Схема энергосберегающей лампы (220 В): устройство, состав
Бытовые энергосберегающие лампы (ЭСЛ) сегодня востребованы, несмотря на популярность светодиодных светильников. Это связано с их удобством, надежностью и эффективностью. Встречаются лампы разной мощности, от 20 Вт до 105 Вт. Чтобы эксплуатация была комфортной, рекомендуем изучить их устройство, которое имеет свою специфику.
Состав и принцип работы
Любая газоразрядная энергосберегающая лампа состоит из стеклянной колбы с инертным газом или парами ртути внутри. Внутрь колбы выведены два электрода, на которые от сети подается напряжение.
Устройство ЭСЛ
Принцип работы следующий: ток вызывает нагрев электродов. Между ними возникает дуговой разряд. Процессами управляет пускорегулирующая аппаратура (ЭПРА), электронная схема с транзисторами и конденсаторами.
Дуговой разряд между электродами воздействует на находящиеся внутри колбы пары ртути и вызывает появление ультрафиолетового излучения. Оно невидимо для глаз, поэтому внутренние стенки колбы покрывают люминофором. Проходя через люминофор, ультрафиолетовое излучение превращается в белый свет видимого спектра. Конкретный оттенок и температура свечения зависят от состава люминофора. Выбор покрытия влияет на стоимость.
Энергосберегающие лампы дают более высокую светоотдачу по сравнению с традиционными приборами накаливания.
Главный недостаток энергосберегающих ламп — невозможность подключения к сети 220 В напрямую. Пары ртути имеют высокое сопротивление, и для формирования нужного разряда требуется высоковольтный импульс.
Принцип работы энергосберегающей лампы
В момент разряда сопротивление внутри колбы становится отрицательным. Если не предусмотреть в схеме защитных элементов, неизбежно проявление короткого замыкания. Защитную функцию в трубчатых установках выполняет электромагнитный балласт старого образца, который монтируется прямо в светильник.
В компактных современных ЭСЛ электромагнитный балласт заменен небольшой электронной схемой ЭПРА. От качества пускорегулирующего аппарата зависит долговечность и эффективность всей конструкции.
Читайте также
Как сделать блок питания из энергосберегающей лампы
Схема энергосберегающей лампы
Схема включает:
- пусковой конденсатор, подающий импульс;
- комплект фильтров для сглаживания пульсаций и устранения помех;
- дроссель для защиты схемы от перепадов тока;
- транзисторы;
- драйвер для ограничения тока;
- предохранитель, исключающий воспламенение схемы при скачках напряжения в сети.
Схема ЭСЛ
В задающем модуле формируется импульс тока, поступает на транзистор и открывает его. Конденсатор заряжается. Скорость зарядки зависит от компонентов схемы.
С транзисторного ключа импульсы передаются на понижающий трансформатор, затем импульсное напряжение через резонансный контур поступает на электроды.
В трубке формируется свечение, параметры которого зависят от конденсатора. Запускающий импульс напряжением около 600 В требует наличия защитной системы.
После пробоя электродов шунтирующий конденсатор резко снижает резонанс и переводит прибор в рабочий режим с равномерным стабильным свечением.
Нужно ли менять схему
Схема энергосберегающих ламп не нуждается в улучшении или доработке. Изменения касаются ремонта неисправностей.
Если устройство не включается, можно попробовать самостоятельно восстановить его. Цоколь лампы разбирается и извлекается схема. Вначале устраняются видимые неполадки, потом следует проверка тестером.
Визуальный осмотр платы управления
Частая причина поломки — выгорание предохранителя. Ее видно невооруженным глазом. На схеме будет присутствовать потемневший элемент с признаками прожога. Производят выпаивание компонента и замену.
Отдельно рассматриваются нити накала колбы. Для проверки нужно выпаять по одному выводу с каждого края и замерить сопротивление тестером. Показатели должны быть одинаковыми. Если нить перегорела, нужно на параллельную спираль припаять резистор с подходящим сопротивлением. После этого лампа должна работать.
Транзисторы, конденсаторы, диоды и другие элементы на схеме проверяются мультиметром. Серьезные перегрузки системы могут привести к короткому замыканию в некоторых узлах. Нужно выявить такой узел и перепаять деталь.
Проверка светодиода или прозвонка мультиметром. Информация на дисплее – О – диод исправен, ток идет; OL – диод исправен, ток не идет.
Читайте также
Разновидности энергосберегающих ламп
Рекомендации по использованию
Энергосберегающие лампы удобны и практически без ограничений используются в светотехническом оборудовании. Однако эксплуатация должна осуществляться по правилам, чтобы избежать расходов и убытков.
Обязательно нужно учитывать температурный диапазон конкретного прибора. Он указан в спецификации. Нельзя подвергать лампу перепадам, выходящим за пределы указанного диапазона.
Видео посвящено детальному разбору схемы и простому способу ремонта
В электрических цепях с энергосберегающими лампами не стоит использовать стабилизаторы и устройства плавного старта, предназначенные для простых ламп накаливания. Эти компоненты не отвечают возможностям газоразрядных приборов.
В процессе эксплуатации важно соблюдать правило прогрева, предусматривающее выключение прибора только после 5-10 минут работы. Резкие скачки напряжения негативно сказываются на элементах системы.
Нелишним будет соблюдать технику безопасности при работе с приборами. Энергосберегающие лампы излучают ультрафиолет, который отрицательно воздействует на человека. Слишком высокая доза облучения приводит к преждевременному старению кожи, возникновению аллергии, иногда провоцирует приступы мигрени или эпилепсии.
По этой причине газоразрядные энергосберегающие лампы лучше устанавливать в отдалении от места постоянного пребывания человека. Установка устройства в настольный светильник точно не будет хорошей идеей.
Ремонт энергосберегающей лампы Sylvania своими руками
Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».
В одной из своих статей я рассказывал Вам, что для внутреннего освещения распределительных устройств (РУ) подстанций в основном мы применяем трубчатые и компактные люминесцентные лампы (КЛЛ).
Про их преимущества и недостатки читайте здесь.
В этой статье я расскажу Вам, как произвести ремонт компактной люминесцентной лампы Sylvania Mini-Lynx Economy мощностью 20 (Вт) производства Китай.
Данная лампа проработала на подстанции около 1,5 лет. Если режим ее работы перевести в часы, то получится в среднем около 2000 часов, вместо 6000 часов, заявленных производителем.
Идея с ремонтом люминесцентных ламп возникла тогда, когда мне на глаза попалась очередная коробка со сгоревшими лампами, которые планировали утилизировать. Подстанций много, объем ламп большой, соответственно, и сгоревшие лампы регулярно накапливаются.
Напомню Вам, что в люминесцентных лампах содержится ртуть, поэтому выбрасывать их с бытовым мусором не допустимо.
И вот я решил, по мере свободного времени, попытаться отремонтировать вышедшие из строя лампы, а заодно и поделиться с Вами информацией по их ремонту. Данную статью Вы можете использовать в своих интересах, ведь цены на КЛЛ лампы в настоящее время все еще относительно высокие, а значит и их ремонт все еще актуален.
Для начала приведу основные характеристики ремонтируемой лампы Sylvania Mini-Lynx Economy:
- мощность 20 (Вт)
- цоколь Е27
- напряжение сети 220-240 (В)
- тип лампы — 3U
- световой поток 1100 (Лм)
Ремонт энергосберегающей лампы своими руками
С помощью плоской отвертки с широким жалом нужно аккуратно отстегнуть защелки корпуса в местах соединения двух его половинок. Для этого вставляем отвертку в паз и поворачиваем ее в ту или иную сторону, чтобы отщелкнуть первую защелку.
Как только первая защелка откроется, продолжаем вскрывать остальные по периметру корпуса.
Будьте аккуратны, иначе при разборке можно сколоть корпус лампы или, не дай Бог, разбить саму колбу, тогда придется проводить димеркуризацию помещения из-за наличия в колбе паров ртути.
Компактная люминесцентная лампа состоит из трех частей:
- 3 U-образные дуговые колбы
- электронная плата (ЭПРА)
- цоколь Е27
Круглая печатная плата — это и есть плата электронного пускорегулирующего устройства (ЭПРА), или другими словами электронный баласт. Рабочая частота ЭПРА составляет от 10 до 60 (кГц). В связи с этим устраняется стробоскопический эффект «моргания» (значительно уменьшается коэффициент пульсаций ламп), который присутствует у люминесцентных ламп, собранных на электромагнитных ПРА (на основе дросселя и стартера) и работающих на частоте сети 50 (Гц).
Кстати, скоро мне принесут попользоваться прибор для измерения коэффициента пульсаций. Произведем замер и сравним коэффициенты пульсаций у лампы накаливания, у люминесцентной лампы с ЭПРА и с ЭмПРА, и у светодиодной лампы.
Подписывайтесь на новости сайта, чтобы не пропустить новые статьи.
Питающие провода от цоколя очень короткие, поэтому не дергайте резко, а то можно их оторвать.
В первую очередь нужно проверить целостность нитей накаливания. В данной энергосберегающей лампе их две. Они обозначены на плате, как А1-А2 и В1-В2. Их выводы намотаны на проволочные штыри в несколько витков без применения пайки.
С помощью мультиметра проверим сопротивление каждой нити.
Кто забыл, читайте подробное руководство о том, как пользоваться мультиметром (часть 1, часть 2 и часть 3).
Нить А1-А2.
Нить накала А1-А2 имеет обрыв.
Нить В1-В2.
Вторая нить В1-В2 имеет сопротивление 9 (Ом).
В принципе, перегоревшую нить можно определить визуально по затемненным участкам стекла на колбе. Но все равно без измерения сопротивления не обойтись.
Сгоревшую нить накаливания А1-А2 можно зашунтировать резистором с номиналом, аналогичным исправной нити, т.е. порядка 9-10 (Ом). Я установлю резистор сопротивлением 10 (Ом) мощностью 1 (Вт). Этого вполне хватит.
Впаиваю резистор с обратной стороны платы на выводы А1-А2. Вот, что получилось.
Между резистором и платой нужно установить прокладку (на фото ее пока нет). Теперь нужно проверить лампу на работоспособность.
Лампа горит. Теперь можно собрать корпус и продолжать ее эксплуатировать.
При таком ремонте запуск люминесцентной лампы будет происходить с некоторым мерцанием (порядка 2-3 секунд) — подтверждение тому смотрите в видео.
Неисправности, встречающиеся при ремонте ламп
Если нити накаливания в лампе исправны, то можно переходить к поиску неисправностей в электронной плате (ЭПРА). Визуально оцениваем ее состояние на наличие механических повреждений, сколов, трещин, сгоревших элементов и т.п. Также не забываем проверить качество пайки — это же китайское изделие.
В моем примере на вид плата чистая, трещин, сколов и сгоревших элементов не наблюдается.
Вот наиболее распространенная схема ЭПРА, которая используется в большинстве компактных люминесцентных лампах (КЛЛ). У каждого производителя есть свои небольшие отличия (разброс параметров элементов схемы в зависимости от мощности лампы), но общий принцип схемы остается тот же.
Выйти из строя могут следующие элементы платы:
- ограничительный резистор
- диодный мост
- сглаживающий конденсатор
- транзисторы, резисторы и диоды
- высоковольтный конденсатор
- динистор
А теперь поговорим о каждом элементе подробнее.
1. Ограничительный резистор
В схеме указан предохранитель FU, но зачастую он просто отсутствует, как в моем примере.
Его роль выполняет входной ограничительный резистор. При возникновении какой-либо неисправности в лампе (ток короткого или перегруз) ток в цепи растет и резистор сгорает, тем самым разрывая цепь питания. Резистор усажен в термоусадочной трубке. Один его вывод соединен с резьбовым контактом цоколя, а второй — с платой.
Я решил проверить этот резистор — он оказался целым, а значит можно сделать вывод, что короткого замыкания в цепи не было — произошел просто обрыв нити А1-А2. Сопротивление резистора составляет 6,3 (Ом).
Если у Вас резистор «не звонится», то в любом случае нужно искать причины по которым он сгорел (см. далее по тексту). При сгоревшем резисторе лампа гореть не будет.
2. Диодный мост
Диодный мост VD1-VD4 служит для выпрямления сетевого напряжения 220 (В). Выполнен он на 4 диодах марки 1N4007 HWD.
Если диоды «пробиты», то соответственно, производим их замену. При пробое диодов ограничительный резистор, как правило, тоже сгорает, а лампа перестает гореть.
3. Сглаживающий конденсатор
Электролитический конденсатор С1 сглаживает пульсации выпрямленного напряжения. Очень часто выходит из строя (теряет емкость и вздувается), особенно в китайских лампах, поэтому не лишним будет его проверить. При его неисправности лампа плохо включается и гудит.
На фотографии он зеленого цвета. Имеет емкость 4,7 (мкФ) напряжением 400 (В).
Кстати, это тот самый конденсатор, от которого мигает лампа, подключенная через выключатель с подсветкой.
4. Транзисторы, резисторы и диоды
На двух транзисторах VT3 и VT4 собран высокочастотный генератор (импульсный преобразователь). В качестве транзисторов применяются высоковольтные кремниевые транзисторы серий MJE13003 и MJE13001. Для моей 20-Ваттной лампы установлено два транзистора серии MJE13003 ТО-126.
Чтобы проверить транзисторы, их нужно выпаивать из схемы, т.к. между их переходами подключены диоды, резисторы и низкоомные обмотки тороидального трансформатора, что ложно отразится при измерении мультиметром. Зачастую выходят из строя резисторы R3 и R4 в цепи базы транзисторов — их номинал около 20-22 (Ом).
5. Высоковольтный конденсатор
Если лампа сильно мерцает или светится в районе электродов, то скорее всего причиной тому является пробой высоковольтного конденсатора C5, подключенного между нитями накала. Этот конденсатор создает высоковольтный импульс для появления разряда в колбе. И если он пробит, то лампа не загорится, а в районе электродов будет наблюдаться свечение из-за разогрева спиралей (нитей накаливания). Кстати, это одна из распространенных неисправностей.
В моей лампе установлен конденсатор B472J 1200 (В). Если он вышел из строя, то его можно заменить на конденсатор с более высоким напряжением, например, 3,9 (нФ) 2000 (В).
6. Динистор
Динистор VS1 (по схеме DB3) выглядит как миниатюрный диод.
При достижении между анодом и катодом напряжения около 30 (В) он открывается. С помощью мультиметра проверить динистор не возможно, только лишь его целостность — он не должен «звониться» ни в одном направлении. Из строя выходит гораздо реже, нежели предыдущие элементы. У маломощных ламп динистор обычно отсутствует.
7. Тороидальный трансформатор
Тороидальный трансформатор Т1 имеет кольцевой магнитопровод, на котором намотаны 3 обмотки. Количество витков каждой обмотки находится в пределах от 2 до 10. Практически не выходит из строя.
Хотел бы отметить то, что лампа Sylvania имеет холодный запуск, т.к. у нее в схеме отсутствует позистор РТС (терморезистор с положительным коэффициентом).
Это значит, что при включении лампы ток подается на холодные нити накала (спирали), что отрицательно сказывается на их сроке службы, т.к. они предварительно не прогреваются и при холодном запуске перегорают от скачка тока (аналогично, как у ламп накаливания). А у нас ведь как раз сгорела одна из нитей накала (А1-А2) и это является хорошим тому подтверждением.
При установленном позисторе РТС, ток последовательно проходит через позистор РТС и нити накала, тем самым плавно их разогревая. Затем сопротивление позистора РТС увеличивается, переставая шунтировать лампу, что приводит к резонансу напряжений на конденсаторе С5 и электродах лампы. Высокое напряжение пробивает газ в колбе и лампа зажигается. Это и называется горячим запуском лампы, что положительно сказывается на сроке службы нитей накала.
Почему же выходят из строя электронные компоненты платы?
Причин на самом деле может быть несколько: использование бракованных элементов, низкое качество изготовления, неправильная эксплуатация (частые включения, пониженная или повышенная температура). Как видите, среди вышедших из строя ламп имеются, как китайские производители, так и известные брендовые, типа Osram и Philips. Тут, уж, кому как повезет.
Если у Вас сгорели сразу две нити накала, а электронная плата ЭПРА осталась исправной, то ее можно использовать для питания обычной трубчатой люминесцентной лампы, тем самым избавившись от схемы дросселя со стартером, и уменьшив ее коэффициент пульсаций.
