения высотой более 60 м, игровые площадки, временные сооружения, строящиеся объекты
  • Здания высотой не более 60 м, предназначенные для торговли и промышленного производства
  • Все перечисленные объекты

Какие из перечисленных объектов относятся к обычным объектам по степени опасности поражения молнией?

  • Только жилые и административные строения
  • Объекты, представляющие опасность для непосредственного окружения, социальной и физической окружающей среды, прочие объекты, для которых может предусматриваться специальная молниезащита, например, строения высотой более 60 м, игровые площадки, временные сооружения, строящиеся объекты
  • Жилые и административные строения, а также здания и сооружения, высотой не более 60 м, предназначенные для торговли, промышленного производства, сельского хозяйства
  • Все перечисленные объекты

К какому классу по опасности ударов молнии для самого объекта и его окружения будут относиться средства связи, электростанции, пожароопасные производства?

  • Обычные объекты
  • Специальные объекты с ограниченной опасностью
  • Специальные объекты, представляющие опасность для непосредственного окружения

К какому классу по опасности ударов молнии для самого объекта и его окружения будут относиться химический завод, атомная электростанция, биохимические фабрики и лаборатории?

  • Специальные объекты, представляющие опасность для непосредственного окружения
  • Специальные объекты, опасные для экологии
  • Специальные объекты с ограниченной опасностью

К какому классу по опасности ударов молнии для самого объекта и его окружения будут относиться нефтеперерабатывающие предприятия, заправочные станции, производства петард и фейерверков?

· Специальные объекты, опасные для экологии

  • Специальные объекты, представляющие опасность для непосредственного окружения
  • Специальные объекты с ограниченной опасностью

Какие из перечисленных конструктивных элементов зданий и сооружений могут рассматриваться как естественные молниеприемники?

  • Только металлические конструкции крыши (фермы, соединенная между собой стальная арматура)
  • Только металлические элементы типа водосточных труб, если их сечение не меньше значений, предписанных для обычных молниеприемников
  • Только технологические металлические трубы и резервуары, выполненные из металла толщиной не менее 2,5 мм и проплавление или прожог этого металла, не приведет к опасным или недопустимым последствиям
  • Любые из перечисленных конструктивных элементов

Где не допускается прокладка токоотводов?

  • На поверхности стены
  • В стене
  • На максимально возможных расстояниях от дверей и окон
  • Вблизи углов зданий
  • В водосточных трубах

Какие из перечисленных конструктивных элементов зданий могут считаться естественными токоотводами?

  • Только металлический каркас здания или сооружения, части фасада
  • Только соединенная между собой стальная арматура здания или сооружения
  • Все перечисленные элементы, а также профилированные элементы и опорные металлические конструкции фасада при условии, что их размеры соответствуют указаниям, относящимся к токоотводам, а их толщина составляет не менее 0,5 мм

Следует ли предусматривать в обязательном порядке систему защиты от прямых ударов молний на вновь проектируемых и реконструируемых кабельных линиях магистральной и внутризоновых сетей связи?

  • Только в районах с высоким удельным сопротивлением грунта
  • Только в районах с повышенной грозовой деятельностью
  • Только на тех участках, где вероятное число опасных ударов молнии превышает допустимую

Для какой цели все металлические элементы объекта должны быть электрически объединены с системой молниезащиты?

  • Для уменьшения влияния электромагнитных полей
  • Для защиты от протекания полного тока молнии
  • Для защиты от перенапряжений
  • Для защиты от статического электричества

Каким образом принимаются и передаются в эксплуатацию заказчику молниезащитные устройства объектов?

  • Принимаются в эксплуатацию рабочей комиссией и передаются в эксплуатацию заказчику до начала монтажа технологического оборудования
  • Принимаются в эксплуатацию рабочей комиссией и передаются в эксплуатацию заказчику после завоза в сооружения оборудования
  • Принимаются в эксплуатацию рабочей комиссией и передаются в эксплуатацию заказчику после начала загрузки в здания ценного имущества
  • Принимаются в эксплуатацию рабочей комиссией из представителей заказчика, подрядчика и экспертной организации

Кто обычно не входит в состав рабочей комиссии по приемке молниезащитных устройств?

  • Представитель лица, ответственного за электрохозяйство
  • Представитель подрядной организации
  • Представитель пожарного надзора МЧС
  • Представитель экспертной организации

Какие документы не предъявляются рабочей комиссии при приемке молниезащитных устройств объектов?