P.S. Уважаемые читатели и гости сайта «Заметки электрика», у кого из Вас имеется опыт по ремонту энергосберегающих ламп, то буду рад, если поделитесь в комментариях своими наблюдениями. Спасибо за внимание.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
Ремонт энергосберегающих ламп
На сегодня применение энергосберегающих ламп очень частое явление. Это объясняется тем, что такие приборы освещения имеют достаточно высокий КПД при эксплуатации, длительный срок службы и относительно невысокую стоимость.
Ремонт лампочек
Но такие приборы освещения также имеют свойство выходить из строя, и прежде чем выкидывать старую и покупать новую лампу можно попытаться отремонтировать ее. Для этого потребуются минимальные знания в области электроники и нехитрые инструменты, такие как:
- тестер;
- паяльник;
- набор отверток.
Энергосберегающая лампа состоит из таких частей:
- Колба, представляющая собой трубку, в которой располагаются нити накаливания;
- Балласт — эта часть лампы служит для выпрямления и стабилизации напряжения в нитях, которые расположены в колбе;
- Цоколь. Эта часть предназначена для того чтобы лампа вкручивалась в патрон. Другими словами, это главная часть всего корпуса.
Основным отличием энергосберегающих ламп является их форма трубки колбы. Она сделана специально таким образом, чтобы длина трубки была максимальной при компактных размерах самой лампы — чтобы энергосберегающая лампа могла устанавливаться в любой светильник.
Энергосберегающие лампы выпускаются также с разными типами цоколей:
Все они между собой различаются размерами. Поэтому при покупке таких ламп необходимо обращать внимание на тип цоколя.
Читайте также статью ⇒ Ремонт выключателя света.
Основные неисправности
Основные неисправности ламп и возможные способы устранения представлены в таблице.
Тип неисправности | Причина неисправности | Способы нахождения | Способ устранения |
Механические неисправности | Надколы, удары | Визуальный осмотр | Приклеивание, пайка |
Повреждение деталей | Перепад напряжения, перегрев | Прозвонка с помощью тестера | Пайка |
Лампа со сгоревшей спиралью
Одним из наиболее распространенных видов неисправностей является перегорание нитей накаливания в колбе энергосберегающей лампы. Эту неисправность легко выявить, так как на колбе образуется затемненная точка, и освещение будет не таким ярким.
Если в лампе перегорит сразу две нити накаливания, то колба уже ремонту не подлежит.
Причина такой поломки являются периодические скачки переменного напряжения в сети. В зависимости от величины этих скачков может перегорать нити накаливания, так как они предназначены работать с постоянным напряжением. Предназначение балласта в энергосберегающей лампе — подавать прямое напряжение на нити накаливания. Но в зависимости от скачков переменного напряжения будет меняться величина постоянного напряжения при подаче на колбу.
Энергосберегающая лампа с основным видом неисправности — перегоревшей спиралью, о чем свидетельствует затемнениеСовет №1: Если в помещении установлено большое количество энергосберегающих ламп, то целесообразной будет установка контроллера напряжения в сети. Он устанавливается сразу после счетчика в щитке. Его установка избавит резких перепадов напряжения и тем самым поможет сохранить работоспособность всех ламп.
Схема ремонта
При ремонте необходимо иметь подробный план действий, по которому будет проходить вся работа. На начальном этапе проводится визуальный осмотр на предмет видимых повреждений. Если таковых не обнаружено, то необходимо приступать к разборке.
Для начала требуется разобрать энергосберегающую лампу. Это делается путем отсоединения колбы от цоколя лампы. Работу необходимо делать аккуратно, чтобы не повредить цоколь. Для соединения этих частей производители используют защелки. И путем прикладывания небольших усилий части разъединяются.
Для разборки лампы можно использовать острый нож с тонким лезвиемДалее необходимо отсоединить провода, которые соединяют колбу и балласт. При разъединении нельзя делать резких движений, так как провода очень короткие, и при резком отрыве можно их порвать, а это создаст дополнительную работу по восстановлению. Так как провода намотаны на выходы спиралей, их требуется просто отмотать, ничего отпаивать не придется.
После отсоединения проводится проверка частей энергосберегающей лампы. При обнаружении неисправности одной из частей лампы ее необходимо заменить на работоспособную.
Ремонт балласта и спирали в энергосберегающей лампе
Для того чтобы проверить на работоспособность нити накаливания необходимо применить тестер. С его помощью измеряется сопротивление. Для полностью рабочей колбы сопротивление каждой из нитей составляет 10 – 15 Ом. Если после измерения окажется, что нити не повреждены, то причина поломки кроется в балласте. Если же одна из нитей имеет разрыв, то необходимо произвести ремонт.
Проверка работоспособности нитей накаливания проводится при помощи любого доступного тестераДля выполнения ремонта необходимо закоротить выводы перегоревшей нити накаливания. Для этого перегоревшую нить требуется зашунтировать резистором с сопротивлением 5 ОМ. Это делается в обязательном порядке. Без шунта колба с перегоревшей нитью просто не сможет запуститься и не будет гореть.
Совет №2: Конечно же, такой ремонт существенно сократит срок службы, так как работать будет только одна нить накаливания. Но, по крайней мере, если лампа уже не на гарантии, то такой ремонт даст продолжительное время работы. В противном случае проводится замена колбы на идентичную.
Если при осмотре выявилось, что колба исправна, значит необходимо провести проверку и ремонт балласта. Для этого в первую очередь необходимо провести его визуальный осмотр. Часто бывает, что при выходе из строя электронной детали она перегорает, и визуально это можно увидеть и устранить данную неисправность. Если же никаких дефектов при осмотре не обнаружено, то необходимо начинать проверку с помощью тестера.
Лампы энергосберегающие оснащаются предохранителем, защищающим прибор от скачков напряжения в сетиПервым, на что необходимо обратить внимание — это предохранитель. Деталь специально установлена для защиты от больших скачков напряжения. Его проверка заключается в простой прозвонке на замыкание цепи.
Далее проводится проверка диодного моста. Он необходим для выпрямления напряжения. Проверку этих полупроводников можно проводить на плате не выпаивая их. Для этого проводятся измерения их сопротивления мультиметром.
Следующим элементом для проверки являются конденсатор фильтра. В схеме он служит для заглаживания импульсов. Выявить его выход из строя можно визуально без тестера. Он может быть вздутым или потекшим. Также требуется обратить внимание на конденсатор высокого напряжения. Он может служить причиной не включения энергосберегающей лампы.
Одним из важных элементов в схеме является транзистор. Для проверки его работоспособности его необходимо выпаять и произвести замеры сопротивления.
Основные конструктивные элементы энергосберегающей лампы, установленные на спрятанной внутри платеПосле проведения всех выше указанных действий в 99 % случаев находится неисправность балласта. Также ремонт лампы можно проводить путем замены ее отдельных частей, но такой ремонт проводиться при условии, что в наличии есть идентичные части ламп.
Читайте также статью: → Ремонт розеток и выключателей.
Типичные ошибки
Частой ошибкой можно назвать приложение слишком большого усилия при разборке лампы. Следствием ее может стать надлом патрона, который, в принципе, также можно заменить или отремонтировать.
Не менее часто при разделении лампы на две половинки является неосторожное обращение с ними, приводящее к обрыву тонких проводков.
Еще одной ошибкой можно назвать пренебрежение проверкой полупроводников. Именно они первыми выходят из строя при возникновении коротких замыканий или при работе под значительной нагрузкой.
Лампа со сгоревшей спиралью
Вопрос №1: Что собой представляет плата электронного блока — наверное, это слишком сложное устройство?
Плата — это обычный пускорегулирующий прибор, устанавливающийся даже в старых светильниках. Только в устаревших моделях установлен дроссель, а в энергосберегающих лампах — электроника.
Вопрос №2: При перегорании резисторов и дорожек, какая причина может быть?
Перегоревшие дорожки и резисторы говорят о том, что лампа эксплуатировалась в тяжелых условиях, возможно, не по назначению.
Оцените качество статьи:
Здесь
представлены схемы популярных энергосберегающих ламп дневного света. ——————————————————
——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————- ——————————————————————————————————————————————————————————————————————————————————————————Адрес этой статьи: http://radio-hobby.org/modules/news/article.php?storyid=453Оригинал: http://www.pavouk.org/hw/lamp/en_index.html |
Энергосберегающие лампы Принцип действия Ремонт энергосберегающих ламп Схемы энергосберегающих ламп Питание ламп дневного света (ЛДС) Термисторы
PTC для энергосберегающих ламп 1). Электрическое поле Земли - источник энергии. 2). Ветродвигатель для ветряка — 1 3). Ветродвигатель для ветряка — 2 4). Получение электрической энергии — 1 |
Схемы энергосберегающих ламп | ОСК Лампы.РФ
На сегодняшний день существует два вида энергосберегающих источников света: люминесцентные лампы и светодиоды. Газоразрядные КЛЛ состоят из стеклянной колбы в виде компактно изогнутой тонкой трубки с электродами и нитью накаливания, цоколя с патроном и платы электронного балласта, необходимого для зажигания КЛЛ.
Схема преобразовывает стандартное переменное напряжение в постоянное, которое подается на полупроводниковый генератор ВЧ, вырабатывающий высокочастотные импульсы. Эти импульсы питают лампу. Производители используют при изготовлении КЛЛ различные схемы в зависимости от используемых компонентов. Длительность срока службы прибора во многом зависит от качества электроники, установленной на плате балласта. По этой причине рекомендуется покупать энергосберегающие лампы авторитетных торговых марок с наиболее продолжительной гарантией.
Устройство светодиодных приборов
Светодиодные лампы относятся к полупроводниковым источникам света. Светодиод представляет собой кристалл с металлической прослойкой-катодом и нитью-анодом, залитый прозрачным компаундом. В состав электросхемы источника света, помимо полупроводникового кристалла, входят источник питания для силовых и управляющих цепей, контроллеры, электронные стабилизаторы, соединительные кабели. Особенность схемы заключается в том, что светодиод нуждается в подаче точных параметров напряжения и тока.
Светодиодные приборы производятся в виде ламп, модулей, лент. Они состоят из кластеров белых или разноцветных диодов, установленных на печатной плате. Характеристики этих твердотельных цифровых приборов можно точно регулировать с помощью специальных систем управления.
Светотехника с полупроводниковыми кристаллами одного цвета излучает свет определенного оттенка. Приборы с источниками света RGB используются для получения миллионов оттенков различных цветов. Современные мультиспектральные модули оснащаются, помимо RGB, дополнительными цветами для расширения диапазона.
Светодиодные приборы могут питаться не только от внешнего блока, но и непосредственно от сети. Они также оснащаются встроенными источниками тока. Многие производители выпускают модули с возможностью деления на отдельные отрезки. Плата с источниками света может помещаться в корпус.
Ремонт энергосберегающих ламп
Ремонт трех неисправных энергосберегающих ламп, и видео снятое на разных этапах этого ремонта.Упор сделан на практические детали. Разборка, сборка, особенности конструкции, процесс демонтажа платы и т.п. Основная информация — в видеоролике, но в заметке есть схемы двух ламп, а так же фото.
Целью заметки является не теория, а практика и наглядная демонстрация некоторых манипуляций, непривычных для тех, кто не сталкивался ранее с таким ремонтом. Видеоролик отражает все основные детали процесса (см. далее).
В чем просто повезло:
Заратустра меня простил.
- Завалялись подходящие детали
- Поломки были не очень сложными
- Кое-что удалось сделать случайно — методом тыка
Столкнулся с ремонтом ламп впервые! Возможны неточности.
Впрочем, именно потому, что столкнулся с этим первый раз, и появились некоторые свежие впечатления и важные детали, которые слишком очевидны для мастеров, но часто ставят в тупик новичка.
Вообще, эти лампы уходят в прошлое, — на смену им идут светодиодные. Но если у кого завалялось несколько неисправных ламп, то имеет смысл засесть за их починку. Во-первых какое-то время они еще послужат. Во-вторых это интересно :).
Как я уже писал выше — вся основная информация находится в видеоролике, а в самой заметке я выложил только некоторые фото и схемы двух ламп (Maxus и e.next) и коротко описал поломки.
Видео ремонта
Рекомендую читать далее только после просмотра видеоролика.
Лампа 1 — Volta
20W, цоколь E27
Поломка: лампа не горит.
В ролике достаточно подробно и наглядно представлен процесс разборки и сборки корпуса лампы, демонтаж нитей и пр. механическая работа, которая может быть интересна таким же как я новичкам в ремонте любых подобных энергосберегающих ламп (это первая в жизни лампа, которую я разобрал).
Ремонт: замена вспухшего высоковольтного электролитического конденсатора и выгоревшей индуктивности в цепи питания.
Цоколевку транзисторов надо проверять тестером! У разных производителей она может отличаться!
Лампа 2 — Maxus
26W, 2700k, цоколь E27
Поломка: лампа не горит.
Здесь была нетипичная и очень интересная неисправность. В этой части ролика присутствует только те этапы ремонта, которые представляют особый интерес. Те этапы, которые сходны ремонту первой лампы, для этой лампы пропущены (разборка, отсоединение нитей колбы и т.п.). Для этой лампы пришлось рисовать схему с платы.
Ремонт: необычное повреждение, приведшее к возникновению частичного КЗ (подробности в ролике).
Цоколевку транзисторов надо проверять тестером! У разных производителей она может отличаться!
Лампа 3 — e.next
11W, 2700k, цоколь E14
Поломка: через несколько секунд после нормального включения, лампа мигает (мерцает) некоторое время, после чего работает нормально, но иногда все-таки «моргает».
Эта лампа отличается от первых двух тем, что она имеет тройную колбу, у нее меньше цоколь (Е14), и простейшая схема. Поломка у этой энергосберегающей лампы оказалась очень простой, но в этой части видеоролика есть некоторые комментарии по схеме и типичным поломкам.
Совет: . Для зарисовки схемы, удобнее всего сфотографировать плату с двух сторон и работать с фото на компьютере:
Ремонт: пропайка контактных площадок платы.
Нити
Добавлено 20.11.2014:
Ремонтировал еще одну лампу и когда вскрывал, то из за перекоса корпуса (!) лопнула колба. В результате — увидел, что внутри колбы все-таки спирали (см. фото ниже).
Перегрев старой лампы
Добавлено 07.02.2018:
«Дикий» ремонт очень старой лампы. Лампа проработала много лет, колба «истощилась» в результате стала потреблять больше ток и сильнее греться. Пластмасса из за перегрева стала хрупкой и треснула — пришлось стянуть ее проволокой. Но самое «дикое» в этом ремонте то, что из за высокой температуры перегревался электролитический конденсатор внутри и почти сразу вздувался и вытекал. Не помогли даже вентиляционные отверстия которые я сделал в корпусе. В результате пришлось вынести конденсатор за пределы лампы при помощи специальных термостойких проводов. Конечно вся эта «дикость» не должна иметь место, не советую это повторять, поскольку было сделано в качестве временного решения, скорее как забавный эксперимент. Но если у Вас экстремальные обстоятельства, нужен свет и нет иных способов выйти из ситуации то в ненадолго можно так выйти из положения.
Типичные поломки
Те поломки, с которыми я столкнулся, не являются типичными (кроме выхода из строя высоковольтного электролитического конденсатора).
Судя по информации от тех, кому приходилось часто сталкиваться с подобным ремонтом, наиболее типичными поломками энергосберегающих ламп являются:
- Перегорание нитей накала. Это то, что стоит проверять в первую очередь (сопротивление каждой обычно до 15 Ом).
- Пробой резонансного конденсатора, подключенного между нитями лампы (номинал обычно 2,2 nF 1200V).
Также типичными являются следующие поломки:
- Выход из строя силового конденсатора (емкость обычно 47 nF). Через него подключен один из выводов лампы.
- Выход из строя (вздутие и т.п.) сглаживающего электролитического конденсатора в цепи питания (номинал обычно до 10uF 400V).
- Выход из строя конденсатора запускающего с динистором генератор (номинал обычно 22 nF 100V).
А вообще, сгореть в балласте (плате, через которую подключены лампы) может любая деталь. В Интернет, в описаниях поломок попадались даже случаи сгорания резисторов.
Бывают и экзотические неисправности — см. видео выше.
Ссылки
Рекомендую прочитать две очень познавательные статьи (теория и примеры, принцип работы ламп доступным языком):
Энергосберегающие лампы. Изучение электроники КЛЛ (часть 1)
Энергосберегающие лампы. Изучение электроники КЛЛ (часть 2)
Большую часть я не понял, но кое-что уловил… 🙂
Также рекомендую прочесть начиная с сообщения и до конца страницы тему на одном из форумов: radiokot.ru
Там доступно на рисунках со стрелочками описан принцип работы схемы.
РЕМОНТ И ПЕРЕДЕЛКА ЭНЕРГОСБЕРЕГАЮЩИХ ЛАМП ЭНЕРГОСБЕРЕГАЮЩАЯ ЛАМПА ОТ 12В Мотал на глаз и на память интерпритируя размер сердечников, по схеме непрерывной обмотки. Первой намотал коллекторную обмотку 10 витков проводом 0.4мм, второй базовою 6 витков проводом 0.2мм, проложил слой изоляции намотал внахлест нагрузочную обмотку проводом 0.1 получилось около 330-340 витков. В нагрузку подключил лампу от сканера 7w, устройство сразу заработало, чему свидетельствовал исходящий от лампы свет. Рядом лежала 13-ваттная энергосберегающая лампа со сгоревшей спиралью, решил попробовать осилит это детище подобную нагрузку, был приятно удивлен, при токе в пол ампера при напряжении 12 вольт лампа светит достаточно ярко. Так же работает от двух литий-ионных аккумуляторов, правда потребляя на 150 ма больше. Во едино спаял навесным монтажом (4 деталюги) и все это чудесным образом разместилось в оригинальном корпусе из под балласта на 220. Транзистор не особо греется, через пять минут работы на нем можно держать палец. Теперь эта конструкция поедет прямиком на дачу, где как обычно постоянно перебои с электричеством, можно будет чай попить или постель разложить при дневном свете.
Что можно сделать, если у Вас сгорела компактная люминесцентная лампа Хотя на эконом лампы, в зависимости от производителя, существует гарантия и даже до 3-х лет. Но потребители могут столкнуться с тем что лампочка перегорела, а у вас не сохранилась упаковка, чек покупки, магазин переехал в другое место т.е по каким-то независящим от вас причинам вы не можете обменять поломанную вещь. Мы решили предложить Вам воспользоваться оригинальным решением по использованию, перегоревших эконом ламп которое мы нашли на просторах огромного Интернет-ресурса и предлагаем его Вам. Помните, вы подвергаете жизнь опасности, попав под напряжение 220В! Проще всего её выбросить в мусор, ну а можно
из неё сделать … другую, а если ламп сгоревших накопилось
несколько, то можно заняться и …. ремонтом. Данная лампа перегорает двумя способами: 2) перегорает спираль накала Для начала выясняем, что же произошло. Разбираем лампу (очень часто собраны на защелках, более дешовые варианты склены). Отключаем колбу, откусываем провода питания: Прозваниваем накалы колбы (для принятия решения выбросить колбу или нет) Мне не повезло, перегорели обе спирали накала
(первый раз в моей немалой практике, обычно одна, а когда
сгорает схема то и ни одной). В общем если хотя бы одна сгорела
колбу выбрасываем, если нет, то она рабочая, а сгорела схема.
Можно ли отремонтировать электронный балласт? Люминесцентные лампы с электронным балластом
сегодня можно встретить повсеместно. Очень популярны настольные
лампы с прямоугольными плафонами и двухколенным держателем.
Во всех магазинах электротоваров уже продаются лампы, вворачиваемые
в обычные патроны с круглой резьбой вместо классических ламп
накаливания. В частности, петербургский метрополитен в последнее
время напрочь избавился от ламп накаливания, заменив их люминесцентными.
Преимущество таких ламп очевидно — продолжительный срок службы,
низкое потребление электроэнергии при высокой светоотдаче
(достаточно сказать, что 11-Ваттная люминесцентная лампа заменяет
75-Вт лампу накаливания), мягкий свет со спектром, близким
к естественному солнечному свету. Разобранная лампа показана на фото 2. Она состоит из круглого цоколя, схемы управления (собственно электронного балласта) и пластмассового кружка, в который вклеена трубка, которая дает свет. При разборке лампы следует соблюдать осторожность, чтобы, во-первых, не разбить баллон и не повредить себе руки, глаза и прочие части тела, а во-вторых, чтобы не повредить электронную схему (не оторвать «дорожки») и корпус (пластмассовый). Исследования, проведенные с помощью мультиметра,
показали, что в баллоне лампы перегорела одна спираль. На
фото 3, которое получено уже после вскрытия баллона, видно,
что спираль перегорела, затемнив люминофор в окрестностях.
Было сделано предположение, что с электронным балластом ничего
не случилось (это позже подтвердилось). С большой долей уверенности
можно утверждать, что нить лампы — самое слабое место, и в
подавляющем большинстве вышедших из стоя ламп будет наблюдаться
скорее перегорание нити, нежели выгорание электронной части
схемы. Очень важный элемент схемы — предохранитель F1. Если в схеме электронного балласта что-то случится (например, «выгорят» транзисторы полумоста, создав «сквозной» ток, или пробьется конденсатор C1, С2, или пробьется диодный мост), предохранитель защитит сеть от короткого замыкания и возможного пожара. На фото 5 этот предохранитель показан. Он представляет собой колбочку без классического
держателя с длинными выводами, один из которых припаян к цоколю,
а другой, к печатной плате балласта. Так что если предохранитель
перегорел, скорее всего, что-то случилось в схеме балласта,
и нужно проверять его элементы. А если нет, балласт наверняка
цел. На коробочке лампы есть интересная информация о потребляемой мощности других ламп, а также по надежности. Данная лампа мощностью 9 Вт заменит 60-Ваттную лампу накаливания, 9 Вт — 40- Ваттную, а 5 Вт — 25-Ваттную. Гарантированное время наработки на отказ — 10000 часов, что соответствует 10 лампам накаливания. Это — примерно 13 месяцев непрерывной работы. Цоколь дампы должен содержать четыре вывода, то есть две спирали (фото 7). У данной лампы правые два вывода относятся к одной спирали, левые два — к другой спирали. Если расположение спиралей неочевидно, всегда можно разыскать нужные выводы с помощью мультиметра — спирали имеют низкое сопротивление порядка нескольким Ом. Выводы лампы необходимо осторожно, не допуская перегрева, облудить припоем. Теперь займемся подготовкой основания, к которому будем крепить лампу. Кружок, похожий на имеющийся, залитый белой массой (фото 8), нужно изготовить новый и напильником подготовить площадку, к которой будет приклеена лампа (фото 9). Колбу лампы разбивать категорически не рекомендуется. Дальше лучше проверить, как зажигается лампа. Подпаиваем выводы лампы к балласту (фото 11) и включаем балласт в сеть. Для приработки стоит его потренировать, включая-отключая несколько раз и выдержав во включенном состоянии несколько часов. Лампа светится достаточно ярким светом, и при этом греется, поэтому ее лучше положить на дощечку и накрыть несгораемым листом. Когда тренировка проведена, разбираем эту конструкцию и начинаем монтаж лампы. Берем тюбик суперклея «Момент» и наносим на сопрягаемые поверхности несколько капель. Потом вставляем выводы в отверстия и плотно прижимаем детали друг другу, выдерживая полчаса в таком виде. Клей надежно «схватит» детали (фото 10). Лучше использовать этот клей, или дихлорэтан, поскольку для надежного крепления пластмасса в сопрягаемом месте должна немного расплавиться. Осталось собрать лампу. Впаиваем балласт в цоколь, не забыв о предохранителе. Заранее (до впайки) нужно припаять четыре провода, которыми лампа будет связана с балластом. Подойдет любой провод, ну лучше, чтобы это был провод типа МГТФ во фторопластовой термостойкой изоляции (фото 12). Собирается лампа тоже просто — достаточно уложить провода внутри цоколя, или скрутить их жгутиком, и затем защелкнуть фиксаторы. Отверстия от прошлого баллона в целях электробезопасности лучше заклеить кружочками, ввырезанными из упаковки от молочных продуктов. Отремонтированная лампа готова (фото 13). Ее
можно ввернуть в патрон. ИЗГОТОВЛЕНИЕ БЛОКОВ ПИТАНИЯ ИЗ ЭНЕРГОСБЕРЕГАЮЩИХ ЛАМП ПРИНЦИПИАЛЬНЫЕ СХЕМЫ ЭНЕРГОСБЕРЕГАЮЩИХ ЛАМП
Адрес администрации сайта: [email protected]
|
Energy Saving Automatic LED Light Controller Circuit
В сообщении обсуждается интересная конструкция энергосберегающей схемы освещения, которая включается только тогда, когда это логически необходимо, что помогает экономить электроэнергию, а также увеличивает срок службы всей системы.
Технические характеристики
Hello Swagatam,
Спасибо за ответ, подробности, которые вы задали, таковы:
1. Схема солнечного зарядного устройства для зарядки свинцово-кислотных аккумуляторов.
2.мой проект требует, чтобы в комнате, если кто-то присутствует, всегда горели светодиоды.
3. Если естественное освещение хорошее, оно должно приглушать его.
4. Если в комнате никого нет, то через 1-2 минуты он должен выключиться.
5. Положение о закрытии в праздничные дни.
Все, что мне нужно, — это освещать комнату моего факультета во время учебы в колледже или после, если необходимо, с использованием солнечной энергии напрямую или от батареек.
Я действительно рассчитываю на вас, У меня нет никого, кто мог бы научить меня этому, и я много сделал это, но это не работает.
Дизайн
AS По запросу следующая энергосберегающая интеллектуальная световая схема состоит из трех отдельных ступеней, а именно: ступень датчика PIR, ступень светодиодного модуля и ступень контроллера ШИМ света, состоящая из пары IC555.
Давайте разберемся в различных ступенях с помощью следующих пунктов:
Верхняя ступень, состоящая из модуля датчика PIR и связанной схемы, образует стандартный этап пассивного инфракрасного датчика.
В присутствии людей в указанном диапазоне датчик обнаруживает его, и его внутренняя схема преобразует его в разность потенциалов, так что он подается на базу первого транзистора NPN.
Вышеупомянутый триггер активирует оба транзистора, которые, в свою очередь, включают светодиоды, подключенные к коллектору TIP127.
Вышеупомянутый этап гарантирует, что свет будет включен только во время присутствия людей в непосредственной близости и выключен, когда вокруг никого нет. C5 гарантирует, что свет не выключается немедленно в отсутствие людей, а не через несколько секунд задержки.
Использование ШИМ
Далее мы видим два каскада IC 555, которые сконфигурированы как стандартные каскады нестабильного и ШИМ-генератора.C1 определяет частоту ШИМ, в то время как резистор R1 может использоваться для оптимизации правильного отклика схемы.
Выход ШИМ подается на базу транзистора TIP127. Это означает, что когда импульсы ШИМ состоят из более широких импульсов, транзистор остается выключенным в течение более длительных периодов времени, и наоборот.
Это означает, что с более широкими ШИМ светодиоды будут слабее с их интенсивностью, и наоборот.
Все мы знаем, что выход ШИМ от микросхемы 555 (как настроено в правой части) зависит от уровня напряжения, подаваемого на ее управляющий вывод №5.
При более высоких напряжениях, приближающихся к уровню питания, выход ШИМ становится шире, в то время как напряжение, приближающееся к нулевой отметке, делает ШИМ с минимальной шириной.
Каскад делителя потенциала, выполненный с помощью R16, R17 и VR2, выполняет указанную выше функцию, так что ИС реагирует на внешние условия внешней освещенности и генерирует необходимые оптимизированные ШИМ для реализации функций затемнения светодиодов.
R16 — это фактически LDR, который должен получать ТОЛЬКО свет от внешнего источника, входящего в комнату.
Когда внешний свет яркий, LDR предлагает более низкое сопротивление, тем самым увеличивая потенциал на выводе № 5 IC. Это побуждает IC генерировать более широкие PWM, заставляя светодиоды тускнеть.
При низком уровне внешней освещенности LDR предлагает более высокое сопротивление, вызывая противоположные результаты, то есть теперь светодиоды начинают пропорционально становиться ярче.
Поток 220K может быть отрегулирован для получения наилучшего возможного отклика от каскада IC 555 в соответствии с индивидуальными предпочтениями.
По запросу указанная выше схема должна питаться от аккумулятора, заряжаемого от схемы контроллера солнечного зарядного устройства. Я объяснил многие схемы контроллера солнечного зарядного устройства в этом блоге, ПОСЛЕДНЯЯ ЦЕПЬ, указанная в статье, может быть использована для настоящего приложения.
Энергосберегающие лампы и электронные балласты
- Введение
- Газоразрядные лампы и газоразрядные лампы высокой интенсивности
- Введение в балласты
- Некоторые определения и оценка рабочих характеристик
- Обычные балласты
- Высокочастотный резонансный балласт
- Новое поколение балластов
- Балласты для коррекции коэффициента мощности и диммирования
- Сравнение компактных люминесцентных ламп с использованием магнитных и электронных Балласты
- Дальнейшие разработки электронных балластов
- Список литературы
1 Введение
С момента первого энергетического кризиса, с которым мир столкнулся в 1970-х гг. к внезапному и неожиданному удорожанию нефтяного топлива), электричество промышленность пытается удовлетворить растущие мировые потребности в энергии за счет строительство большего количества электростанций, не зависящих от нефти, или поиск других нетрадиционные источники энергии, такие как солнечная энергия.В 90-е годы однако новая концепция под названием «негаватт» — идея о том, что инвестиции в энергосбережение часто приносят более высокую прибыль, чем инвестиции в новые электростанции — набирают популярность.
Согласно этой точке зрения, спрос на электроэнергию может быть ограничен путем сопоставления подходящая и эффективная технология для каждой задачи по использованию энергии.
Электрические лампы — яркий тому пример. Спустя столетие после его изобретения электрическая лампа накаливания до сих пор остается одним из самых популярных в мире способов обеспечение искусственного освещения как в промышленности, так и в домашнем хозяйстве, несмотря на то, что лампа накаливания дает сравнительно наименьший светоотдача при заданном количестве потребляемой электроэнергии.Эта фигура известная как световая отдача или светоотдача, вряд ли была улучшена любой новой технологией, что касается лампы накаливания.
Другой наиболее популярный источник электрического освещения — люминесцентные лампы. лампа, в которой используется принцип дугового разряда через газ при низком давлении для получения видимого света. Освещение по принципу газового разряда существует более пятидесяти лет и почти все новые исследования и разработки в области повышения эффективности освещения была сосредоточена в основном на технологии люминесцентных ламп.Например, в Соединенных Штатах было подсчитано, что люминесцентные лампы производят заводом, строительство которого стоит восемь миллионов долларов, сэкономит электроэнергию стоимостью один миллиард долларов, что эквивалентно стоимости электростанции мощностью 700 МВт.
Таким образом, словосочетание «энергосберегающие лампы» в основном является синонимом. с новой технологией, разрабатываемой для улучшения флуоресцентных ламповая техника.
В частности, совместная разработка маломощных люминесцентных ламп. с высокоэффективными электронными балластами (требуется вспомогательная цепь для управления работой газоразрядной лампы) является основным направлением деятельности светотехническая промышленность сегодня.
В этом разделе представлен обзор этих новых методов энергосбережения. применительно к люминесцентным лампам. Использование модема для конкретного приложения Интегральные схемы (ASIC) в практических электронных балластах, а также обсуждаются некоторые технологии магнитного балласта. В этом разделе также представлены набор определений, единиц и мер для оценки и сравнение производительности разных типов ламп.
2. Газоразрядные лампы и газоразрядные лампы высокой интенсивности
2.1 Люминесцентная лампа
Люминесцентная лампа, впервые разработанная в 1930-х годах, состоит из трубка, покрытая изнутри флуоресцентным порошком или люминофором. Трубка содержит пары ртути под низким давлением с небольшим количеством инертный газ, способствующий воспламенению разряда. Ставятся два электрода на обоих концах трубы и сконструированы таким образом, чтобы работать как лампы с горячим или холодным катодом.
Лампы с горячим катодом содержат электроды из вольфрамовых нитей с покрытием и обычно нагреваются до температуры испускания электронов до возникновения дуги. удары.Нагретые катоды способствуют снижению падения напряжения около 10 до 12 вольт на электродах, что позволяет сэкономить примерно 3 Вт на лампу.