  • Утвержденные проекты устройства молниезащиты
  • Акты на скрытые работы (по устройству и монтажу заземлителей и токоотводов, не доступных для осмотра)
  • Акты испытаний повышенным напряжением устройств защиты от вторичных проявлений молнии и заноса высоких потенциалов
  • Данные о сопротивлении всех заземлителей, результаты осмотра и проверки надежности электрических соединений между токоведущими элементами

16 Какое из указанных требований не соответствует порядку приемки устройств молниезащиты в эксплуатацию?

  • Рабочая комиссия производит полную проверку и осмотр выполненных строительно-монтажных работ по монтажу молниезащитных устройств
  • Приемка молниезащитных устройств вновь строящихся объектов оформляется актами приемки оборудования для устройств молниезащиты
  • После приемки в эксплуатацию устройств молниезащиты составляются паспорта молниезащитных устройств и паспорта устройств защиты от вторичных проявлений молнии и заноса высоких потенциалов
  • Акты, утвержденные руководителем организации, вместе с актами на скрытые работы и протоколы измерений включаются в паспорт молниезащитных устройств

Что не требуется проводить при проверке состояния устройств молниезащиты?


Рекомендуемые страницы:


Читайте также:

  1. I) индивидуальная монополистическая деятельность, которая проявляется как злоупотребление со стороны хозяйствующего субъекта своим доминирующим положением на рынке.
  2. MS Excel. Знак, указывающий что число не вмещается в ячейку
  3. P.S., где рассказывается о том, что было услышано 16 февраля 1995 г., во второй половине седьмого дня нашего отступления.
  4. Past Simple переводится глаголами несовершенного вида, прошедшего времени (что делал?).
  5. VI. СЕКСУАЛЬНАЯ ЭНЕРГИЯ. ЦЕНТРЫ НАСЫЩЕНИЯ. ЧТО ЖЕ ЭТО ТАКОЕ, «СЕКСУАЛЬНАЯ РЕВОЛЮЦИЯ»
  6. XXX. ЧТО ЖЕ ЭТО ТАКОЕ – ВЕЛИКАЯ ПУСТОТА БУДДИСТОВ (будителей, будетлян, людей, которые здесь, скоро будут).
  7. XXXII. ЧТО НУЖНО ЗНАТЬ И ДЕЛАТЬ ЕЖЕДНЕВНО, ЧТОБЫ НЕ БОЛЕТЬ, А ЕСЛИ БОЛЕЕШЬ, ТО КАК ВЫТАЩИТЬ СЕБЯ В ТЕЧЕНИИ ДНЯ, ПОЧТИ, С ТОГО СВЕТА.
  8. А 47. Что из перечисленного стало последствием победы СССР над Японией в 1945 г.?
  9. А затем по милости Аллаха решил собрать всё, что смог по теме, которую я указал в заглавие.
  10. А о том — кто же на самом деле , по Духовным Законам Бога , является Мужем и Женой , я уже говорил в другой моей статье — « Фарисейство — как раковая опухоль тела Христова .» . . .
  11. А потом он обратился к ним с увещанием в связи с тем, что они смеялись, когда кто-нибудь испускал ветры, и сказал: «Почему некоторые из вас смеются над тем, что делают и сами?»
  12. А что потом? (А. Бондаренко)

Заземляющий контур — это… Что такое Заземляющий контур?


Заземляющий контур

Заземляющий контур — заземляющий проводник в виде замкнутой петли вокруг здания в земле или на ее поверхности.

Смотри также родственные термины:

3.14 Заземляющий контур (контур заземления) : Заземляющий проводник в виде замкнутой петли вокруг здания (сооружения) в земле или на ее поверхности.