В лампах с холодным катодом используются электроды с покрытием из железа или никеля. Напряжение падение на электродах этих ламп относительно высокое (50 В и выше) но они демонстрируют более длительный срок службы из-за низких рабочих температур.
Работа люминесцентной лампы состоит, прежде всего, в установлении постоянного электрическая дуга между двумя катодами.Воздействие этих электронов на атомы паров ртути излучают в основном невидимый ультрафиолетовый свет который затем преобразуется в видимый свет за счет явления флуоресценции. люминофорного покрытия на трубке. Химический состав люминофора поэтому покрытие в основном отвечает за цвет излучаемого света. а также частично из-за эффективности лампы.
Стандартная люминесцентная лампа с обычным галофофорным покрытием. производит более белый цвет, чем лампа накаливания.Добавляем тонкое пальто более дорогого трифосфора можно улучшить цветопередачу и увеличить эффективность.
В целом люминесцентная лампа является широко используемым источником света с хорошая эффективность около 90 люкс / ватт без учета потерь мощности в балласте. Когда эти потери включены, эффективность падает примерно до 75 люкс / ватт, что по-прежнему намного лучше, чем у лампы накаливания. лампа (см. рис. 1).
РИС. 1 Сравнение ламп, люмен на ватт
2,2 Компактные люминесцентные лампы (КЛЛ)
Компактная люминесцентная лампа не отличается принципом действия. от стандартной люминесцентной лампы, однако КЛЛ были разработаны с учетом некоторые из фундаментальных возражений против широкого применения линейные люминесцентные лампы во многих жилых, коммерческих и промышленных Приложения. Громоздкий магнитный балласт, мерцание света и иногда слышимый шум, создаваемый магнитным балластом, был одной из причин из-за непопулярности люминесцентной лампы как светильника общего назначения источник.
КЛЛ преодолевает мерцание, работая лампой на частоте кГц. диапазон и избавляется от необходимости во внешнем балласте за счет включения полностью электронный балласт в основании люминесцентной лампы. Таким образом, КЛЛ предназначены и способны напрямую заменять лампы накаливания. без каких-либо внешних вспомогательных устройств.
РИС. 2 показывает базовую блок-схему компактного люминесцентного
напольная лампа.
Обратите внимание, что фильтр электромагнитных помех (EMI) и коэффициент мощности блоки управления обусловлены наличием электроники для AC / DC Преобразование постоянного / переменного тока высокочастотных цепей преобразования внутри корпуса.
2,3 Газоразрядные лампы высокой интенсивности (HID)
Это общий термин для группы ламп, включая ртутные лампы, металлогалогенные лампы и натриевые лампы высокого давления.
Ртутно-паровая лампа — это электроразрядная лампа высокого давления, в которой большая часть излучения возникает при возбуждении атомов ртути. Для начала разряда недостаточно включить нормальное сетевое напряжение. между основными электродами.Однако он может начаться с очень короткого расстояние между основным и вспомогательным электродами, вспомогательным электродом подключается к выводу лампы через высокий резистор для ограничения электрический ток.
РИС. 2 Блок-схема CFL
Начальный разряд происходит при небольшом количестве аргона. Разряд теперь быстро распространяется, пока не окажется между основными электродами. В Разряд аргона нагревает трубку и испаряет ртуть.Разряд затем происходит в парах ртути, а влияние аргона незначительно. Эффективность лампы составляет около 60 люкс / ватт.
Металлогалогенная лампа — это электрическая газоразрядная лампа, в которой свет создается излучением возбужденной смеси металлических паров (ртуть и продукты диссоциации галогенидов). Их конструкция аналогичен ртутным лампам высокого давления, добавлен ряд йодидов для заполнения пробелов в световом спектре, улучшая цветовые характеристики света.Их эффективность также выше (до 80 люкс / ватт). Натрий Лампа содержит неон в дополнение к металлическому натрию при низком давлении. Тепло производится начальным неоновым разрядом. Это заставляет натрий выделения, дающие натриево-желтый цвет. Цвет вызван возбуждением паров натрия. Для достижения полного освещения требуется около десяти минут. Развитием этого является натриевая лампа высокого давления, которая при высоком давлении имеет расширенный спектр, чтобы обеспечить адекватное покрытие всех цветов, натрия паровые лампы имеют очень высокую эффективность до 150 люкс / ватт.
Люминесцентные лампыпопулярны, потому что они обеспечивают более длительный срок службы, чем накаливания и потребляют меньше энергии. Кроме того, их низкая интенсивность даже освещение предпочтительнее почти во всех комнатных условиях. Высокая интенсивность Газоразрядные лампы используются в основном на открытом воздухе для освещения больших такие области, как улицы, автостоянки и т. д.
3 Введение в балласты
Балласты люминесцентных ламп — устройства, устанавливаемые в светильники люминесцентных ламп. чтобы регулировать напряжение и ток, подаваемые на лампы.В ПРА в цепи люминесцентной лампы выполняет двоякие функции. Первый, он должен обеспечивать подходящее напряжение зажигания на лампе. при запуске так, чтобы между электродами могла сохраняться электрическая дуга. после. Во-вторых, балласт отвечает за ограничение тока. течь через лампу во время ее нормальной работы. Эти два требования балласта можно объяснить с помощью типичных временных характеристик импеданса. кривая газоразрядной лампы, показанная на рис.3.
Поскольку начальное сопротивление велико, напряжение зажигания, необходимое для зажигания дуга также будет выше, чем нормальное рабочее напряжение люминесцентного напольная лампа.
Сразу после зажигания лампы полное сопротивление падает до минимума. значение, представляющее отрицательную характеристику сопротивления, которая требует некоторых форма ограничения тока для предотвращения разрушения лампы из-за чрезмерного тока.
В то время как первые магнитные балласты (индукторного типа) выполняли два необходимых требования к балласту, современные электронные балласты могут выполнять многие другие функции, такие как резонансный режим, защита от отключения лампы, отказ или снятие, а также диммирование и т. д.Эти и другие подобные техники будут подробно обсуждены в следующих разделах.
Следует также отметить, что люминесцентная лампа сама по себе резистивная нагрузка, включение балласта (магнитного или электронного type) может вызвать потенциально нежелательные условия, такие как как низкий коэффициент мощности, гармоники высокого порядка и электромагнитные помехи. Как мы увидим позже в этом разделе, многие производители ИС придумали с передовыми продуктами, которые вполне удовлетворительно решают эти проблемы.
РИС. 3 Импедансно-временные характеристики разряда
лампа
4 Некоторые определения и оценка эффективности
Первичным показателем эффективности электрической лампы является ее общая выходной световой поток на ватт входной мощности. Для сравнения производительности между различными источниками света, твердые определения задействованные условия необходимы.
4,1 Световой поток
Общее количество визуально оцениваемого излучения (т.е.е., свет) испускается в секунду от источника света называется световым потоком и измеряется в люмен. Термин «визуально оцениваемое излучение» относится к тот факт, что люди способны видеть только часть спектра электромагнитных радиация.
Более того, чувствительность человеческого глаза сильно различается в зависимости от длины волн в этой полосе частот. Световой поток, измеренный в люменах учитывает оба этих фактора и, таким образом, нет прямое соответствие между энергией излучения, испускаемой за секунду источник света и его световой поток.
4,2 Световая отдача
Выходной световой поток электрической лампы на ватт входной мощности определяется как световая отдача лампы. Обычно это выражается в люмен / ватт:
Световая отдача = Световой поток / Потребляемая мощность
Световая отдача иногда также обозначается как люмен на ватт или lpw рейтинг лампы. Согласно действующим стандартам, световая отдача люминесцентной лампы необходимо измерять с учетом потребляемой мощности балласта.
4,3 Пик-фактор тока
Current Crest Factor — это отношение пикового тока лампы к действующий ток.
Пик-фактор тока = пиковый ток / среднеквадратичный ток
Учитывается форма волны тока лампы. Максимальный гребень коэффициент, рекомендованный производителями ламп, чтобы не снижать срок их службы составляет около 1,7.
4,4 Балластный фактор
Балластный коэффициент — это отношение светоотдачи лампы к световому потоку. от балласта до светоотдачи лампы в соответствии с ANSI (Американский национальный Standards Institution) эталонный балласт.
Балластный коэффициент = Световой поток лампы с тестовым балластом / Световой поток лампы с эталонным балластом
4,5 Коэффициент балластной эффективности (BEF)
BEF — это отношение балластного фактора к входной мощности балласта лампы. система. BEF зависит от приложения и не может использоваться для сравнения различных Приложения.
Коэффициент эффективности балласта = коэффициент балласта / Входная мощность
4,6 Суммарные гармонические искажения (THD )
THD измеряет качество формы волны тока, создаваемой балластом.
Ток, потребляемый балластом, в большинстве случаев имеет несинусоидальную форму волны. и, таким образом, может рассматриваться как серия гармоник высокого порядка (т.е. с частотами, кратными частоте входной линии) наложены на основной форме волны тока. Степень наличия таких гармоники измеряются THD, как определено ниже.
i_ THD- (ч / + ч, ‘+ ч,’ + ……) 2 ч,
, где каждый член h i относится к среднеквадратичному значению i-й гармоники в тока, а hi относится к среднеквадратичному значению основной составляющей.
5 Обычные балласты
В схеме обычного балласта, показанной на рис. 4, высокое напряжение удар, необходимый для зажигания лампы, получается от индуктора и биметаллического переключатель, который также подает ток накала, когда контакты замкнуты. Нагретые нити испускают объемные заряды, которые снижают напряжение ионизации. паров ртути внутри лампы для облегчения запуска (Mortimer 1994). По мере увеличения длины дуговой трубки напряжения ионизации также увеличиваются, Требование балласта для обеспечения повышенных рабочих напряжений, а также более высокие напряжения зажигания.Как следствие, обычные двух- и четырехфутовые В балластах люминесцентных ламп используются громоздкие повышающие трансформаторы с высоким реактивным сопротивлением. с выходными обмотками для управления двумя и более лампами.
Этот магнитный балласт основан на катушке с проволокой, окружающей железное ядро. Известны также такие магнитные балласты традиционной конструкции. как «балласты сердечника и катушки». В то время как стандартный магнитный балласт рассеивает около 20 процентов общей мощности, более эффективный магнитный балласт ограничит эту потерю до 12 процентов или меньше.Магнитный балласт отвечает за генерацию гармоник из-за нелинейной намагниченности характеристика железа.
РИС. 4 Базовая схема обычного балласта
Индуктивность магнитного балласта представляет собой низкий коэффициент мощности, обычно около 0,5, что необходимо компенсировать. Компенсация коэффициента мощности можно сделать с помощью конденсатора. Даже после компенсации низкое качество магнитные балласты будут иметь коэффициент мощности около 0.9 из-за относительно высокий THD 20-30 процентов. Обычные магнитные балласты линейной частоты связаны со следующими недостатками.
(i) Мерцание от сети 50/60 Гц, (ii) Значительный размер и вес, (iii) низкий коэффициент мощности, несинусоидальные формы волны тока и (iv) сложность для затемнения.
6 Высокочастотный резонансный балласт
Все чаще используются электронные высокочастотные резонансные балласты. управлять люминесцентными лампами из-за их повышенной энергоэффективности, дольше срок службы лампы, возможности диммирования, меньший вес и возможность устранения мерцание.
Один из самых ранних примеров электронного управления люминесцентными лампами. лампы были найдены в конструкции 1954 года, изготовленной Delco для использования в автобусах. Этот ранний электронный балласт был разработан для работы в общей сложности с шестью лампами. выходная мощность около 140 Вт. Он работал на частоте около 3000 Гц и был довольно большим (порядка 1500 кубических дюймов). Улучшения в полупроводниках устройства позволили произвести первый практический высокочастотный балласт Триада-Утрад в 1967 году.Эти балласты были простыми автоколебательными токами. инверторы, а также были разработаны для приложений ввода постоянного тока.
Цепи электронного балласта недавно претерпели революцию в плане совершенства. от ранних биполярных конструкций десять лет назад. Частично это было вызвано появлением силовых переключателей MOSFET с присущими им преимущества в эффективности. В большинстве электронных балластов используются два переключателя питания. в топологии тотемного полюса (полумоста), а трубчатые цепи состоят из Резонансные цепи серии L-C с лампой (ами) на одном из реакторов.На рис. 5 показана основная топология.
Переключатели в схеме на рис. 5 представляют собой силовые полевые МОП-транзисторы, приводимые в действие для проведения альтернативно двумя вторичными обмотками на трансформаторе тока. Главная этого трансформатора управляется током в цепи лампы, работающей на резонансной частоте L и C. Схема не самозапускается и должен запускаться импульсным диаком, подключенным к воротам нижнего МОП-транзистор.
После включения нижнего переключателя колебания поддерживаются, а высокий прямоугольная волна частоты (30-80 кГц) возбуждает резонансный ток L-C.В синусоидальное напряжение на C увеличивается на добротность (Q) при резонансе и развивает достаточную амплитуду, чтобы поразить лампу, которая затем обеспечивает немерцающая подсветка.
Эта схема уже много лет является стандартным электронным балластом, несмотря на следующие недостатки:
(i) Не запускается автоматически, (ii) Низкое время переключения, приводящее к увеличению мощности убытки.
РИС. 5 Электронный балласт с трансформаторным приводом
(iii) Трудоемкость производства (из-за тороидального трансформатора тока, и т.п.) (iv) Не поддаются затемнению, и (v) Дороговизна в производстве.
7 Новое поколение балластов
Ограничения базовой конструкции схемы электронного балласта и потребность в более эффективных системах освещения вкупе с доступностью переключателей мощных MOSFET, создали толчок для небольших, эффективных, низких ИС драйвера веса. Например, автоколебательный IR2155 International Rectifier. силовой МОП-транзистор / драйвер затвора биполярного транзистора с изолированным затвором (IGBT), является одним первых в семействе силовых ИС, предназначенных для электронных балластов для люминесцентного освещения, отчасти из-за небольшого размера и невысокой стоимости (около 2 долларов за 80 единиц и 1 доллар за 50 000 единиц).Эти силовые ИС могут управлять полевые МОП-транзисторы низкого и высокого уровня или IGBT от входов с логическим уровнем заземления. Они обеспечивают возможность смещения напряжения до 600 В постоянного тока и, в отличие от драйверные трансформаторы, могут обеспечить сверхчистые формы волны любого рабочего цикла (0-99%). Функциональная блок-схема IR 2155 представлена на рис. 6. Эти драйверы имеют два альтернативных выхода, так что полумост или Тотемно-полюсная конфигурация полевых МОП-транзисторов может давать на выходе прямоугольную волну. А очень полезной особенностью автоколебательных приводов является их способность синхронизировать генератор до естественного резонанса цепи люминесцентной лампы L-C.На рис. 7 показана концепция электронного балласта с использованием драйвера IR2155.
IR2155 предоставляет разработчику автоколебательные или синхронизированные осциллирующая функция, просто с добавлением компонентов R T и C T. Драйвер затвора МОП IR2155 также имеет внутреннюю схему, которая обеспечивает номинальная пауза в 1 микросекунду между выходами и попеременной стороной высокого напряжения и низковольтные выходы для управления силовыми переключателями полумоста. При использовании в автоколебательном режиме частота колебаний определяется выражением:
1 Fosc — ~ 1.4RTC Т
РИС. 6 Функциональная блок-схема IR 2155 (Международный
Выпрямитель, США)
Обратите внимание на синхронизирующие возможности драйвера IR2155. Два назад Чтобы задние диоды, включенные последовательно со схемой лампы, эффективно проходили через нулевой уровень. детектор тока лампы. Прежде чем загорится лампа, резонансный контур состоит из последовательно соединенных L, C 1 и C2. C2 имеет меньшее значение, чем C 1 поэтому он работает при более высоком напряжении переменного тока, чем C2, и фактически это напряжение что бьет в лампу.
После зажигания лампы C2 эффективно закорачивает из-за напряжения лампы. падение, а частота резонансного контура регулируется L и C 1. Это вызывает сдвиг на более низкую резонансную частоту во время нормальной работы, снова синхронизируется путем определения перехода переменного тока через ноль и использования резонансное напряжение для управления генератором IR2155. Практичный балласт схема с использованием интегральной схемы IR2155, которая способна управлять две 4-футовые трубки, обозначенные на рис.8.