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • Заземляющий зажим электроагрегата (электростанции)
  • Заземляющий контур (контур заземления)

Смотреть что такое «Заземляющий контур» в других словарях:

  • заземляющий контур — контур заземляющий Несколько отдельных заземлителей, объединённых металлической полосой в единый контур, расположенный вокруг фундамента сооружения [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Тематики… …   Справочник технического переводчика

  • Заземляющий контур (контур заземления) — 3.14 Заземляющий контур (контур заземления) : Заземляющий проводник в виде замкнутой петли вокруг здания (сооружения) в земле или на ее поверхности. Источник …   Словарь-справочник терминов нормативно-технической документации

  • контур заземления — заземляющий контур — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] контур заземления заземлитель Система расположенных в земле неизолированных горизонтальных и …   Справочник технического переводчика

  • контур тока замыкания на землю — Параллельные тексты EN RU The fault loop comprising 1) the source; 2) the line conductor up to the point of the fault; 4) the protective conductor of the exposed conductive parts; 4) the earthing conductor; 5) the earth electrode of the… …   Справочник технического переводчика

  • Контур заземляющий — несколько отдельных заземлителей, объединённых металлической полосой в единый контур, расположенный вокруг фундамента сооружения. [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Рубрика термина: Энергетическое… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • КОНТУР ЗАЗЕМЛЯЮЩИЙ — несколько отдельных заземлителей, объединённых металлической полосой в единый контур, расположенный вокруг фундамента сооружения (Болгарский язык; Български) заземителна контура (Чешский язык; Čeština) zemnicí obvod (Немецкий язык; Deutsch)… …   Строительный словарь

  • РД 91.020.00-КТН-276-07: Нормы проектирования молниезащиты объектов магистральных нефтепроводов и коммуникаций ОАО «АК «Транснефть» и дочерних акционерных обществ — Терминология РД 91.020.00 КТН 276 07: Нормы проектирования молниезащиты объектов магистральных нефтепроводов и коммуникаций ОАО «АК «Транснефть» и дочерних акционерных обществ: 3.1 Безопасное расстояние (защитное разделение… …   Словарь-справочник терминов нормативно-технической документации

  • Разъём NEMA — Вилка и розетка NEMA 5 15. Розетка принимает как заземлённые, так и незаземлённые поляризованные и неполяризованные вилки. Разъёмы NEMA  штепсельные разъёмы, соответствующие стандартам, установленным американской Национальной Ассоциацией… …   Википедия

  • Разъёмы NEMA — Вилка и розетка NEMA 5 15. Розетка принимает как заземлённые, так и незаземлённые поляризованные и неполяризованные вилки. Разъёмы NEMA  штепсельные разъёмы, соответствующие стандартам, установленным американской Национальной Ассоциацией… …   Википедия

  • СО 153-34.21.122-2003: Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций — Терминология СО 153 34.21.122 2003: Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций: Безопасное расстояние минимальное расстояние между двумя проводящими элементами вне или внутри защищаемого объекта, при… …   Словарь-справочник терминов нормативно-технической документации

Заземление. Что это такое и как его сделать (часть 1) / Habr

Мой рассказ будет состоять из трёх частей.

1 часть. Заземление
(общая информация, термины и определения)

2 часть. Традиционные способы строительства заземляющих устройств
(описание, расчёт, монтаж)

3 часть. Современные способы строительства заземляющих устройств
(описание, расчёт, монтаж)

В первой части (теория) я опишу терминологию, основные виды заземления (назначение) и предъявляемые к заземлению требования.
Во второй части (практика) будет рассказ про традиционные решения, применяемые при строительстве заземляющих устройств, с перечислением достоинств и недостатков этих решений.
Третья часть (практика) в некотором смысле продолжит вторую. В ней будет содержаться описание новых технологий, используемых при строительстве заземляющих устройств. Как и во второй части, с перечислением достоинств и недостатков этих технологий.

Если читатель обладает теоретическими знаниями и интересуется только практической реализацией — ему лучше пропустить первую часть и начать чтение со второй части.

Если читатель обладает необходимыми знаниями и хочет познакомиться только с новинками — лучше пропустить первые две части и сразу перейти к чтению третьей.

Мой взгляд на описанные методы и решения в какой-то степени однобокий. Прошу читателя понимать, что я не выдвигаю свой материал за всеобъемлющий объективный труд и выражаю в нём свою точку зрения, свой опыт.

Некоторая часть текста является компромиссом между точностью и желанием объяснить “человеческим языком”, поэтому допущены упрощения, могущие “резать слух” технически подкованного читателя.