РИС. 7 Электронный балласт с использованием драйвера IR2155 (международный
Выпрямитель, США)
РИС. 8 «Двойной 40» балласт с использованием IR 2155
генератор / драйвер (International Rectifier, США)
Одним из недостатков данной схемы является низкий коэффициент мощности и высокий гармонический ток. Схема на рис. 7 принимает напряжение 115 или 230 вольт. Вход переменного тока 50/60 Гц для создания номинального напряжения шины постоянного тока 320 вольт постоянного тока.Поскольку на входе выпрямители проводят только около пиков переменного тока. входное напряжение, входной коэффициент мощности составляет примерно 0,6 с запаздыванием Несинусоидальная форма волны тока.
8 Балласты для коррекции коэффициента мощности и диммирования
Для ЭПРА можно обеспечить коэффициенты мощности, превышающие 0.95, используя топологию Boost, работающую при фиксированном 50-процентном рабочем цикле. Используя драйвер IR2155, также можно обеспечить диммирование просто изменение рабочего цикла и, следовательно, скорости наддува (Wood (апрель) 1994), как показано на рисунках 9 и 8-10 соответственно.Коррекция коэффициента мощности более подробно обсуждается в следующем разделе.
РИС. 9 Балласт с активной коррекцией коэффициента мощности
РИС. 10 Диммер балласта
9 Сравнение компактных люминесцентных ламп с использованием магнитных и электронных Балласты
Электронный балласт имеет много преимуществ перед магнитным балластом. Эти включают устранение мерцания, низкий уровень шума, более длительный срок службы балласта и, конечно же, экономия энергии.Энергосберегающий потенциал электронных балластов подробнее чем компенсирует первоначальные дополнительные затраты. Эта энергия экономию можно увидеть за счет более низкого энергопотребления и косвенно температура самого балласта.
Электронные балласты не лишены проблем. Полная гармоника искажения тока — реальная проблема для инженеров. Электронные балласты могут иметь THD, намного превышающие THD балластов магнитного типа. Высокая уровни гармоник были связаны с проблемами, включая отказы конденсаторных батарей, перегрев обмоток трансформатора, чрезмерные токи нейтрали, снижение номинальных значений трансформаторов, и неправильное срабатывание защитных реле сети.Они также известно, что они нарушают работу чувствительного электронного оборудования, которое требует чистая синусоидальная форма волны (Datta 1994). Результаты сравнительного проведен анализ ряда образцов компактных люминесцентных ламп (CFL) как с магнитными и электронными балластами, так и со встроенными и отдельные балласты показаны на рис. 11.
Исследование (Lucas and Wijekoon 1995) показало, что наиболее доступная низкая стоимость КЛЛ могут иметь очень низкий коэффициент мощности.В частности, было показано что КЛЛ с магнитными балластами могут иметь коэффициент мощности всего 0,4. из-за высокоиндуктивного балласта, но они не способствуют высокая степень гармоник. С другой стороны, КЛЛ с электронным управлением шестерни имеют почти такой же низкий эффективный коэффициент мощности, в основном из-за гармоник, вызванных их силовой электроникой.
РИС. 11 Сравнительный анализ КЛЛ (а) Напряжение и
осциллограммы тока со встроенным электронным балластом (б) Частотный спектр
для КЛЛ на рис.11 (а) (в)
Осциллограммы напряжения и тока со встроенным магнитным балластом (d) Частота спектр на рис. 11 (в).
10. Дальнейшие разработки электронных балластов
Электромагнитные балласты продемонстрировали хорошую надежность благодаря своей относительная простота. Электронные балласты, с гораздо большей сложностью и относительно хрупкие активные полупроводники, демонстрируют частоту отказов значительно больше, чем электромагнитные балласты.Как электронное освещение системы становятся все более распространенными, надежность электронных балластов становится все больше и больше проблем (Nemer 1994).
Эволюция электронного балласта от простого инвертора до «умного». балласт »завтрашнего дня означал значительное увеличение цепи сложность и производительность. В то же время конечный пользователь ожидает, что система который обеспечивает свет по требованию каждый раз, когда он или она нажимает выключатель. В сравнении ко многим электронным устройствам балласт работает во враждебной среде в зависимости от температуры окружающей среды.Избыточный нагрев сокращает срок службы компонентов.
Качество важно, но не обязательно означает надежность. Там важны зависимые отношения между качеством и надежностью, которые включают механические, электрические и экономические соображения. Надежность можно улучшить на трех уровнях. Во-первых, использование качественных комплектующих; во-вторых, использование высокопроизводительных конструкций и, в-третьих, использование высокоэффективных надежная технология изготовления.
В условиях текущей мировой энергетической ситуации все больше и больше электромагнитных ПРА заменят на электронное освещение.Таким образом, потребность в надежных электронные балласты будут продолжать расти.
Точно так же, как электронные балласты резко увеличили эффективность светопроизводства, диммирующие балласты нового поколения обеспечит значительную экономию энергии за счет более эффективного управления освещением. Электронные балласты с затемнением позволяют использовать такие стратегии, как дневной свет и компенсация для амортизации лампы.
Диммирующие балласты доступны сегодня, но в большинстве из них используется низковольтное управление. проводка, в которой стоимость установки управляющей проводки непомерно высока.Интегрированные возможности беспроводного управления и диммирования станут основой следующего поколения «интеллектуальных балластов». Также современный Технологии изготовления ИС позволили включить полную схему для коррекции коэффициента мощности и управления затемнением на одной ИС. Например, ML4830 Micro Linear — это ИС с низким уровнем искажений, высокой эффективностью непрерывного действия. коррекция повышенного коэффициента мощности вместе с выбираемой переменной частотой затемнение и запуск.
Для получения дополнительной информации об электронных балластах см. Wood (1994) на Hagar. (1993) рекомендуются.
Зеленая технология: как использовать энергоэффективный свет
Не только более эффективное освещение снижает счета за электроэнергию. Компактные люминесцентные лампы (КЛЛ) и светодиоды не были бы сегодня во многих розетках, если бы не электроника, способная экономично управлять этими лампами. И все еще извлекаются уроки о том, как снизить затраты на системы освещения.
Возьмем, к примеру, люминесцентное освещение. Старые балласты, питающие люминесцентные лампы, были не более чем трансформаторами, которые питали ламповый газ, подавая высокое напряжение для нагрева нитей. Балласт также служит ограничителем тока при включенной лампе. Проблема с балластами старого образца заключалась как в их громоздкости, так и в неэффективности.
КЛЛстали популярны только с появлением схем электронного балласта, которые были одновременно экономичными и достаточно компактными, чтобы поместиться в цоколе патрона лампы.Сегодняшние драйверы CFL — это в основном схемы импульсного источника питания, которые включают в себя коррекцию коэффициента мощности и защиту от таких условий, как короткое замыкание и обрыв накала лампы. В них вместо трансформаторов используется переключающая схема для генерирования высокого напряжения (около 500 В), которое первоначально приводит в действие люминесцентные лампы, и более низких напряжений (около 200 В), поддерживающих работу лампы. Люминесцентные лампы наиболее эффективны при работе на частотах 20 кГц и выше, генерируемых электронными переключателями.Работа на более высоких частотах также позволяет уменьшить размер балластных компонентов и сделать корпус более компактным.
Электронные балласты имеют не только КЛЛ. Линейные флуоресцентные лампы также стали электронными. С 2006 года нормативные акты Министерства энергетики предписывали так называемые рейтинги балластной эффективности — по сути, показатель энергоэффективности. Оценки таковы, что балласты трансформаторного типа недостаточно эффективны для многих наиболее распространенных люминесцентных ламп, используемых в цехах и фабриках.В том же году ЕС запретил использование всех магнитных балластов, вынудив их перейти на электронные балласты для продаваемых там люминесцентных ламп.
Балласты могут стать электронными, но не все из них имеют одинаковый уровень интеграции. Некоторые производители до сих пор разрабатывают свои собственные. «Стоимость была препятствием для использования однокристальных балластов», — говорит директор по маркетингу Fairchild Semiconductor Клаудиа Иннес. Но есть тонкости в управлении люминесцентной лампой, которые могут быть процессом обучения для некоторых производителей.«По сравнению с включением лампы накаливания необходимо учитывать большее количество условий и обеспечивать меры безопасности для различных видов отказов», — говорит она. «Многие дизайнеры не знают, как это сделать. Таким образом, микросхемы электронного балласта обеспечивают надежную защиту от сбоев, чтобы проблема не повредила весь балласт ».
Например, импеданс лампы изменяется с возрастом. Это может сместить частоту колебаний от наиболее эффективной рабочей точки. Чтобы проверить наличие неисправностей, схемы балласта должны следить за коэффициентом амплитуды (отношение пикового тока к среднеквадратичному).Коэффициент амплитуды, превышающий четыре, обычно означает, что срок службы лампы подошел к концу.
Затемнение — еще одна проблема. Балластные цепи обычно регулируют управляемый напряжением генератор на затемнение КЛЛ, но «если вы поместите регулируемый КЛЛ рядом с приглушенной лампой накаливания, вы заметите, что они не тускнеют в той же степени, и они не тускнеют так же. С точки зрения дизайна необходимо учитывать еще несколько вещей », — говорит Иннес.
Типичный электронный балласт сначала выпрямляет переменный ток, а затем преобразует полученный постоянный ток в сигнал в диапазоне 50 кГц с помощью переключателя MOSFET или IGBT.Это переключающее действие может генерировать гармоники в токе и напряжении. Эти искажения вызывают излучаемые помехи и снижают эффективность. Таким образом, электронные балласты обычно включают схемы коррекции коэффициента мощности (PFC) для компенсации. Чипы PFC в основном удерживают время включения в фиксированном соотношении с входным линейным напряжением, поэтому нагрузка кажется резистивной по отношению к линии переменного тока.
Микросхема управления балластом затем обрабатывает предварительный нагрев и зажигание, отслеживает условия, которые указывают на обрыв нити накала, и реализует переключение при нулевом напряжении конечной высоковольтной ступени.Высоковольтный каскад, который фактически подключается к лампе, обычно представляет собой полумост, питающий МОП-транзисторы или IGBT.
Страница 2 из 2
Использование одного или нескольких чипов для реализации этих функций часто зависит от того, как производители рассматривают компромисс между стоимостью компонентов и всей системой. «Каждое соединение — это точка отказа, и каждый выбранный и установленный компонент имеет свою стоимость. Тем не менее, некоторые люди создают свои собственные », — говорит Иннес.
Точечный светильник на светодиодах
Два года назад не существовало такого понятия, как светодиодный уличный фонарь.Все изменилось в 2006 году с появлением сверхъярких светодиодов. «Сейчас требуется менее 100 светодиодов, чтобы генерировать эквивалент натриевой лампы высокого давления», — говорит Cree Inc . Директор по развитию бизнеса Марк МакКлер.
CREE Inc. изобрела свою сверхъяркую светодиодную архитектуру в 2006 году, а остальное уже история. В настоящее время светодиоды используются в уличном освещении, офисном освещении и других областях общего освещения, где снижение затрат на техническое обслуживание и электроэнергию компенсирует их более высокую цену.
Ключом к такому повороту событий стала разработка компанией CREE своего чипа питания EZBright LED.С тех пор другие производители выпустили версии светодиодов с высокой выходной мощностью. Но CREE разработала новую светодиодную топологию, которая, по ее словам, в два раза более эффективна, чем предыдущие чипы, и полагает, что, возможно, на год опережает своих ближайших конкурентов.
Текущие исследования производителей светодиодов сосредоточены на повышении энергоэффективности и затрачиваемых люменов на доллар. Сегодня эти показатели составляют около 100 люмен / Вт и 40 люмен / доллар. Ожидается, что в 2010 году будет световая отдача 150 люмен / Вт при значительном снижении затрат.«Каждый раз, когда мы повышаем эффективность, появляется новая волна новых приложений», — говорит МакКлир.
Оказывается, преимущества светодиодов не ограничиваются эффективностью. «Муниципалитету стоит заменить лампочку так же, как купить новую лампу. Поскольку срок службы светодиодов в два-пять раз дольше, чем у обычных ламп, они позволяют избежать больших затрат на техническое обслуживание », — говорит МакКлир. Кроме того, их использование для наружного освещения дает преимущество для сна: «Когда вы заменяете желтую натриевую лампу на светодиоды, люди думают, что вы убрали это место», — говорит МакКлир.«Это потому, что глаз имеет большую остроту зрения в диапазоне света светодиода. Камеры наблюдения лучше работают со светодиодной подсветкой, и люди действительно чувствуют себя в большей безопасности на парковочных палубах, освещенных светодиодами ».
Некоторые производители ламп теперь производят светильники для наружного освещения со светодиодами. В одном из них, Beta Lighting в Стертеванте, штат Висконсин, используются светодиоды CREE, сконфигурированные в виде световых полос, каждая из которых содержит 20 светодиодов. Бета добавляет световые полосы для получения осветительных приборов определенного вывода. Фирма заявляет, что ее дизайн защищен более чем 20 патентами.
«Нашей самой большой проблемой было управление температурным режимом. Решив эту проблему, мы оптимизировали оптическую конструкцию, чтобы максимально использовать возможности светодиода », — говорит директор по продажам бета-версии Кевин Орт.
National Semiconductor рекомендует управлять группами светодиодов с помощью базовой настройки, в которой светодиоды разделены на подстроки, каждая из которых получает питание от отдельного драйвера. Это поддерживает напряжение на светодиодах ниже того, которое считается опасным и требует специальной изоляции и мер безопасности. Кроме того, разомкнутая цепь одного светодиода не погасит весь световой поток.
Хотя уличные фонари с питанием от светодиодов дороже, чем обычные фонари, которые они заменяют, их содержание дешевле, говорит Орт.
Как сделать Драйверы
Светодиоды могут стать волной будущего, но, похоже, нет единого мнения о том, как лучше всего настроить их источник питания. «Пока не существует заданной топологии для управления светодиодами», — сообщает National Semiconductor Corp . Старший инженер по приложениям Крис Ричардсон. «Если вы хотите управлять 100 светодиодами, чтобы получить максимальное количество света, есть много способов сделать это — фактически так много, что многие люди запуганы этой задачей.”
По словам Ричардсона, сегодня существует три общих подхода к управлению группами светодиодов. Первый и наиболее эффективный — просто подключить светодиоды последовательно от источника постоянного тока. Проблема с этим подходом заключается в том, что он может включать в себя достаточно высокие напряжения, чтобы их можно было классифицировать как опасные по UL. Используемые высоковольтные компоненты могут быть дорогими. «Это нормально, если вы действительно понимаете все правила техники безопасности и готовы выполнять двойную изоляцию и изоляцию. Но это ужасно с точки зрения тестирования безопасности, и я не рекомендую это делать », — говорит Ричардсон.
Во втором, немного другом подходе также используется одноступенчатый источник питания, но с гальванической развязкой, обычно в виде трансформатора. Это позволяет обойти некоторые проблемы безопасности и имеет преимущество доступности в виде готовых коммерческих устройств. По словам Ричардсона, проблема в том, что такой подход применим только для цепочек, состоящих максимум из восьми светодиодов. «Таким образом можно произвести не более 1 А», — объясняет он. «Это дорого, потому что вы платите надбавку за инжиниринг, который идет на поставку.”
Третий способ является наиболее распространенным. В нем используется коммерческий преобразователь переменного тока в постоянный, который выдает выходное напряжение ниже 60 В, что позволяет оставаться ниже опасного напряжения. Выходной сигнал поступает на несколько преобразователей постоянного / постоянного тока, каждый из которых управляет цепочкой светодиодов. Помимо предотвращения опасных уровней напряжения, этот подход гарантирует, что некоторые светодиоды будут гореть в случае отказа одного из них.
«Вам нужно больше времени на разработку схемы такого типа, но результат является наиболее гибким и надежным из трех возможных», — говорит Ричардсон.Устранение необходимости работать при высоком напряжении также может быть наименее сложным для большинства инженеров. «Я не встречал много инженеров по источникам питания, хорошо разбирающихся в высоковольтном переменном и низковольтном постоянном токе», — говорит Ричардсон.
Замыкание контакта
Beta LED , (800) 236-6800, betaled.com
CREE Inc ., (919) 313-5300, cree.com
Fairchild Semiconductor ,
(207) 775-8100 , Fairchildsemi.com
National Semiconductor , (800) 272-9959, national.com
Когда выключать свет
Экономическая эффективность того, когда выключать свет, зависит от типа лампы и стоимости электричество. Тип используемой лампочки важен по нескольким причинам. Все лампочки имеют номинальный или номинальный срок службы, на который влияет то, сколько раз они включаются и выключаются. Чем чаще они включаются и выключаются, тем меньше срок их службы.
Лампы накаливания
Лампы накаливания следует выключать всякий раз, когда они не нужны, поскольку они являются наименее эффективным типом освещения. 90% энергии, которую они используют, выделяется в виде тепла, и только около 10% дает свет. Выключив свет, вы сохраните прохладу в комнате, что станет дополнительным преимуществом летом.
Галогенное освещение
Хотя галогенные лампы более эффективны, чем традиционные лампы накаливания, они используют ту же технологию и намного менее эффективны, чем КЛЛ и светодиоды.Поэтому лучше выключать эти огни, когда они не нужны.
КЛЛ Освещение
Поскольку они уже очень эффективны, рентабельность отключения КЛЛ для экономии энергии немного сложнее. Общее практическое правило таково:
- Если вы не выходите из комнаты на 15 минут или меньше, оставьте его включенным.
- Если вы не выходите из комнаты более 15 минут, выключите его.
На срок службы КЛЛ больше влияет количество включений и выключений.Как правило, срок службы лампы CFL можно продлить больше, если ее включать и выключать реже, чем если бы вы просто меньше ее использовали.
Широко распространено мнение, что КЛЛ потребляют много энергии, чтобы начать работу, и лучше не выключать их на короткое время. Количество энергии варьируется между производителями и моделями, однако лампы, соответствующие стандарту ENERGY STAR ©, должны выдерживать быструю смену циклов в течение пятиминутных интервалов, чтобы гарантировать, что они могут выдерживать частое переключение.
В любом случае относительно более высокий требуемый «пусковой» ток длится половину цикла, или 1/120 секунды.Количество электроэнергии, потребляемой для подачи пускового тока, равно нескольким секундам или меньше при нормальной работе освещения. Выключение люминесцентных ламп более чем на 5 секунд сэкономит больше энергии, чем будет затрачено на их повторное включение. Следовательно, реальная проблема заключается в стоимости электроэнергии, сэкономленной за счет выключения света, по сравнению со стоимостью замены лампочки. Это, в свою очередь, определяет кратчайший рентабельный период выключения люминесцентного света.
Стоимость энергии, сэкономленной при отключении КЛЛ, зависит от нескольких факторов:
- Цена, которую коммунальное предприятие взимает со своих клиентов, зависит от «классов» потребителей, которые обычно бывают жилыми, коммерческими и промышленными.В каждом классе могут быть разные тарифные планы.
- Некоторые коммунальные предприятия могут взимать разные тарифы за электроэнергию в разное время дня. Как правило, коммунальным предприятиям дороже вырабатывать электроэнергию в определенные периоды высокого спроса или потребления, называемые пиками.
- Некоторые коммунальные предприятия могут взимать с коммерческих и промышленных потребителей больше за киловатт-час (кВтч) в периоды пиковой нагрузки, чем за потребление в непиковый период.
- Некоторые коммунальные предприятия могут также взимать базовую ставку за определенный уровень потребления и более высокие ставки за увеличивающиеся блоки потребления.
- Часто коммунальное предприятие добавляет различные платы за услуги, базовую плату и / или налоги за расчетный период, которые можно усреднить на потребленный кВтч, если они еще не учтены в ставке.
Светодиодное освещение
На срок службы светодиода не влияет его включение и выключение. Хотя срок службы люминесцентных ламп сокращается, чем чаще они включаются и выключаются, это не оказывает отрицательного влияния на срок службы светодиодов. Эта характеристика дает светодиодам несколько явных преимуществ, когда дело доходит до работы.Например, светодиоды имеют преимущество при использовании вместе с датчиками присутствия или датчиками дневного света, которые работают в режиме включения-выключения. Также, в отличие от традиционных технологий, светодиоды включаются на полную яркость практически мгновенно, без задержки. Светодиоды также в значительной степени не подвержены вибрации, потому что у них нет нитей или стеклянных корпусов.
Расчет экономии энергии
Чтобы рассчитать точное значение экономии энергии за счет выключения лампочки, вам необходимо сначала определить, сколько энергии потребляет лампа во включенном состоянии.На каждой лампочке напечатано значение мощности в ваттах. Например, если номинальная мощность составляет 40 Вт, а лампа горит в течение одного часа, она будет потреблять 0,04 кВтч, а если она выключена в течение одного часа, вы сэкономите 0,04 кВтч. (Обратите внимание, что многие люминесцентные светильники имеют две или более ламп. Кроме того, один переключатель может управлять несколькими приборами — «массивом». Добавьте экономию для каждого светильника, чтобы определить общую экономию энергии.)
Затем вам нужно выяснить, что вы платят за электроэнергию за кВтч (в целом и в периоды пиковой нагрузки).Вам нужно будет просмотреть свои счета за электроэнергию и узнать, сколько коммунальные услуги взимают за киловатт-час. Умножьте тариф за кВтч на количество сэкономленной электроэнергии, и вы получите величину экономии. Продолжая приведенный выше пример, предположим, что ваш тариф на электроэнергию составляет 10 центов за кВтч. В этом случае стоимость экономии энергии составит 0,4 цента (0,004 доллара США). Величина экономии будет увеличиваться, чем выше номинальная мощность лампы в ваттах, чем больше количество лампочек, управляемое одним переключателем, и тем выше показатель за кВтч.
Наиболее экономически эффективный период времени, в течение которого свет (или набор осветительных приборов) может быть выключен до того, как величина экономии превысит затраты на замену ламп (из-за их сокращенного срока службы), будет зависеть от типа и модель лампочки и балласта. Стоимость замены лампочки (или балласта) зависит от стоимости лампочки и затрат труда на ее выполнение.
Производители освещения должны иметь возможность предоставлять информацию о рабочем цикле своей продукции. В целом, чем более энергоэффективна лампочка, тем дольше вы можете оставить ее включенной, прежде чем будет экономически выгодно ее выключить.
Помимо выключения света вручную, вы можете рассмотреть возможность использования датчиков, таймеров и других средств автоматического управления освещением.
3. Как работают люминесцентные лампы?
3.4. Физические характеристики ламп
Принципы работы
Люминесцентная лампа генерирует свет от столкновений в горячей газ («плазма») свободного ускоренного электроны с атомами– обычно ртуть — в какие электроны поднимаются на более высокие уровни энергии, а затем отступать при излучении на двух линиях УФ-излучения (254 нм и 185 нм).Таким образом созданное УФ-излучение затем преобразуется в видимый свет УФ возбуждение флуоресцентного покрытия на стеклянной оболочке напольная лампа. Химический состав этого покрытия подобран таким образом, чтобы излучать в желаемом спектре.
Строительство
Трубка люминесцентной лампы заполнена газом с низким содержанием пар ртути под давлением и благородные газы в целом давление около 0.3% от атмосферное давление. В самая обычная конструкция, пара эмиттеров накала, один на каждом конце трубки, нагревается током и используется для испускать электроны, которые возбуждают благородные газы и газообразную ртуть путем ударной ионизации. Ионизация может происходить только в исправных лампочках.Следовательно, вредное воздействие на здоровье от этого процесса ионизации невозможно. Кроме того, лампы часто оснащаются двумя конверты, что значительно снижает количество УФ-излучения испускается.
Электрические аспекты эксплуатации
Для запуска лампы и поддерживать ток на достаточном уровне для постоянного света эмиссия.В частности, схема подает высокое напряжение на запускают лампу и регулируют ток через трубку. Возможны различные конструкции. в в простейшем случае используется только резистор, что относительно энергоэффективность. Для работы от переменный ток (AC) напряжения сети, использование индуктивного балласта является обычным явлением и было известен отказ до конца срока службы лампы, вызывающий мерцание лампы.Различные схемы, разработанные для начать и запустить люминесцентные лампы выставляют различные свойства, то есть излучение акустического шума (гула), срок службы (лампы и балласта), энергоэффективность и мерцание интенсивности света. Сегодня в основном улучшенная схемотехника используется, особенно с компактными люминесцентными лампами, где схемотехника не подлежит замене перед люминесцентными лампами.Это уменьшило количество технических сбоев, вызывающих эффекты, как перечисленные выше.
EMF
Часть электромагнитный спектр который включает статические поля, а поля до 300 ГГц — вот что здесь упоминается как электромагнитные поля (ЭДС).Литература о том, какие виды и сильные стороны ЭМП. которые излучаются из КЛЛ редко. Однако есть несколько видов ЭДС, обнаруженных в близость этих ламп. Как и другие устройства, которые зависят на электричество для выполнения своих функций они излучают электрические и магнитные поля в низкочастотный диапазон ( частота распространения 50 Гц и, возможно, также гармоники из них, e.г. 150 Гц, 250 Гц и т. Д. В Европе). Кроме того, КЛЛ, в отличие от лампы накаливания, также излучают в высокочастотном диапазоне ЭДС (30-60 кГц). Эти частоты различаются между разными типами ламп.
Мерцание
Все лампы будут различать интенсивность света при удвоении мощности от сети. (линейная) частота, так как мощность, подаваемая на лампу, достигает пика дважды за цикл при 100 Гц или 120 Гц.Для лампы накаливания это мерцание уменьшается по сравнению с люминесцентными лампами за счет тепла емкость нити. Если модуляция света интенсивности достаточно для восприятия человеческим глазом, тогда это определяется как мерцание. Модуляции на частоте 120 Гц не видно, в большинстве случаев даже не при 50 Гц (Seitz et al.2006 г.). Флюоресцентные лампы включая КЛЛ, которые используют поэтому высокочастотные (кГц) электронные балласты называются «без мерцания».
Однако как лампы накаливания (Chau-Shing and Devaney, 2004), так и «немерцающие» люминесцентные источники света (Хазова и О’Хаган 2008) производят еле заметное остаточное мерцание.Дефектный лампы или схемы могут в некоторых случаях привести к мерцанию при более низкой частот, либо только в часть лампы или во время цикла запуска в несколько минут.
Световое излучение, УФ-излучение и синий свет
Имеются характерные различия между излучаемыми спектрами. люминесцентными лампами и лампы накаливания, потому что различных принципов работы.Лампы накаливания настраиваются по своей цветовой температуре за счет специальных покрытий из стекло и часто продаются с атрибутом «теплый» или «Холодные» или, точнее, по их цветовой температуре для профессиональные светотехнические приложения (фотостудии, магазины одежды и т. д.). В случае люминесцентных ламп спектральное излучение зависит от покрытия люминофора. Таким образом, люминесцентные лампы могут быть обогащены синим светом (длины волн 400-500 нм), чтобы лучше имитируют дневной свет по сравнению с лампами накаливания. Как и люминесцентные лампы, КЛЛ излучают больше синего цвета. свет, чем лампы накаливания.Есть на международном уровне признанные пределы воздействия излучения (200-3000 нм) испускается лампами и осветительными приборами, настроенными на защиту от фотобиологические опасности (Международная электротехническая Комиссия 2006 г.). Эти ограничения также включают излучение от КЛЛ.
УФ-содержание излучаемого спектра зависит как от люминофор и стеклянная колба люминесцентной лампы.УФ выброс лампы накаливания есть ограничивается температурой нити накала и поглощение стекла. Некоторые КЛЛ с одной оболочкой излучают УФ-В и следы УФ-С излучения на длине волны 254 нм, что не так для ламп накаливания (Khazova and O´Hagan 2008).Экспериментальный данные показывают, что КЛЛ производят больше УФ-излучение, чем вольфрамовая лампа. Кроме того, количество УФ-В излучение производится из КЛЛ с одной оболочкой, с того же расстояния 20 см, составляли примерно в десять раз выше, чем облучается вольфрамовой лампой (Мозли и Фергюсон, 2008 г.).
Советы по энергосбережению от Nodak Electric Cooperative
Советы по энергосбережению
Мы используем фонари для освещения, украшения и безопасности, поэтому неудивительно, что на освещение может приходиться до 20% наших годовых счетов за электроэнергию. Вот несколько советов по экономии электроэнергии и денег с помощью домашнего освещения.
- Замените КЛЛ или лампы накаливания на светодиоды. Замена люминесцентных ламп или ламп накаливания, особенно тех, которые горят более одного часа в день, на светодиодные (светоизлучающие диодные) лампы может значительно сократить расходы на освещение.Хотя в некоторых случаях светодиоды могут быть самыми дорогими заранее, срок службы лампы сделает ее более экономичной в долгосрочной перспективе. К тому же стоимость светодиодов продолжает падать.
- Сравните люмены, когда решите, какая лампочка вам подойдет. Люмен — это количество производимого света, а мощность — это количество энергии, необходимое для загорания лампочки. Например, энергосберегающая лампа может создавать такое же количество люменов, что и традиционная лампа, но при этом потребляет на 75% меньше энергии.
- Выключайте свет, когда выходите из комнаты, , даже если вы вернетесь через несколько минут.Неверно, что при включении лампочки происходит скачок напряжения. Лампа, которая включается всего на одну секунду, потребляет энергии только на одну секунду. Поэтому хуже оставить свет включенным, чем включать и выключать его несколько раз.
- Подумайте об использовании освещения с датчиком движения , которое может быть отличным вариантом в помещениях, где часто остается свет, например, в детской игровой комнате или на открытом воздухе. Дверные выключатели, в которых при открытии двери включается свет, также отлично подходят для энергосбережения при освещении туалетов или кладовых.
- Включая диммеры. Они могут помочь вам использовать меньше энергии, и они являются отличным способом создать определенную атмосферу, обеспечивая широкий диапазон светового потока.
- Максимально используйте естественное освещение. Подумайте о перестановке мебели, чтобы лучше использовать естественный свет. Вы также можете покрасить стены в более светлый цвет и добавить зеркала в свой декор, чтобы сделать вещи ярче. И не забывайте мыть окна. Удивительно, насколько вы можете улучшить естественное освещение в своем доме с помощью быстрой мойки окон.
- Используйте несколько переключателей. Некоторые помещения, например семейные комнаты, требуют сильного освещения только часть времени. Энергию можно сэкономить, установив светильники на двух или трех контурах, чтобы можно было контролировать уровень освещенности. Лампы, в которых используются трехходовые лампы, могут выполнять ту же функцию.
- Используйте лампы. Часто лампа дает вам достаточное количество света по более низкой цене, чем верхний свет.
Питание от схемы экономичной лампы.Ремонт импульсного источника питания энергосберегающей лампочки
Здравствуйте, друзья. В эпоху светодиодных технологий многие до сих пор предпочитают использовать для освещения люминесцентные лампы (они же домработницы). Это разновидность газоразрядных ламп, которую многие считают, мягко говоря, не очень безопасным видом освещения.
Но, вопреки всем сомнениям, они уже не одно десятилетие успешно висят в наших домах, поэтому у многих сохранились неработающие лампы эконом-класса.
Как известно, для работы многих газоразрядных ламп требуется высокое напряжение, иногда в несколько раз превышающее напряжение в сети, и обычная домработница тоже не исключение.
В такие лампы встраиваются импульсные преобразователи или балласты. Как правило, в бюджетных вариантах используется полумостовой преобразователь автогенератора по очень популярной схеме. Схема такого блока питания работает достаточно надежно, несмотря на полное отсутствие каких-либо защит, кроме предохранителя.Нет даже нормального задающего генератора. Схема триггера основана на симметричном диакрите.
Схема такая же, как у у, только вместо понижающего трансформатора оттуда используется накопительный дроссель. Я намерен быстро и наглядно показать вам, как можно превратить такие блоки питания в полноценный импульсный блок питания более низкого типа, плюс обеспечить гальваническую развязку от сети для безопасной работы.
Для начала хочу сказать, что переделанный блок можно использовать как основу для зарядных устройств, блоков питания для усилителей.В общем, он может быть реализован там, где есть потребность в источнике питания.
Вам просто нужно изменить выход с помощью диодного выпрямителя и сглаживающего конденсатора.
Под переделку подойдет любая домработница любой вместимости. В моем случае это рабочая лампа мощностью 125 Вт. Для начала нужно открыть лампу, вынуть блок питания, и лампочка нам больше не понадобится. Даже не пытайтесь его разбить, потому что он содержит очень ядовитые пары ртути, которые смертельно опасны для живых организмов.