1 часть. Заземление
В этой части я расскажу о терминологии, об основных видах заземления и о качественных характеристиках заземляющих устройств.
А. Термины и определения
Б. Назначение (виды) заземления
Б1. Рабочее (функциональное) заземление
Б2. Защитное заземление
Б2.1. Заземление в составе внешней молниезащиты
Б2.2. Заземление в составе системы защиты от перенапряжения (УЗИП)
Б2.3. Заземление в составе электросети
В. Качество заземления. Сопротивление заземления.
В1. Факторы, влияющие на качество заземления
В1.1. Площадь контакта заземлителя с грунтом
В1.2. Электрическое сопротивление грунта (удельное)
В2. Существующие нормы сопротивления заземления
В3. Расчёт сопротивления заземления
А. Термины и определения
Чтобы избежать путаницы и непонимания в дальнейшем рассказе — начну с этого пункта.
Я приведу установленные определения из действующего документа “Правила Устройства Электроустановок (ПУЭ)” в последней редакции (глава 1.7 в редакции седьмого издания).
И попытаюсь “перевести” эти определения на “простой” язык.

Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством (ПУЭ 1.7.28).
Грунт является средой, имеющей свойство “впитывать” в себя электрический ток. Также он являться некоторой “общей” точкой в электросхеме, относительно которой воспринимается сигнал.

Заземляющее устройство — совокупность заземлителя/ заземлителей и заземляющих проводников (ПУЭ 1.7.19).
Это устройство/ схема, состоящее из заземлителя и заземляющего проводника, соединяющего этот заземлитель с заземляемой частью сети, электроустановки или оборудования. Может быть распределенным, т.е. состоять из нескольких взаимно удаленных заземлителей.

На рисунке оно показано толстыми красными линиями:


Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с грунтом (ПУЭ 1.7.15).

Проводящая часть — это металлический (токопроводящий) элемент/ электрод любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро 🙂 и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.
Конфигурация заземлителя (количество, длина, расположение электродов) зависит от требований, предъявляемых к нему, и способности грунта “впитывать” в себя электрический ток идущий/ “стекающий” от электроустановки через эти электроды.

На рисунке он показан толстыми красными линиями:


Сопротивление заземления — отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю (ПУЭ 1.7.26).

Сопротивление заземления — основной показатель заземляющего устройства, определяющий его способность выполнять свои функции и определяющий его качество в целом.
Сопротивление заземления зависит от площади электрического контакта заземлителя (заземляющих электродов) с грунтом (“стекание” тока) и удельного электрического сопротивления грунта, в котором смонтирован этот заземлитель (“впитывание” тока).

Заземляющий электрод (электрод заземлителя) — проводящая часть, находящаяся в электрическом контакте с локальной землей (ГОСТ Р 50571.21-2000 п. 3.21)

Повторюсь: в качестве проводящей части может выступать металлический (токопроводящий) элемент любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро 🙂 и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.

На рисунке они показаны толстыми красными линиями:


Далее определения, не встречающиеся или не описанные достаточно точно в стандартах и нормах, поэтому имеющие только мое описание.

Контур заземления — “народное” название заземлителя или заземляющего устройства, состоящего из нескольких заземляющих электродов (группы электродов), соединенных друг с другом и смонтированных вокруг объекта по его периметру/ контуру.

На рисунке объект обозначен серым квадратом в центре,
а контур заземления — толстыми красными линиями:


Удельное электрическое сопротивление грунта — параметр, определяющий собой уровень «электропроводности» грунта как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземляющего электрода.
Это измеряемая величина, зависящая от состава грунта, размеров и плотности
прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).
Б. Назначение (виды) заземления
Заземление делится на два основных вида по выполняемой роли — на рабочее (функциональное) и защитное. Также в различных источниках приводятся дополнительные виды, такие как: “инструментальное”, “измерительное”, “контрольное”, “радио”.
Б1. Рабочее (функциональное) заземление
Это заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности) (ПУЭ 1.7.30).

Рабочее заземление (электрический контакт с грунтом) используется для нормального функционирования электроустановки или оборудования, т.е. для их работы в ОБЫЧНОМ режиме.

Б2. Защитное заземление
Это заземление, выполняемое в целях электробезопасности (ПУЭ 1.7.29).

Защитное заземление обеспечивает защиту электроустановки и оборудования, а также защиту людей от воздействия опасных напряжений и токов, могущих возникнуть при поломках, неправильной эксплуатации техники (т.е. в АВАРИЙНОМ режиме) и при разрядах молний.
Также защитное заземление используется для защиты аппаратуры от помех при коммутациях в питающей сети и интерфейсных цепях, а также от электромагнитных помех, наведенных от работающего рядом оборудования.