В первую очередь смотрим схему балласта.
Все они одинаковые, но могут отличаться количеством дополнительных компонентов. Довольно массивный чок сразу бросается в глаза на доске. Прогреваем паяльник и припаиваем.
Еще у нас есть небольшое кольцо на плате.
Это трансформатор обратной связи по потоку, он состоит из трех обмоток, две из которых главные,
, а третья — катушка обратной связи по потоку и содержит только один виток.
А теперь нам нужно подключить трансформатор от блока питания компьютерного блока, как показано на схеме.
То есть один из выводов сетевой обмотки подключен к обмотке обратной связи.
Второй вывод подключается к точке соединения двух конденсаторов полумоста.
Да, друзья, это конец процесса. Вы видите, как это просто.
Теперь я нагружу выходную обмотку трансформатора, чтобы убедиться в наличии напряжения.
Не забывайте, что первоначальный запуск балласта осуществляется с помощью контрольной лампы. Если блок питания нужен на малую мощность, можно вообще обойтись без трансформатора, а на самом дросселе намотать вторичную обмотку.
Не помешало бы установить на радиаторы силовые транзисторы. Они естественно нагреваются при работе под нагрузкой.
Вторичная обмотка трансформатора может быть выполнена на любое напряжение.
Для этого нужно его перемотать, но если блок нужен, например, для автомобильного зарядного устройства, то без перемотки можно обойтись. Для выпрямителя стоит использовать импульсные диоды, опять же оптимальное решение — наш КД213 с любой буквой.
В конце хочу сказать, что это лишь один из вариантов переделки таких блоков. Естественно, есть много других способов. На этом, друзья, вот и все. Что ж, с вами, как всегда, был КАСЯН АКА. До скорого. Пока!
Люминесцентные лампы, или иными словами хозяйственные, уже давно успешно используются во многих домах.Поэтому найти в кладовках старую, даже вышедшую из строя экономную лампу — не проблема.
Чтобы лучше понять суть переделки, скажу несколько слов о самой газоразрядной лампе, принципе ее работы. Любая газоразрядная лампа, как и обычная домработница, для своей работы требует высокого напряжения, в несколько раз превышающего напряжение сети.
Такая лампа имеет встроенный импульсный преобразователь и балласт. Обычно для этого используется полумостовой автоколебательный преобразователь.Схема такого блока питания самая простая, у него даже нет дополнительной защиты, кроме предохранителя. Но между тем такая система работает надежно. Что касается пусковой мишени, то она построена на основе симметричной диакритики.
Схема аналогична принципам электронного трансформатора, с одним отличием используется накопительный дроссель, а не понижающий трансформатор. Итак, хочу в доступной форме объяснить, как получить полноценный импульсный блок питания понижающего типа от блока питания эконом-лампы — это во-первых.Во-вторых, опишите, как обеспечивается гальваническая развязка от сети для безопасного использования.
Главное, что нужно сделать, это доработать выход с помощью диодного выпрямителя и сглаживающего конденсатора.
Итак, приступим к работе:
1. Берем экономку любой мощности, брал рабочую лампу 125 Вт. Открыл лампу, снял блок питания. Колба не нужна, и ее необходимо утилизировать.
2. Затем проверьте схему балласта.В принципе, они одинаковые, но могут быть дополнены некоторыми компонентами.
Что мы видим на плате? Массивный дроссель — вот что нужно испариться. Используем для этого паяльник.
3. Для дальнейшей работы нам понадобится блок питания от компьютера (может быть нерабочим), точнее его силовой импульсный трансформатор. Мы достаем это.
Включает 3 обмотки:
2 обмотки ведущие,
, а третья — это обмотка обратной связи, которая содержит всего 1 виток.
Подключаем трансформатор снятый с блока питания ПК. Как это сделать, смотрите на схеме.
Поясню подробнее: 1 вывод сетевой обмотки подключен к обмотке обратной связи.
Со вторым выходом поступаем так: подключаем полумост к месту соединения двух конденсаторов.
Можно сказать, что процесс завершен. Нагружаю выходную обмотку трансформатора и убеждаюсь в наличии напряжения.
Напоследок несколько советов:
— используйте предохранительную лампу для первого запуска балласта.
— В случае, когда блок питания требует малой мощности, возможен более простой принцип устройства: не нужен трансформатор, а вторичная обмотка выполняется на самом дросселе.
— Не лишним будет установить на радиаторы силовые транзисторы. Естественно, они нагреваются при нагрузке.
— Вторичная обмотка трансформатора подает любое напряжение, нужно только перемотать, но все зависит от цели использования.
Итак, когда устройство будет использоваться в автомобильном зарядном устройстве, перемотка не требуется.
Если это делается для выпрямителя, то нужно брать импульсные диоды.
Это все, что я хотел вам сегодня сказать. Отмечу, что вариантов переделки блока от эконом лампы много, это лишь один из них.
Энергосберегающие лампы широко используются в быту и на работе, со временем приходят в негодность, но многие из них можно восстановить после несложного ремонта.Если вышла из строя сама лампа, то из электронной «начинки» можно сделать довольно мощный блок питания на любое необходимое напряжение.
Как выглядит блок питания от энергосберегающей лампы?
В быту часто требуется компактный, но в то же время мощный низковольтный блок питания, сделать это можно с помощью вышедшей из строя энергосберегающей лампы. В лампах чаще всего выходят из строя лампы, а блок питания остается в рабочем состоянии.
Для изготовления блока питания необходимо понимать принцип работы электроники, содержащейся в энергосберегающей лампе.
Преимущества импульсных источников питания
IN В последние годы наметилась явная тенденция к отходу от классических трансформаторных источников питания к импульсным источникам питания. Это связано, в первую очередь, с большими недостатками трансформаторных источников питания, такими как большая масса, низкая перегрузочная способность, низкий КПД.
Устранение этих недостатков в импульсных источниках питания, а также разработка элементной базы позволили широко использовать данные узлы питания для устройств мощностью от единиц ватт до многих киловатт.
Цепь питания
Принцип работы импульсного блока питания в энергосберегающей лампе точно такой же, как и в любом другом устройстве, например, компьютере или телевизоре.
В в общих чертах работу импульсного блока питания можно описать следующим образом:
- Переменный ток сети преобразуется в постоянный без изменения его напряжения, т. Е. 220 В.
- Транзисторный преобразователь ширины импульса преобразует постоянное давление в прямоугольные импульсы с частотой от 20 до 40 кГц (в зависимости от модели лампы).
- Это напряжение подается через дроссель на светильник.
Рассмотрим схему и работу блока питания импульсной лампы (рисунок ниже) подробнее.
Цепь электронного балласта энергосберегающей лампы
Напряжение сети подается на мостовой выпрямитель (VD1-VD4) через ограничивающий резистор R 0 малого сопротивления, затем выпрямленное напряжение сглаживается на фильтрующем высоковольтном конденсаторе (C 0) и через сглаживающий фильтр (L0 ) подается на транзисторный преобразователь.
Запуск транзисторного преобразователя происходит в тот момент, когда напряжение на конденсаторе С1 превышает порог открытия динистора VD2. Это запустит генератор на транзисторах VT1 и VT2, из-за чего самогенерация происходит на частоте около 20 кГц.
Другие элементы схемы, такие как R2, C8 и C11, играют вспомогательную роль в облегчении запуска генератора. Резисторы R7 и R8 увеличивают скорость закрытия транзисторов.
А резисторы R5 и R6 служат ограничивающими резисторами в базовых цепях транзисторов, R3 и R4 защищают их от насыщения, а в случае пробоя играют роль предохранителей.
Диоды VD7, VD6 являются защитными, хотя во многих транзисторах, предназначенных для работы в таких устройствах, такие диоды встроены.
ТВ1 — трансформатор, с его обмоток ТВ1-1 и ТВ1-2 напряжение обратной связи с выхода генератора подается на базовые цепи транзисторов, тем самым создавая условия для работы генератора.
На рисунке выше детали, которые необходимо удалить при переделке блока, выделены красным, точки А — А` необходимо соединить перемычкой.
Переделка блока
Перед тем, как приступить к переделке блока питания, следует определиться с тем, какую текущую мощность нужно иметь на выходе, от этого будет зависеть глубина модернизации. Так, если потребуется мощность 20-30 Вт, то переделка будет минимальной и не потребует большого вмешательства в существующую схему. Если необходимо получить мощность 50 и более ватт, то потребуется более основательная модернизация.
Следует иметь в виду, что на выходе блока питания будет постоянное напряжение, а не переменное.Получить от такого блока питания переменное напряжение частотой 50 Гц невозможно.
Определить мощность
Мощность можно рассчитать по формуле:
Р — мощность, Вт;
I — сила тока, А;
U — напряжение, В.
Для примера возьмем блок питания со следующими параметрами: напряжение — 12 В, ток — 2 А, тогда мощность будет:
С учетом перегрузки можно принять 24-26 Вт, поэтому для изготовления такого блока требуется минимальное вмешательство в цепь энергосберегающей лампы мощностью 25 Вт.
Новые запчасти
Добавление новых деталей на диаграмму
Добавленные детали выделены красным, это:
- диодный мост VD14-VD17;
- два конденсатора С 9, С 10;
- дополнительная обмотка размещена на балластном дросселе L5, количество витков подбирается опытным путем.
Дополнительная обмотка дросселя играет еще одну важную роль изолирующего трансформатора, предотвращая попадание сетевого напряжения на выход источника питания.
Для определения необходимого количества витков в добавляемой обмотке необходимо сделать следующее:
- на дроссель намотана временная обмотка, примерно 10 витков любого провода;
- , подключенный к нагрузке с сопротивлением, мощностью не менее 30 Вт и сопротивлением около 5-6 Ом;
- включить в сеть, измерить напряжение на сопротивлении нагрузки;
- полученное значение делят на количество витков, узнают сколько вольт на 1 виток;
- рассчитать необходимое количество витков для постоянной обмотки.
Более подробный расчет приведен ниже.
Тестовое подключение преобразованного блока питания
После этого легко рассчитать необходимое количество витков. Для этого напряжение, которое планируется получить от этого блока, делится на напряжение одного витка, получается количество витков, и к результату прибавляется примерно 5-10%.
Вт = U вых / U вит, где
Вт — количество витков;
U out — необходимое выходное напряжение блока питания;
U вит — напряжение на один виток.
Намотка дополнительной обмотки на штатном дросселе
Оригинальная обмотка дросселя находится под напряжением сети! При намотке на него дополнительной обмотки необходимо обеспечить межобмоточную изоляцию, особенно если намотан провод типа ПЭЛ, в эмалевой изоляции. Для межобмоточной изоляции можно использовать ленту из политетрафторэтилена для герметизации резьбовых соединений, которую используют сантехники, ее толщина составляет всего 0,2 мм.
Мощность в таком блоке ограничена общей мощностью используемого трансформатора и допустимым током транзисторов.
Источник питания высокой мощности
Это потребует более сложного обновления:
- дополнительный трансформатор на ферритовом кольце;
- замена транзисторов;
- установка транзисторов на радиаторы;
- увеличение емкости некоторых конденсаторов.
В результате данной модернизации получен блок питания мощностью до 100 Вт, с выходным напряжением 12 В. Он способен обеспечивать ток 8-9 ампер.Этого хватит, чтобы привести в действие, например, шуруповерт средней мощности.
Схема модернизированного блока питания представлена на рисунке ниже.
Блок питания 100 Вт
Как видно на схеме, резистор R 0 заменен на более мощный (3-ваттный) резистор, его сопротивление уменьшено до 5 Ом. Его можно заменить двумя 2-ваттными 10 Ом, подключив их параллельно. Далее C 0 — его емкость увеличена до 100 мкФ, при рабочем напряжении 350 В.Если нежелательно увеличивать габариты блока питания, то можно найти миниатюрный конденсатор такой емкости, в частности, его можно взять от фотоаппарата-мыльницы.
Для обеспечения надежной работы блока полезно немного снизить номиналы резисторов R 5 и R 6, до 18-15 Ом, а также увеличить мощность резисторов R 7, R 8 и R 3, R 4. Если частота генерации окажется низкой, то номиналы конденсаторов C 3 и C 4 — 68n следует увеличить.
Самым сложным может быть изготовление трансформатора. Для этого в импульсных установках чаще всего используются ферритовые кольца соответствующих размеров и магнитной проницаемости.
Расчет таких трансформаторов довольно сложен, но в Интернете есть множество программ, с которыми это очень легко сделать, например, «Lite-CalcIT Pulse Transformer Calculation Program».
Как выглядит импульсный трансформатор
Расчет, проведенный с помощью этой программы, дал следующие результаты:
В качестве сердечника используется ферритовое кольцо, его внешний диаметр — 40, внутренний — 22, толщина — 20 мм.Провод первичной обмотки ПЭЛ — 0,85 мм2 имеет 63 витка, а два вторичных с таким же проводом — 12.
Вторичная обмотка должна быть намотана сразу двумя проводами, при этом их желательно предварительно слегка скрутить по всей длине, так как эти трансформаторы очень чувствительны к асимметрии обмоток. Если это условие не соблюдается, то диоды VD14 и VD15 будут нагреваться неравномерно, и это еще больше увеличит асимметрию, что, в конечном итоге, выведет их из строя.
Но такие трансформаторы легко прощают существенные ошибки при подсчете количества витков, до 30%.
Так как данная схема изначально была рассчитана на работу с лампой мощностью 20 Вт, установлены транзисторы 13003. На рисунке ниже позиция (1) — транзисторы средней мощности, их следует заменить на более мощные, например, 13007, как в позиции (2). Возможно, потребуется их установка на металлическую пластину (радиатор) площадью около 30 см 2.
Тест
Пробное переключение следует проводить с соблюдением некоторых мер предосторожности, чтобы не повредить блок питания:
- Включите первый тестовый выключатель с помощью лампы накаливания мощностью 100 Вт, чтобы ограничить ток в источнике питания.
- К выходу обязательно подключить нагрузочный резистор 3-4 Ом, мощностью 50-60 Вт.
- Если все прошло хорошо, дайте поработать 5-10 минут, выключите и проверьте степень нагрева трансформатора, транзисторов и диодов выпрямителя.
Если при замене деталей не было допущено ошибок, блок питания должен работать без проблем.
Если тестовое включение показало, что блок работает, остается протестировать его в режиме полной нагрузки. Для этого уменьшите сопротивление нагрузочного резистора до 1.2-2 Ом и подключить напрямую к сети без лампочки на 1-2 минуты. Затем выключите и проверьте температуру транзисторов: если она превышает 60 0 С, то их придется устанавливать на радиаторы.
В качестве радиатора можно использовать как заводской радиатор, что будет наиболее правильным решением, так и алюминиевую пластину толщиной не менее 4 мм и площадью 30 кв. См. Под транзисторы необходимо поставить слюдяную прокладку; их необходимо прикрепить к радиатору с помощью шурупов с изоляционными втулками и шайбами.
Блок лампы. Видео
Как сделать импульсный блок питания из эконом-лампы, видео ниже.
Импульсный блок питания из балласта энергосберегающей лампы можно сделать своими руками, имея минимальные навыки работы с паяльником.
Для работы отвертки требуется источник питания 18 В. Эти устройства работают от сети 220 В. Основным элементом блоков является преобразователь. Сегодня существует множество модификаций, различающихся параметрами и элементами конструкции.Как сделать блок питания для шуруповерта 18В своими руками? Для этого рекомендуется учитывать конкретные схемы сборки.
Модели с индикацией
Блок питания шуруповерта 18В для работы от сети с индикацией может быть выполнен на базе проводного преобразователя. Электропроводность элемента должна составлять 4,5 мкм. Конденсаторы используются на 5 пФ. Большинство специалистов устанавливают резисторы с однополюсными выпрямителями. Компараторы используются для стабилизации процесса преобразования.
Универсальные блоки
Сделать универсальный блок питания для шуруповерта 18В своими руками достаточно просто. Первым делом нужно подготовить выходной конденсатор 5 пФ. Требуется один дополнительный резистор. Преобразователи для блоков используются в отрицательном направлении. Они могут использоваться в цепи постоянного тока и хорошо подходят для сети 220 В. Специалисты советуют устанавливать компараторы с балочными переходниками. Они хорошо устойчивы к импульсным помехам. Также следует отметить, что фильтры для конденсатора подбираются электродным триггером.По окончании работы блок проверяют на сопротивление. При правильной сборке модификация должна выдавать не более 40 Ом.
Схема биполярного резистора
Как сделать так, чтобы блок питания для отвертки 18В работал от сети? Устройства с двухполюсным резистором можно собрать на базе контроллера адаптера. Преобразователь стандартно используется с фильтром. Показатель сопротивления элемента должен быть не более 40 Ом.
Также следует отметить, что при сборке блока используются только канальные фильтры, которые устанавливаются рядом с преобразователем.При замкнутом контуре в первую очередь проверяется футеровка. Триггеры используются для увеличения параметра перегрузки устройства.
Трехполюсный резистор
Вариант с двухполюсным резистором может быть добавлен на базе исправного преобразователя. Как правило, применяются модификации на 220 В. В начале сборки выбирается триггер. Фильтры для него устанавливаются канального типа. Также следует отметить, что проводимость резистора в блоке не должна превышать 4.5 мкм. Сопротивление на выходе преобразователя в среднем 40 Ом. Эти модификации хороши тем, что им не страшны импульсные помехи от сети 220 В. Кроме того, важно помнить, что устройства разрешено использовать с отвертками разных марок. Если рассматривать блоки на проводных компараторах, то выпрямители используются только на две пластины. Дополнительно учитывается проводимость самого компаратора.
Импульсные модификации
Импульсный блок питания для шуруповерта 18В своими руками собран со встроенными преобразователями.Компараторы для приборов используются на две или три пластины. Большинство моделей доступны с выпрямителями с низким сопротивлением. Индикатор перегрузки элементов начинается с 10 А.
Некоторые модификации стека с канальными фильтрами. Также среди самодельных доработок нередко встречаются модели на преобразователях привода. У них высокий индекс проводимости. К ним подходят только конденсаторы 4пФ. Фильтры используются с переходниками луча. Специалисты утверждают, что модели способны работать с шуруповертами на 18 В.
с усилителем
Модификации с усилителями распространены. Собрать блок питания для шуруповерта 18В своими руками можно с помощью проводного преобразователя. Также необходим пусковой контактор. Монтаж следует начинать с пайки транзисторов. Используются они разной мощности, а проводимость элементов начинается от 4,5 мкм. Большинство экспертов рекомендуют фильтры канального типа. Они хорошо справляются с импульсным шумом. Также следует отметить, что для сборки потребуется один переходник преобразователя.Выпрямитель крепится непосредственно на двух пластинах. По окончании работы проводится проверка сопротивления на блоке. Указанный параметр в среднем составляет 45 Ом.
Стабилитроны
На стабилитроне блок питания для отвертки 18В собран с контактными преобразователями своими руками. Выпрямители разрешается использовать с переходниками электродов. При этом их проводимость должна быть не более 5,5 мкм. Контроллеры часто встречаются на трех пластинах.
Фильтры к ним подходят канального типа. Также существуют сборки с простым инверторным преобразователем. Они выделяются со стабильной частотой, но не могут использоваться в сети. переменный ток … На выходе преобразователя установлен изолятор. Компаратор для модификации потребуется с дуплексным фильтром.
Модель с одним фильтром
Как самому сделать блок питания для отвертки 18В? Собрать модель с одним фильтром довольно просто.Начать работу стоит с выбора качественного преобразователя. Далее для изготовления блока питания шуруповерта 18В своими руками устанавливается курок на три контакта. В этом случае фильтр устанавливается за преобразователем. Стабилизатор подходит только для низкоомного типа, и его восстанавливаемость должна быть не более 4,5 мкм. После установки фильтра сразу проверяется сопротивление на блоке. Указанный параметр в среднем составляет 55 Ом. Триоды для устройства подходят однонаправленного типа.
Модификации без стабилизаторов
Есть много самодельных устройств без стабилизаторов. Электропроводность блоков этого типа составляет около 4,4 мкм. В этом случае преобразователи подвержены импульсным нагрузкам от сети 220 В. Также следует помнить, что устройства сильно перегружены от волновых помех. Если рассматривать модификации дипольных триггеров, то переходник у них всего один. Дополнительно следует отметить, что фильтр установлен за преобразователем.Крышка для него припаивается на выходе. Специалисты говорят, что тиристор можно использовать с низкой проводимостью. Однако сопротивление в цепи не должно опускаться ниже 45 Ом.
Если рассматривать устройства на проводных конденсаторах, то для моделей выбираются конденсаторы 3,3 пФ. Устанавливаются они только с канальными фильтрами, а проводимость блоков этого типа составляет примерно 50 Ом. Для самостоятельной сборки устройств используются контактные выпрямители на диодах. Их коэффициент проводимости в среднем равен 5.5 мкм.
Техническая информация: → Сделать питание от перегоревшей энергосберегающей лампы
Данная публикация содержит материалы по ремонту или изготовлению импульсных источников питания различной мощности на основе электронного балласта компактной люминесцентной лампы.
В короткие сроки можно сделать импульсный блок питания на 5 … 20 Вт. Изготовление 100-ваттного блока питания может занять до нескольких часов.
Соорудить блок питания будет несложно тем, кто умеет паять.И, несомненно, сделать это несложно, чем найти подходящий для изготовления низкочастотный трансформатор необходимой мощности и перемотать его вторичные обмотки на необходимое напряжение.
В последнее время широкое распространение получили компактные люминесцентные лампы (КЛЛ). Чтобы уменьшить размер балластного дросселя, они используют схему высокочастотного преобразователя напряжения, что позволяет значительно уменьшить размер дросселя.
В случае выхода из строя ЭПРА его легко отремонтировать.Но, когда выходит из строя сама лампочка, ее нужно выбросить.
Однако электронный балласт такой лампочки представляет собой практически готовый импульсный блок питания (БП). Единственное отличие схемы электронного балласта от реального импульсного блока питания — это отсутствие развязывающего трансформатора и выпрямителя при необходимости.
В последнее время радиолюбители иногда испытывают трудности с поиском силовых трансформаторов для питания своих самодельных конструкций.Даже если трансформатор найден, то для его перемотки требуется использование медных проводов необходимого диаметра, а массогабаритные параметры изделий, собранных на базе силовых трансформаторов, особо не радуют. Но в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если для этих целей использовать балласт от неисправных КЛЛ, то экономия составит определенную сумму, особенно если речь идет о трансформаторах мощностью 100 Вт и более.
Отличие схемы КЛЛ от импульсного блока питания.
Это одна из самых распространенных электрических схем энергосберегающих ламп … Чтобы преобразовать схему КЛЛ в импульсный источник питания, нужно установить только одну перемычку между точками A — A ‘и добавить импульсный трансформатор с выпрямителем. Элементы, которые можно удалить, отмечены красным.
А это уже законченная схема импульсного блока питания, собранная на базе КЛЛ с использованием дополнительного импульсного трансформатора.
Для простоты снята люминесцентная лампа и несколько деталей заменены перемычкой.
Как видите, схема КЛЛ не требует серьезных изменений. Дополнительные элементы, внесенные в схему, отмечены красным.
Какой блок питания можно сделать из КЛЛ?
Мощность источника питания ограничена общей мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и размером охлаждающего радиатора при его использовании.
Источник питания малой мощности может быть построен путем намотки вторичной обмотки непосредственно на раму имеющегося дросселя от лампового блока.
Если дроссельное окно не позволяет намотать вторичную обмотку или вам необходимо построить блок питания с мощностью, значительно превышающей мощность КЛЛ, то вам понадобится дополнительный импульсный трансформатор.
Если вам необходимо получить блок питания мощностью более 100 Вт, и используется балласт от лампы на 20-30 Вт, то, скорее всего, придется внести небольшие изменения в схему электронного балласта.
В частности, может потребоваться установка более мощных диодов VD1-VD4 во входной мостовой выпрямитель и перемотка входного дросселя L0 более толстым проводом. Если коэффициент усиления транзисторов по току недостаточен, то ток базы транзисторов придется увеличить за счет уменьшения номиналов резисторов R5, R6. Кроме того, придется увеличить мощность резисторов в цепях базы и эмиттера.
Если частота генерации не очень высока, то может потребоваться увеличение емкости разделительных конденсаторов C4, C6.
Импульсный трансформатор для питания.
Особенностью самовозбуждающихся импульсных полумостовых источников питания является возможность адаптации к параметрам применяемого трансформатора. А то, что цепь обратной связи не пройдет через наш самодельный трансформатор, еще больше упрощает задачу расчета трансформатора и настройки агрегата. Блоки питания, собранные по этим схемам, прощают ошибки в расчетах до 150% и выше.
Для увеличения мощности блока питания пришлось намотать импульсный трансформатор ТВ2.Кроме того, я увеличил емкость фильтра сетевого напряжения C0 до 100 мкФ.
Так как КПД блока питания далеко не 100%, пришлось прикрутить к транзисторам некоторые радиаторы.
Ведь если КПД агрегата будет хоть 90%, все равно придется рассеивать 10 ватт мощности.
Мне не повезло, в моем балластных транзисторах 13003 поз. Установлена 1 такая конструкция, которая, по всей видимости, рассчитана на крепление к радиатору с помощью фигурных пружин.Эти транзисторы не нуждаются в прокладках, так как не оснащены металлической площадкой, но и теплоотдача они намного хуже. Заменил их на транзисторы 13007 поз. 2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными шурупами. К тому же у 13007 максимально допустимые токи в несколько раз выше.
При желании можно смело навинтить оба транзистора на один радиатор. Проверил работает.
: корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электроники.
Удобно крепить винтами М2,5, на которые предварительно необходимо надеть изолирующие шайбы и отрезки изоляционной трубки (батиста). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.
Внимание! Транзисторы находятся под сетевым напряжением, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!
На чертеже показано соединение транзистора с радиатором охлаждения в разрезе.
- Винт M2,5.
- Шайба М2.5.
- Шайба изоляционная М2,5 — стеклопластик, текстолит, гетинакс.
- Корпус транзистора.
- Прокладка представляет собой отрезок трубки (батист).
- Прокладка — слюда, керамика, фторопласт и др.
- Радиатор охлаждения.
А это рабочий импульсный блок питания на 100 ватт.
Резисторы фиктивной нагрузки погружены в воду из-за недостаточной мощности.
Мощность, выделяемая на нагрузку, составляет 100 Вт.
Частота автоколебаний при максимальной нагрузке — 90 кГц.
Частота автоколебаний без нагрузки — 28,5 кГц.
Температура транзистора 75ºC.
Площадь радиаторов каждого транзистора составляет 27 см².
Температура дросселя TV1 — 45ºС.
TV2 — 2000НМ (Ø28 x Ø16 x 9 мм)
Выпрямитель.
Все вторичные выпрямители полумостового импульсного источника питания должны быть двухполупериодными. Если это условие не выполняется, то магнитопровод может войти в насыщение.
Есть две распространенные схемы двухполупериодного выпрямителя.
1. Мостовая схема.
2. Цепь с нулевой точкой.
Мостовая схема экономит метр провода, но рассеивает вдвое больше энергии на диодах.
Схема нулевой точки более экономична, но требует двух идеально сбалансированных вторичных обмоток … Несимметрия в количестве витков или расположении может привести к насыщению магнитной цепи.
Однако именно цепи с нулевой точкой используются, когда требуется получить большие токи при низком выходном напряжении.Затем для дополнительной минимизации потерь вместо обычных кремниевых диодов используются диоды Шоттки, на которых падение напряжения в два-три раза меньше.
Пример.
Выпрямители блоков питания компьютеров изготовлены по схеме нулевой точки. При выходной мощности 100 Вт и напряжении 5 В 8 Вт могут рассеиваться даже на диодах Шоттки.
100/5 * 0,4 = 8 (Ватт)
Если использовать мостовой выпрямитель, да еще и обычные диоды, то рассеиваемая на диодах мощность может достигать 32 Вт и даже больше.
100/5 * 0,8 * 2 = 32 (Ватт).
Обращайте на это внимание при проектировании блока питания, чтобы потом не искать, куда пропала половина мощности.
В низковольтных выпрямителях лучше использовать схему нулевой точки. Более того, при ручном намотке можно просто намотать обмотку на два провода. К тому же мощные импульсные диоды недешевы.
Как правильно подключить импульсный блок питания к сети?
Для настройки импульсных блоков питания обычно используют следующую схему подключения.Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя в нештатных ситуациях. Мощность лампы обычно выбирается близкой к мощности тестируемого импульсного источника питания.
При работе импульсного блока питания на холостом ходу или с небольшой нагрузкой сопротивление лампы накаливания какао невелико и не влияет на работу блока. Когда по каким-то причинам ток ключевых транзисторов увеличивается, спираль лампы нагревается и ее сопротивление увеличивается, что приводит к ограничению тока до безопасного значения.
На этом чертеже представлена схема стенда для проверки и настройки импульсных источников питания, отвечающего стандартам электробезопасности. Отличие этой схемы от предыдущей в том, что она оборудована изолирующим трансформатором, обеспечивающим гальваническую развязку исследуемого ИБП от осветительной сети. Переключатель SA2 позволяет заблокировать лампу, когда блок питания обеспечивает большую мощность.
А это уже изображение реального стенда для ремонта и настройки импульсных блоков питания, которое я сделал много лет назад по схеме выше.
Важной операцией при тестировании БП является тест на фиктивную нагрузку. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и др. Эти «стеклокерамические» резисторы легко найти на радиорынке из-за их зеленой цветовой схемы. Красные цифры — рассеиваемая мощность.
По опыту известно, что мощности эквивалентной нагрузки по каким-то причинам всегда не хватает. Перечисленные выше резисторы могут рассеивать мощность в два-три раза больше номинальной в течение ограниченного времени.Когда блок питания включен на длительное время для проверки теплового режима, а мощность эквивалентной нагрузки недостаточна, то резисторы можно просто окунуть в воду.
Будьте осторожны, чтобы не обжечься!
Согласующие резисторы данного типа способны нагреваться до температуры в несколько сотен градусов без каких-либо внешних проявлений!
То есть дыма или обесцвечивания вы не заметите и можете попробовать прикоснуться к резистору пальцами.
Как настроить импульсный блок питания?
Собственно блок питания, собранный на базе исправного ЭПРА, особой настройки не требует.
Его необходимо подключить к фиктивной нагрузке и убедиться, что блок питания способен выдавать номинальную мощность.
Во время работы под максимальной нагрузкой необходимо следить за динамикой повышения температуры транзисторов и трансформатора. Если трансформатор слишком сильно нагревается, то нужно либо увеличить сечение провода, либо увеличить общую мощность магнитопровода, либо и то, и другое.
Если транзисторы сильно нагреваются, то нужно установить их на радиаторы.
Если в качестве импульсного трансформатора используется бытовой дроссель от КЛЛ, и его температура превышает 60 … 65 ° С, то необходимо снизить мощность нагрузки.
Не рекомендуется повышать температуру трансформатора выше 60… 65 ° C, а транзисторов — выше 80… 85 ° C.
Для чего предназначены элементы импульсной схемы питания?
R0 — ограничивает пиковый ток, протекающий через диоды выпрямителя в момент включения.КЛЛ также часто действуют как предохранители.
VD1… VD4 — мостовой выпрямитель.
L0, C0 — фильтр питания.
R1, C1, VD2, VD8 — цепь запуска преобразователя.
Пусковой узел работает следующим образом. Конденсатор С1 заряжается от источника через резистор R1. Когда напряжение на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор разблокируется и открывает транзистор VT2, вызывая автоколебания. После начала генерации на катод диода VD8 подаются прямоугольные импульсы и отрицательный потенциал надежно блокирует динистор VD2.
R2, C11, C8 — упрощают запуск преобразователя.
R7, R8 — улучшают блокировку транзисторов.
R5, R6 — ограничивают базовый ток транзисторов.
R3, R4 — предотвращают насыщение транзисторов и действуют как предохранители при пробое транзисторов.
VD7, VD6 — защищают транзисторы от обратного напряжения.
TV1 — трансформатор обратной связи.
Л5 — дроссель балластный.
С4, С6 — разделительные конденсаторы, на которых напряжение питания делится пополам.
ТВ2 — импульсный трансформатор.
VD14, VD15 — импульсные диоды.
С9, С10 — конденсаторы фильтра.