Подробнее защитное назначение заземления можно рассмотреть на двух примерах:

  • в составе внешней молниезащитной системы в виде заземленного молниеприёмника
  • в составе системы защиты от импульсного перенапряжения
  • в составе электросети объекта
Б2.1. Заземление в составе молниезащиты
Молния — это разряд или другими словами «пробой», возникающий ОТ облака К земле, при накоплении в облаке заряда критической величины (относительно земли). Примерами этого явления в меньших масштабах является “пробой” (wiki) в конденсаторе и газовый разряд (wiki) в лампе.

Воздух — это среда с очень большим сопротивлением (диэлектрик), но разряд преодолевает его, т.к. обладает большой мощностью. Путь разряда проходит по участкам наименьшего сопротивления, таким как капли воды в воздухе и деревья. Этим объясняется корнеобразная структура молнии в воздухе и частое попадание молнии в деревья и здания (они имеют меньшее сопротивление, чем воздух в этом промежутке).
При попадании в крышу здания, молния продолжает свой путь к земле, также выбирая участки с наименьшим сопротивлением: мокрые стены, провода, трубы, электроприборы — таким образом представляя опасность для человека и оборудования, находящихся в этом здании.


Молниезащита предназначена для отвода разряда молнии от защищаемого здания/ объекта. Разряд молнии, идущий по пути наименьшего сопротивления попадает в металлический молниеприёмник над объектом, затем по металлическим молниеотводам, расположенным снаружи объекта (например, на стенах), спускается до грунта, где и расходится в нём (напоминаю: грунт является средой, имеющей свойство “впитывать” в себя электрический ток).

Для того, чтобы сделать молниезащиту «привлекательной» для молнии, а также для исключения распространения молниевых токов от деталей молниезащиты (приёмник и отводы) внутрь объекта, её соединение с грунтом производится через заземлитель, имеющий низкое сопротивление заземления.

Заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает полный и быстрый переход молниевых токов в грунт, не допуская их распространение по объекту.

Б2.2. Заземление в составе системы защиты от импульсного перенапряжения (УЗИП)
УЗИП предназначено для защиты электронного оборудования от заряда, накопленного на каком-либо участке линии/сети в результате воздействия электромагнитного поля (ЭМП), наведенного от рядом стоящей мощной электроустановки (или высоковольтной линии) или ЭМП, возникшего при близком (до сотен метров) разряде молнии.

Ярким примером этого явления является накопление заряда на медном кабеле домовой сети или на “пробросе” между зданиями во время грозы. В какой-то момент приборы, подключенные к этому кабелю (сетевая карта компьютера или порт коммутатора), не выдерживают «размера» накопившегося заряда и происходит электрический пробой внутри этого прибора, разрушающий его (упрощенно).
Для “стравливания” накопившегося заряда параллельно “нагрузке” на линию перед оборудованием ставит УЗИП.


Классический УЗИП представляет собой газовый разрядник (wiki), рассчитанный на определенный «порог» заряда, который меньше “запаса прочности” защищаемого оборудования. Один из электродов этого разрядника заземляется, а другой — подключается к одному из проводов линии/ кабеля.

При достижении этого порога внутри разрядника возникает разряд 🙂 между электродами. В результате чего накопленный заряд сбрасывается в грунт (через заземление).

Как и в молниезащите — заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает своевременное и гарантированное возникновение разряда в УЗИПе, не допуская превышение заряда на линии выше безопасного для защищаемого оборудования уровня.

Б2.3. Заземление в составе электросети
Третий пример защитной роли заземления — это обеспечение безопасности человека и электрооборудования при поломках/ авариях.

Проще всего такая поломка описывается замыканием фазного провода электросети на корпус прибора (замыкание в блоке питания или замыкание в водонагревателе через водную среду). Человек, коснувшийся такого прибора, создаст дополнительную электрическую цепь, через которую побежит ток, вызывающий в теле повреждения внутренних органов — прежде всего нервной системы и сердца.

Для устранения таких последствий используется соединение корпусов с заземлителем (для отвода аварийных токов в грунт) и защитные автоматические устройства, за доли секунды отключающие ток при аварийной ситуации.

Например, заземление всех корпусов, шкафов и стоек телекоммуникационного оборудования.

В. Качество заземления. Сопротивление заземления.
Для корректного выполнения заземлением своих функций оно должно иметь определенные параметры/ характеристики. Одним из главных свойств, определяющих качество заземления, является сопротивление растеканию тока (сопротивление заземления), определяющее способность заземлителя (заземляющих электродов) передавать токи, поступающие на него от оборудования в грунт.
Это сопротивление имеет конечные значения и в идеальном случае представляет собой нулевую величину, что означает отсутствие какого-либо сопротивления при пропускании «вредных» токов (это гарантирует их ПОЛНОЕ поглощение грунтом).
В1. Факторы, влияющие на качество заземления
Сопротивление в основном зависит от двух условий:
  • площадь ( S ) электрического контакта заземлителя с грунтом
  • электрическое сопротивление ( R ) самого грунта, в котором находятся электроды

В1.1. Площадь контакта заземлителя с грунтом.
Чем больше будет площадь соприкосновения заземлителя с грунтом, тем больше площадь для перехода тока от этого заземлителя в грунт (тем более благоприятные условия создаются для перехода тока в грунт). Это можно сравнить с поведением автомобильного колеса на повороте. Узкая покрышка имеет небольшую площадь контакта с асфальтом и легко может начать скользить по нему, “отправив” автомобиль в занос. Широкая покрышка, да еще и немного спущенная, имеет много бОльшую площадь контакта с асфальтом, обеспечивая надежное сцепление с ним и, следовательно, надежный контроль за движением.(Пример оказался неграмотным. Спасибо SVlad — комментарий: habrahabr.ru/post/144464/#comment_4854521)

Увеличить площадь контакта заземлителя с грунтом можно либо увеличив количество электродов, соединив их вместе (сложив площади нескольких электродов), либо увеличив размер электродов. При применении вертикальных заземляющих электродов последний способ очень эффективен, если глубинные слои грунта имеют более низкое электрическое сопротивление, чем верхние.

В1.2. Электрическое сопротивление грунта (удельное)
Напомню: это величина, определяющая — как хорошо грунт проводит ток через себя. Чем меньшее сопротивление будет иметь грунт, тем эффективнее/ легче он будет “впитывать” в себя ток от заземлителя.

Примерами грунтов, хорошо проводящих ток, является солончаки или сильно увлажненная глина. Идеальная природная среда для пропускания тока — морская вода.
Примером “плохого” для заземления грунта является сухой песок.

(Если интересно, можно посмотреть таблицу величин удельного сопротивления грунтов, используемых в расчётах заземляющих устройств).

Возвращаясь к первому фактору и способу уменьшения сопротивления заземления в виде увеличения глубины электрода можно сказать, что на практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности. Часто встречаются грунтовые воды, которые обеспечивают грунту очень низкое сопротивление. Заземление в таких случаях получается очень качественным и надежным.
В2. Существующие нормы сопротивления заземления
Так как идеала (нулевого сопротивления растеканию) достигнуть невозможно, все электрооборудование и электронные устройства создаются исходя из некоторых нормированных величин сопротивления заземления, например 0.5, 2, 4, 8, 10, 30 и более Ом.

Для ориентирования приведу следующие значения:

  • для подстанции с напряжением 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)
  • при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление не более 2 или 4 Ом
  • для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.
  • у источника тока (например, трансформаторной подстанции) сопротивление заземления должно быть не более 4 Ом при линейном напряжении 380 В источника трехфазного тока или 220 В источника однофазного тока (ПУЭ 1.7.101)
  • у заземления, использующегося для подключения молниеприёмников, сопротивление должно быть не более 10 Ом (РД 34.21.122-87, п. 8)
  • для частных домов, с подключением к электросети 220 Вольт / 380 Вольт:
    • при использовании системы TN-C-S необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом (ориентируюсь на ПУЭ 1.7.103)
    • при использовании системы TT (изолирование заземления от нейтрали источника тока) и применении устройства защитного отключения (УЗО) с током срабатывания 100 мА необходимо иметь локальное заземление с сопротивлением не более 500 Ом (ПУЭ 1.7.59)
В3. Расчёт сопротивления заземления
Для успешного проектирования заземляющего устройства, имеющего необходимое сопротивление заземления, применяются, как правило, типовые конфигурации заземлителя и базовые формулы для расчётов.

Конфигурация заземлителя обычно выбирается инженером на основании его опыта и возможности её (конфигурации) применения на конкретном объекте.

Выбор формул расчёта зависит от выбранной конфигурации заземлителя.
Сами формулы содержат в себе параметры этой конфигурации (например, количество заземляющих электродов, их длину, толщину) и параметры грунта конкретного объекта, где будет размещаться заземлитель. Например, для одиночного вертикального электрода эта формула будет такой:

Точность расчёта обычно невысока и зависит опять же от грунта — на практике расхождения практических результатов встречается в почти 100% случаев. Это происходит из-за его (грунта) большой неоднородности: он изменяется не только по глубине, но и по площади — образуя трёхмерную структуру. Имеющиеся формулы расчёта параметров заземления с трудом справляются с одномерной неоднородностью грунта, а расчёт в трёхмерной структуре сопряжен с огромными вычислительными мощностями и требует крайне высокую подготовку оператора.
Кроме того, для создания точной карты грунта необходимо произвести большой объем геологических работ (например, для площади 10*10 метров необходимо сделать и проанализировать около 100 шурфов длиной до 10 метров), что вызывает значительное увеличение стоимости проекта и чаще всего не возможно.

В свете вышесказанного почти всегда расчёт является обязательной, но ориентировочной мерой и обычно ведётся по принципу достижения сопротивления заземления “не более, чем”. В формулы подставляются усредненные значения удельного сопротивления грунта, либо их наибольшие величины. Это обеспечивает “запас прочности” и на практике выражается в заведомо более низких (ниже — значит лучше) значениях сопротивления заземления, чем ожидалось при проектировании.

Строительство заземлителей
При строительстве заземлителей чаще всего применяются вертикальные заземляющие электроды. Это связано с тем, что горизонтальные электроды трудно заглубить на большую глубину, а при малой глубине таких электродов — у них очень сильно увеличивается сопротивление заземления (ухудшение основной характеристики) в зимний период из-за замерзания верхнего слоя грунта, приводящее к большому увеличению его удельного электрического сопротивления.

В качества вертикальных электродов почти всегда выбирают стальные трубы, штыри/ стержни, уголки и т.п. стандартную прокатную продукцию, имеющую большую длину (более 1 метра) при сравнительно малых поперечных размерах. Этот выбор связан с возможностью легкого заглубления таких элементов в грунт в отличии, например, от плоского листа.

Подробнее о строительстве — в следующих частях.

Продолжение:


Алексей Рожанков, специалист технического центра «ZANDZ.ru»

При подготовке данной части использовались следующие материалы:

  • Публикации на сайте “Заземление на ZANDZ.ru”
  • Правила Устройства Электроустановок (ПУЭ), часть 1.7 в редакции седьмого издания (гуглить)
  • ГОСТ Р 50571.21-2000 (МЭК 60364-5-548-96)
    Заземляющие устройства и системы уравнивания электрических потенциалов в электроустановках, содержащих оборудование обработки информации (гуглить)
  • Инструкция по устройству молниезащиты зданий и сооружений РД 34.21.122-87 (гуглить)
  • Собственный опыт и знания

Контур заземления | Заметки электрика

Здравствуйте, дорогие гости сайта «Заметки электрика».

Сегодня я расскажу Вам про контур заземления, для чего он необходим и как правильно выполнить его монтаж своими руками.

Покупая дачные участки для строительства домов и коттеджей, мы должны получить разрешение от энергоснабжающей организации на присоединение определенной мощности. И на данном этапе практически у всех возникает проблема с электромонтажом контура заземления, т.к. в технических условиях на электроснабжение дома он обязателен.

Также он необходим при реконструкции старой электропроводки. Более подробно об организации электропроводки в своем доме читайте в статье: электропроводка в деревянном доме.

Что такое контур заземления?

Для начала давайте разберемся, что такое заземление?

Заземление — это ЗУ (заземляющее устройство), предназначенное для электрического соединения с «землей» различных заземляемых частей электрооборудования.

Для каждой системы заземления (TN-C, TN-C-S, TN-S, TT и IT) существуют свои требования к сопротивлению заземляющего устройства (переходите по ссылкам соответствующих систем заземления и знакомьтесь).

Сопротивление ЗУ очень сильно зависит от:

  • типа грунта
  • структуры грунта
  • состояния грунта
  • глубины залегания электродов
  • количества электродов
  • свойств электродов

Контур заземления — это и есть, соединенные между собой, горизонтальные и вертикальные электроды, которые заложены на определенной глубине в грунте Вашего участка.

Все вышеописанные свойства грунта определяются его сопротивлением растекания тока. И чем это сопротивление меньше, тем лучше для монтажа контура заземления.

Грунты, идеально подходящие для монтажа контура заземления:

  • торф
  • суглинок
  • глина с высокой влажностью

Грунты, подходящие для монтажа контура заземления

Грунты, не подходящие для монтажа контура заземления:

Грунты, не подходящие для монтажа контура заземления

В зависимости от условий окружающей среды, даже один и тот же тип грунта может иметь разные свойства.

Поэтому производить монтаж контура заземления необходимо осознанно, а выбор количества и длины заземляющих электродов рассматривать по конкретному случаю.

В данной статье я опишу Вам самый распространенный и простой способ монтажа контура заземления. Существуют и более современные способы, например, модульно-штырьевая система заземления. Но к ним мы вернемся в других моих статьях. Чтобы не пропустить новые выпуски статей, подпишитесь.

 

Подготовка

Выбираем место для установки и монтажа заземляющего устройства.

Рекомендую выбирать место для заземления вблизи вводного распределительного устройства (сборки) Вашего дома. 

Согласно ПУЭ (п.1.7.111), искусственные вертикальные и горизонтальные заземлители (электроды) должны быть либо медными, либо из черной или оцинкованной стали. Также их поверхность не должна быть окрашена.

Вот таблица (ПУЭ, табл.1.7.4) рекомендуемых размеров вертикальных и горизонтальных заземлителей (электродов) и заземляющих проводников для прокладки в земле:

В качестве вертикальных и горизонтальных заземлителей (электродов) мы используем:

  • стальной уголок размером 50х50х5 (мм) с поперечным сечением 480 (кв.мм)
  • стальную полосу размером 40х4 (мм) с поперечным сечением 160 (кв.мм)

Материалы для контура заземления

Вот мои заготовки материала для монтажа контура заземления для повторного заземления PEN-проводника жилого многоквартирного дома и дальнейшего его разделения: на защитный проводник РЕ и нулевой рабочий проводник N.

 

Монтаж контура заземления

Теперь нам необходимо взять лопату и выкопать траншею в виде треугольника с размерами (3 х 3 х 3) метра. Можно выкопать траншею в виде прямой линии длиной порядка 4-5 метров. Последнее время мы именно так и делаем.

Ширина траншеи составляет 0,3-0,5 метра, а глубина 0,5-0,8 метра.

Траншея для контура заземления

В вершины данного треугольника забиваем кувалдой стальной уголок (вертикальные заземлители) длиной 2,5-3 метра. Вместо кувалды можно использовать специальные буры. Если траншея у Вас выкопана в виде прямой линии, то забиваем вертикальные электроды в количестве 4-5 штук через каждый метр.

Чтобы легче забивать стальные уголки в землю, заострите их концы болгаркой.

Забиваем стальные уголки (вертикальные электроды) не полностью, а оставляем около 20 (см). Затем с помощью сварочного аппарата привариваем к нашим стальным уголкам по периметру треугольника или прямой линии горизонтальную стальную полосу, идущую в силовой электрический щиток на шину РЕ (ГЗШ).

Проводник, который соединяет заземляющее устройство с заземляющей частью электроустановки (вводным распределительным устройством или сборкой), называется заземляющим.

В нашем примере в качестве заземляющего проводника применяется стальная полоса размерами 40 х 4 (мм), что удовлетворяет требованиям ПУЭ.

В итоге у нас получается вот такая конструкция (схема). Кстати забыл сказать, что места сварки нужно обработать антикоррозийным составом, например, битумом, а траншею закопать однородным грунтом.

Далее стальную полосу прокладываем до шины РЕ (ГЗШ). Вот фотография для наглядности.

Можно сделать и по-другому, воспользовавшись ПУЭ, п.1.7.117. Выводим из земли горизонтальный заземляющий проводник в виде стальной полосы, а к нему с помощью болтового соединения подключаем проводник, который прокладываем до шины РЕ (ГЗШ):

  • медный сечением не менее 10 кв.мм
  • алюминиевый сечением не менее 16 кв.мм
  • стальной сечением не менее 75 кв.мм

Я использовал заземляющий проводник из медной шины.

Окончание работ

После монтажа необходимо произвести замер его сопротивления. Как сделать это самостоятельно — читайте в статье замер контура заземления (заземляющего устройства).

P.S. В завершении хотелось бы Вам напомнить, что правильное и качественное заземление является Вашей защитой от поражения электрическим током.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Leave Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *