Как проверить металлогалогенную лампу тестером: Как проверить галогеновую лампу тестером – Как проверить лампочку мультиметром (тестером)? — Интернет-магазин инструмента. — yato-tools.ru. Электротовары и инструмент. – Как проверить галогеновую лампу тестером – Как проверить лампочку мультиметром (тестером)? — Интернет-магазин инструмента. — yato-tools.ru. Электротовары и инструмент.

Указания по эксплуатации металлогалогенных ламп. — 16 Января 2012 — Консультации

Эксплуатация металлогалогенных ламп и безопасность.
Металлогалогенные лампы являются источником ультрафиолетового излучения и характеризуются повышенным внутренним давлением при своей работе. Поэтому их применение, в целях безопасности, допустимо только в специально предназначенных для этого полностью закрытых светильниках.
Светильники для металлогалогенных ламп должны быть оснащены герметичным, ударопрочным, поглощающим УФ-излучение и термостойким стеклом. Некоторые модели металлогалогенных ламп, например, металлогалогенные лампы BLV серий ТОРSPOT Shroud и ТОРLITE Shroud могут быть использованы без защитного стекла, т.к. в их конструкции предусмотрена дополнительная защита от повреждений.


 Перед заменой ламп необходимо обязательно отключить металлогалогенный светильник от источника тока. При замене всегда проверяйте патрон светильника на предмет оплавления или образования нагара. При необходимости патрон светильника следует заменить. Для устройств зажигания металлогалогенных ламп со стартером замене подлежит также и стартер.
 Не прикасайтесь голыми руками к внешней колбе из кварцевого стекла. Для установки металлогалогенных ламп в светильник используйте перчатки. Имеющиеся на стекле пятна удалите чистой тряпкой, смоченной спиртом. В противном случае загрязнение прочно пригорит к стеклу и металлогалогенная лампа выйдет из строя раньше положенного срока.

 Эксплуатация лампы с поврежденной стеклянной колбой недопустима.
На лампах с двухсторонней цоколевкой внутренний отпаечный носик не должен быть направлен вниз.
При непрерывной эксплуатации металлогалогенных ламп отключайте их примерно на 30 минут не реже чем 1 раз в неделю.
Питающее напряжение.
Питающее напряжение металлогалогенных ламп и натриевых ламп высокого давления сетевое (Россия, Европа – 220/380В, США, Япония – 110В). Металлогалогенные лампы работают от промежуточного устройства, рассчитанного на конкретное сетевое напряжение. Допустимое отклонение фактического сетевого напряжения от номинального значения составляет не более +- 3%, кратковременно – не более 5%. Выход сетевого напряжения за рамки указанного допустимого отклонения ведет к сокращению срока службы лампы и нежелательным цветовым колебаниям освещения.

Промежуточные устройства для металлогалогенных ламп. ПРА и ЭПРА.
Промежуточные сетевые устройства, имеется ввиду пуско-регулирующие устройства (ПРА) для металлогалогенных ламп, должны быть рассчитаны на конкретную мощность металлогалогенной лампы и имеющееся сетевое напряжение. В случае нестабильного напряжения в сети устройство следует дополнить стабилизатором напряжения.
Для обеспечения безопасности работы ПРА следует предусмотреть достаточную вентиляцию деталей внутри ПРА, безопасную схему их установки, а также запас сечения токоведущего провода. Повышенная опасность перегрузок для ПРА особенно высока ближе к концу срока службы металлогалогенных ламп.
Использование электронных промежуточных устройств, рабочая частота которых превышает 300 Гц, может вызвать резонансы, способные привести к выходу металлогалогенной лампы из строя.
Металлогалогенные лампы требуют применения устройств зажигания, вырабатывающих напряжение зажигания в 4 кВ с достаточной широтой импульса на лампе. Необходимым условием для этого также является хорошая изоляция высокого напряжения. Для некоторых типов натриевых ламп высокого давления возможно минимальное напряжение зажигания 2,8 кВ. Например, натриевые лампы BLV серии DE.
Устройства зажигания в металлогалогенных светильниках должны быть установлены как можно ближе к лампе. Длина кабеля от оптической части светильников, где установлены металлогалогенные лампы, до пускорегулирующего устройства (ПРА или ЭПРА) не должна превышать 1,5 метра.
Режим пуска.
Металлогалогенные лампы и натриевые лампы высокого давления после первого включения допускают колебание цвета и кратковременное мерцание. По прошествии небольшого времени (около 1 минуты) эти явления должны исчезнуть. При изменении положения горения лампы должно пройти несколько часов, пока восстановится стандартный режим работы. Такая особенность является следствием процесса переориентировки галогенидов металла в лампе.
Повторный пуск.
Металлогалогенные лампы и натриевые лампы высокого давления после выключения электрического питания требуют несколько минут на остывание, прежде чем их снова можно будет включить. Металлогалогенные лампы и натриевые лампы с двухсторонней цоколевкой могут быть повторно запущены и в горячем состоянии, если применяется подходящее устройство зажигания (ПРА или ЭПРА), способное выдавать токи от 25 до 35 кВ.
Светоотдача.
Металлогалогенные лампы известных европейских производителей PHILIPS, OSRAM, BLV, SYLVANIA имеют высокую световую отдачу в течение всего срока эксплуатации. Например, большинство металлогшалогенных ламп BLV заполнено скандием и натрием. Благодаря такой технологии достигается высокая стабильность цвета. Как правило, уровень начального светового потока этих металлогалогенных ламп превышает стандартные значения на 20%. Затем, в течение следующих 1000 часов эксплуатации уровень светового потока приближается к стандартным значениям. После 5000 часов эксплуатации наблюдается снижение светового потока, как правило, на 30%. Для серии металлогалогенных ламп BLV HIT-ULTRALIFE с увеличенным сроком службы существенное изменение характеристик светоотдачи возможно после 15000 часов эксплуатации. Схожие показатели долговечности характерны и для ламп PHILIPS, OSRAM, SYLVANIA. Это распространяется на обычные металлогалогенные лампы и на металлогалогенные лампы с увеличенным сроком службы

Неисправности металлогалогенных светильников для трековых систем освещения..

Доступно о светотехнике

Зачастую поставка светильников сопровождается рпетензиями клиентов к их качеству. Особенно много сложностей возникает при приобретении заказчиками металлогалогенных прожекторов для трековых систем освещения. Данный вид осветительного оборудования является технически сложным, с большим спектром возможных некорректных действий со стороны монтажников и строителей. Даже, опытные строители и монтажники не застрахованы от ошибок. Поэтому, учитывая большую актуальность данной темы, мы решили дать некий алгоритм действий по выявлению причины неисправности.
Корректнее будет сказать «отказа запуска и/или стабильной работы» прожекторов. Так как большинство проблем кроется не в неисправностях светильников , а именно в их некоректном монтаже.

Рассмотрим основные варианты отказов и с»имптомы» этих отказов.
1. неисправна лампа
Светильники то горят, то не горят.
Лампа могла быть неисправна сразу или при монтаже лампы в светильник ее могли потрогать руками.
2. некорректно выполнено подключение
светильники работают нестабильно, зажигаются, гаснут, не могут разгореться на полную мощность
Причин может быть масса. В этом случае необходимо разбираться «от начала и до конца».
Во-первых, померить напряжение в сети. При значении менее 190В металлогалогенные и люминесцентные светильники могут работать нестабильно.
Если с напряжением все впорядке, необходимо проверить правильность подключения питающего кабеля в коннекторе (питании), при помощи которого он присоединен к шинопроводу. Фазы должны соответствовать обозначениям, подключение корректное.
Если в питании трека все нормально, то проверьте правильно ли вы вставили само питание в трек. Бывает, что при установке медные контакты-усики в шине, обеспечивающие плотное прилегание к контактам питания, загибаются в другую сторону. Один загнутый контакт — одна потерянная фаза.
Следует также проверить исправность питающего кабеля (возможно он перебит) и правильность подключения к щитку.
Если вы не уверны в исправности светильников, в частности ламп или ПРА, переставьте «неисправный» светильник на трек, на котором все светильники работают стабильно. Если светильник и там «будет себя плохо везти», то есть повод в нем усомниться. Если светильник работает исправно, значит дело не в светильнике.
Если на осветительную конструкцию, состоящую из нескольких токопроводящих шин, установлено более 20 светильников, необходимо проверить хватит ли им мощности от питающей конструкцию линии. При нехватке мощности также возможна нестабильная работа металлогалогенных ламп и ПРА.

Металлогалогенная лампа — Википедия

Металлогалоге́нная ла́мпа (МГЛ) — один из видов газоразрядных ламп (ГРЛ) высокого давления. Отличается от других ГРЛ тем, что для коррекции спектральной характеристики дугового разряда в парах ртути в горелку МГЛ дозируются специальные излучающие добавки (ИД), представляющие собой галогениды некоторых металлов.

До середины 1970-х гг. в отечественной светотехнике применялся термин «металлогалоидная лампа», что было обусловлено наименованием химических элементов VII группы периодической системы — «галоиды». В химической номенклатуре было признано неправильным использование этого термина, поскольку «галоид» в буквальном переводе с греческого — «солеподобный», и в повсеместное употребление вошло слово «галоген» — буквально «солерод», указывающее на высокую химическую активность этих веществ и образование в реакциях с ними солей металлов. Поэтому в настоящее время применяется русскоязычный термин «металлогалогенная лампа», включённый в состав русской редакции Международного светотехнического словаря МКО. Использование словесных ка́лек с английского термина «metal halide lamp» («металлогалоидная», «металлогалидная») является недопустимым.

МГЛ — компактный, мощный и эффективный источник света (ИС), находящий широкое применение в осветительных и светосигнальных приборах различного назначения. Основные области применения: киносъёмочное освещение, утилитарное, декоративное и архитектурное наружное освещение, автомобильные фары (так называемые «ксеноновые» лампы для автомобильных фар являются именно металлогалогенными),

[источник не указан 112 дней] осветительные установки (ОУ) промышленных и общественных зданий, сценическое и студийное освещение, ОУ для освещения больших открытых пространств (железнодорожные станции, карьеры и т. п.), освещение спортивных объектов и др. В ОУ технологического назначения МГЛ могут использоваться как мощный источник видимого и ближнего ультрафиолетового излучения. Компактность светящегося тела МГЛ делает их весьма удобным ИС для световых приборов прожекторного типа с катоптрической и катадиоптрической оптикой.

Светящимся телом МГЛ является плазма дугового электрического разряда высокого давления. В этом МГЛ схожа с другими типами РЛ. Основным элементом наполнения разрядной трубки (РТ) МГЛ является инертный газ (как правило, аргон Ar) и ртуть Hg. Помимо них в газовой среде наполнения присутствуют галогениды некоторых металлов (ИД), обычно иодид натрия и иодид скандия[1]. В холодном состоянии ИД в виде тонкой плёнки конденсируются на стенках РТ. При высокой температуре дугового разряда происходит испарение этих соединений, диффузия паров в область столба дугового разряда и разложение на ионы. В результате ионизированные атомы металлов возбуждаются и создают оптическое излучение (ОИ).

Основной функцией инертного газа, наполняющего РТ МГЛ, как и в других ртутных РЛ, является буферная, иными словами, газ способствует протеканию электрического тока через РТ при низкой её температуре, то есть в то время, когда большая часть ртути и, тем более, ИД, находятся ещё в жидкой или твёрдой фазе, и парциальное давление их весьма мало. По мере прогрева РТ током происходит испарение ртути и ИД, в связи с этим существенно изменяются как электрические, так и световые параметры лампы — электрическое сопротивление РТ, световой поток и спектр излучения.

Выбор ИД производится таким образом, чтобы заполнить имеющиеся в спектре излучения ртути «провалы» с целью получения необходимого спектра лампы. Так, в МГЛ, используемых для целей общего и местного освещения, необходимо компенсировать недостаток красного и жёлтого света в спектре ртути. В цветных МГЛ необходимо повысить выход излучения в заданном узком спектральном диапазоне. Для МГЛ, используемых в фотохимических или фотофизических процессах, как правило, необходимо повысить интенсивность излучения в ближней ультрафиолетовой области (УФ-A) и непосредственно примыкающей к ней области видимого ОИ (фиолетовой). Сам принцип действия МГЛ был предложен в 1911 г. Ч. Штейнмецом, хотя, проводя исторические аналогии, можно увидеть аналогию и в устройстве «ауэровских колпачков», применявшихся для повышения световой отдачи керосиновых и газовых источников света (ИС).

Как и другие виды РЛ, МГЛ нуждаются в применении специальных устройств для инициирования разряда. В качестве них применяют либо вспомогательные (зажигающие) электроды, в общем аналогичные по конструкции электродам ламп ДРЛ, либо предварительный подогрев одного из электродов до температуры термоэлектронной эмиссии, либо внешние импульсные зажигающие устройства (ИЗУ). Согласование параметров (вольтамперных характеристик, ВАХ) источника электропитания и лампы производится с помощью пускорегулирующего аппарата (ПРА), в обиходе называемого балластом.

Как правило, в качестве ПРА используется дроссель, иногда — повышающий трансформатор с повышенным магнитным рассеянием, обеспечивающим падающий характер его внешней ВАХ. В последнем случае зажигание разряда в МГЛ происходит под воздействием высокого напряжения холостого хода трансформатора без использования каких-либо иных зажигающих устройств. Возможность широкого варьирования спектральных и электрических характеристик МГЛ, широкий диапазон мощностей и высокая световая отдача способствуют всё более широкому распространению их в различных осветительных установках. МГЛ является одним из наиболее перспективных заменителей ламп ДРЛ, а за счёт более благоприятного для восприятия человеком спектра излучения — и натриевых РЛВД (НЛВД).

Основой МГЛ является РТ (горелка), обычно изготавливаемая из кварцевого стекла. В последние годы всё более широкое распространение получают МГЛ с РТ из специальной керамики. Преимуществом керамических горелок является их более высокая термостойкость.

В большинстве конструкций МГЛ горелка помещается во внешнюю колбу, играющую двоякую роль. Во-первых, внешняя колба обеспечивает нормальный тепловой режим РТ, уменьшая её теплопотери. Во-вторых, стекло колбы выполняет функции светофильтра, сильно обрезающего жёсткое УФ излучение горелки. Для изготовления внешних колб МГЛ используется боросиликатное стекло, механически и термически устойчивое, относящееся по температурному коэффициенту линейного расширения (ТКЛР) к группе вольфрамовых стёкол.

МГЛ, предназначенные для использования в технологических процессах, как правило, внешней колбы не имеют, что обусловлено необходимостью эффективного использования их УФ излучения. С целью уменьшения озонообразования иногда для таких МГЛ используют безозонное кварцевое стекло, значительно ослабляющее выход резонансной линии ртути 185 нм.

МГЛ могут изготавливаться в одно- и двухцокольном (софитном) исполнении (последние предназначены для работы только в горизонтальном положении). Номенклатура используемых цоколей чрезвычайно широка и постоянно расширяется в связи с разработкой новых моделей ламп, предназначенных для специфических условий применения. Некоторые модели ламп, в основном, предназначенные для замены ламп типа ДРЛ, имеют на внутренней стороне внешней колбы слой люминофора.

Для облегчения зажигания МГЛ в некоторых конструкциях РТ предусматривается установка одного или двух вспомогательных (зажигающих) электродов — аналогично конструкции ламп типа ДРЛ. Однако использование такого метода в МГЛ затруднено по ряду причин, обусловленным особенностями химического состава наполнения РТ. Как правило, в МГЛ, оснащённых зажигающим электродом, питание последнего отключается с помощью термоконтакта после зажигания в горелке основного разряда и её прогрева. Более широко применяется зажигание МГЛ с помощью ИЗУ.

Схемы включения в электрическую сеть[править | править код]

Metal halide warming up.JPG ПРА компании Helvar Metal halide warming up.JPG Электронные ПРА компании Helvar

Резкая зависимость тока МГЛ от напряжения на ней требует включения последовательно с лампой токоограничивающего элемента (ПРА). Большинство МГЛ предназначены для работы с серийными ПРА ламп ДРЛ соответствующей мощности (при отсутствии в колбе лампы специальных зажигающих устройств в таких схемах требуется установка ИЗУ). Существуют МГЛ для работы с ПРА как ДРЛ, так и ДНаТ. Также имеются ПРА специальных конструкций с повышающими автотрансформаторами или трансформаторами с повышенным магнитным рассеянием или со встроенным ИЗУ, совмещающие функции ограничения тока и стартового поджига лампы.

Процесс прогрева и выхода МГЛ в рабочий режим сопровождается значительными изменениями тока лампы и напряжения на ней, причём к конструкции ПРА и ИЗУ предъявляются особые требования, существенно отличающиеся[источник не указан 3287 дней] от требований к ПРА для ДРЛ и натриевых ламп высокого давления. Испарение ИД в процессе прогрева МГЛ делает вероятным погасание лампы из-за недостаточно высокого напряжения на ней.

Крайне опасным для МГЛ является акустический резонанс (АР), возникающий при питании лампы переменным током некоторой частоты (в акустическом диапазоне). Причина возникновения АР заключается в том, что при изменении направления протекания тока, дуга гаснет и, при нарастании напряжения, загорается вновь. При этом, из-за резкого изменения давления в области разряда, возникает акустическая волна, которая отражается от стенок горелки. При некотором значении частоты, возникает явление резонанса. Частота АР зависит от геометрических размеров горелки лампы и скорости звука в ней (то есть от давления в данный момент). Последствиями акустического резонанса являются нестабильность горения лампы, самопроизвольное погасание и, в худшем случае, физическое разрушение горелки. Это явление затрудняет проектирование высокочастотных электронных ПРА для МГЛ. В качестве одного из методов борьбы с АР используется модуляция частоты случайным сигналом. Для ламп малой мощности успешно применяется питание выпрямленным (пульсирующим) током.

Кратковременные перебои в электроснабжении вызывают погасание МГЛ. К такому же исходу может привести сильная вибрация, особенно опасная для ламп с длинной дугой, работающих в горизонтальном положении. Для повторного зажигания МГЛ должна остыть, чтобы давление паров в ней, и, соответственно, напряжение пробоя РТ, снизились. Для освещения особо ответственных объектов, где перебои недопустимы, применяются ПРА быстрого перезажигания. В них зажигание горячей МГЛ достигается за счёт подачи более мощных зажигающих импульсов с амплитудой до 30 — 60 кВ. Такой режим существенно ускоряет разрушение электродов ламп, к тому же требует применения более мощной изоляции токоведущих частей, а потому используется редко.

Первоначально МГЛ использовались вместо ртутных ламп в тех местах, где необходимо было создать свет, по своим характеристикам приближающийся к естественному, по причине того, что данные лампы излучают белый свет (ртутные лампы излучают свет с большой примесью синего света). Однако в настоящее время различие между спектрами данных типов ламп не столь значительно. Некоторые металлогалогеновые лампы могут излучать очень чистый белый дневной свет, имеющий индекс цветопередачи более 90.

МГЛ способны излучать свет с цветовой температурой в диапазоне от 2500 К (жёлтый свет) до 20 000 К (синий свет). Некоторые виды специальных ламп были созданы для излучения спектра, необходимого для растений (используются в теплицах, парниках и т. д) или животных (используются в освещении аквариумов). Однако следует учитывать то обстоятельство, что вследствие присутствия допусков и стандартных отклонений при фабричном производстве ламп, цветовые характеристики ламп не могут быть указаны со 100 % точностью. Более того, по стандартам ANSI цветовые характеристики металлогалогеновых ламп измеряются после 100 часов их горения (т. н. выдержка). Поэтому цветовые характеристики данных ламп не будут соответствовать заявленным в спецификации до тех пор, пока лампа не будет подвергнута данной выдержке.

Наиболее сильные расхождения с заявленными спецификационными данными имеют лампы с технологией пуска «предварительный прогрев» (±300 К). Выпущенные по новейшей технологии «импульсного старта» лампы улучшили соответствие заявленным характеристикам, вследствие чего расхождение составляет от 100 до 200 К. На цветовую температуру горения ламп могут влиять также электрические характеристики питающей сети, а также вследствие отклонений в самих лампах. В том случае, если подаваемое на лампу питание имеет недостаточную мощность, она будет иметь меньшую физическую температуру и её свет будет «холодным» (с большей примесью синего света, что будет делать их очень сходными с ртутными лампами). Данное явление происходит по причине того, что дуга с недостаточно высокой температурой не сможет полностью испарить и ионизировать ИД, которые и придают свету лампы тёплый оттенок (жёлтые и красные цвета), из-за чего в спектре лампы будет доминировать спектр легче ионизирующейся ртути. Это же явление наблюдается также во время прогрева лампы, когда колба лампы еще не достигла рабочей температуры и ИД ионизировались не полностью.

Для ламп, запитанных от чрезмерно высокого напряжения, верна обратная картина, но такая ситуация является более опасной, вследствие возможности взрыва внутренней колбы из-за её перегрева и возникновения в ней избыточного давления. Кроме того, при использовании металлогалогеновых ламп их цветовые характеристики часто меняются с течением времени. В больших осветительных установках с использованием металлогалогеновых ламп часто все лампы существенно различаются по цветовым характеристикам.

Диапазон мощностей МГЛ начинается от десятков ватт и достигает 10 — 20 кВт. Наиболее массовыми являются лампы, используемые в ОУ наружного освещения (одноцокольные 70, 150, 250, 400, 1000, 2000 Вт и софитные 70 и 150 Вт).

Одноцокольные лампы обозначается аббревиатурой SE (single-ended), а двусторонний, соответственно, аббревиатурой DE (double-ended). Лампы с односторонним цоколем, как правило, вкручиваются в патрон при помощи имеющейся на цоколе резьбы (имеют так называемый цоколь Эдисона). Лампы с двусторонним цоколем необходимо вставлять в патроны, расположенные по обе стороны используемого светильника.

Конвекционные потоки металлогалогенидов в плазме дуги МГЛ зависят от направления силы тяжести и существенно влияют на распределение потока энергии, выходящей из горелки МГЛ. [2][3] Поэтому металлогалогеновые лампы чувствительны к тому положению, в котором они установлены. Лампы рассчитаны только на работу в определенной ориентации. Однако лампы, помеченные маркировкой «universal», могут работать в любом положении, хотя при работе их не в вертикальном положении продолжительность срока службы и интенсивность излучаемого света будут снижаться. Для получения наилучших характеристик при эксплуатации лампы в том случае, если её ориентация известна заранее, необходимо выбирать не универсальную, а соответствующую данной позиции лампу.

Для обозначения рекомендованной ориентации лампы, в которой она должна работать, используются различные коды (напр., U = universal (универсальная), BH = base horizontal (горизонтальная), BUD = Base up/down (вертикальная) и т. д.). При использовании ламп в горизонтальной позиции лучше всего направлять отпаечный носик внутренней колбы (т. н. ниппель) вверх.

Metal halide warming up.JPG МГЛ компании Osram

В системе ANSI обозначение МГЛ начинается с буквы «M», за которой следует цифровая кодировка, обозначающая электрические характеристики лампы, а также соответствующий ей тип балласта (для обозначения ртутных разрядных ламп используется литера «H», а для обозначения натриевых ламп — литера «S»). После цифровой кодировки следуют две буквы, обозначающие размер лампы, её форму, а также тип покрытия и т. д., за исключением цвета. После данного обозначения производитель может по своему выбору добавить какие-либо цифровые или буквенные коды для отображения информации, не отображаемой системой обозначений ANSI, такой как мощность лампы и её цвет. Для выбора балласта важна только литера «M» и следующее за ним цифровая кодировка. Например, кодировка M59-PJ-400 в системе ANSI обозначает лампу, работающую только с балластами типа М59. Лампы европейских производителей выпускаются с использованием европейских стандартов, которые в некоторых случаях незначительно отличаются от стандартов ANSI.

Другим обозначением, часто встречающимся при выборе МГЛ, является аббревиатура HQI. Данная аббревиатура является торговой маркой фирмы OSRAM и обозначает особый тип ламп, производимый данной фирмой. Но со временем этой аббревиатурой стали называть МГЛ любого производителя, в том числе и с двухсторонним цоколем. Европейские МГЛ не соответствуют в точности стандартам ANSI и работают при других значениях тока и напряжения. В большинстве случаев прямой европейский аналог лампы для стандарта ANSI не может работать с американским ПРА, таким образом, для работы с данным типом ламп необходимо выбрать соответствующий ей балласт, обозначенный маркировкой HQI. Например, ПРА M80 и M81 также имеют обозначение HQI, и применяются с лампами мощностью 150 и 250 Вт соответственно.

Обозначение колб состоит из буквы/букв, указывающих на их форму, и цифрового кода, обозначающего в восьмых частях дюйма максимально возможный диаметр колбы. Например, маркировка E17 обозначает, что лампа имеет эллипсоидальную форму с максимальным диаметром 17/8 или 21/8 дюйма.

Буквенные обозначения колб: BT (Bulbous Tubular) — бульбовидно-трубчатая, E или ED (Ellipsoidal) — эллипсоидальная, ET (Ellipsoidal Tubular) — эллипсоидно-трубчатая, PAR (Parabolic) — параболическая, R (Reflector) — рефлекторная, T (Tubular) — трубчатая.

  1. Flesch, Peter. Light and light sources: high-intensity discharge lamps (англ.). — Springer, 2006. — P. 45—46. — ISBN 3-540-32684-7.
  2. Бородин В. И., Луизова Л.А., Хахаев А.Д., Трухачева В.А. Исследование временных и пространственных распределений параметров многокомпонентной плазмы закрытой дуги высокого давления. — Петрозаводск: Межвуз. Сб. Оптика неоднородных сред., 1981. — С. 117—141.
  3. Бородин В. И. Конвекция в ртутных дуговых разрядах с легкоионизуемыми примесями. — Москва: Теплофизика высоких температур., 1982. — Т. 20, вып. 3. — С. 443—446.

Проверка работоспособности светодиодных ламп и лент

проверка led лампы мультиметром

Работа экономных источников света обусловлена качеством и надежностью входящих в систему компонентов. Способов, как проверить светодиодную лампочку существует несколько. Все они направлены на простое решение проблемы и диагностику без разрушения целостности. Проверка необходима в том случае, если осветительный прибор вышел из строя или его работа некорректна.

Как проверить светодиодную лампочку

Самым простым и доступным способом является использование мультиметра. Такое устройство применимо в радиотехнике и доступно практически каждому. Способно проверить напряжение, которое подается на отдельный диод или различные участки цепи. Проверка осуществляется таким образом: используется небольшое устройство, способное подать минимальный ток, подключается к осветительному прибору. Чтобы не разрушать конструкцию и не выпаивать компоненты, нужно следовать таким пунктам:

— С обоих сторон от диода разместить красные и синий щупы. Важно соблюсти полярность: положительному красный, к отрицательному синий;
— Обычные щупы не поместятся в разъем для транзистора. В таком случае могут использоваться небольшие булавки или иглы. Их нужно присоединить к щупам при помощи припоя;

— Подключить к мультиметру и проверить напряжение

Такой способ проверки наиболее прост в реализации и не создаст дополнительных проблем для пользователя. Также советуются простые методы для проверки работоспособности: использовать камеру мобильного телефона. Если диод находится в рабочем состоянии, то будет видно свечение.

Как проверить светодиодную ленту

LED-лента отличается сгруппированными диодами, которые находятся на одной плате. Проверка осуществляется при помощи подключения к источнику с малым током. В случае, если загорится лишь отдельный участок – проблема в токопроводящем кабеле.

Гореть может вся лента, но три диода не загораются – неисправность именно этого участка цепи. В таком случае, необходимо произвести замену, отрезав по специальной линии. Разъединять ленту в любом месте нельзя: приводит к дальнейшей неисправности всего метра или же к короткому замыканию.

Исправный LED-источник загорится весь, без миганий и перебоев в работе. Если же наблюдается мерцание или различные неполадки, то это причина проверить электропроводку. Одной из основных причин внезапной поломки светильников является неисправность электрической цепи. Стоит дополнительно проверить диммер и систему управления светом.

Почему светодиодные лампы выходят из строя?

Каждый производитель светодиодного освещения гарантирует долгий эксплуатационный срок и указывает время работы. При этом, лампа или лента внезапно вышли из строя до окончания гарантийного срока. Причин может быть несколько:

— Неверный монтаж. Последовательная схема подключения актуальна только для минимального количества источников света. Если одни из них выйдет из строя – последуют и все остальные;

— Несоблюдение правил эксплуатации. LED-светильники нельзя держать в руках без перчаток, использовать в условиях повышенной влаги и температуры те, которые не обладают степенью защиты;

— Постоянные перебои в подаче тока. Владельцам рекомендуется сразу же устанавливать блоки питания или же покупать лампы, имеющие драйверы в конструкции. Таким образом, при коротком замыкании или скачке напряжения, ток будет нормализован;

— Бракованные или некачественные. Количество брака у хорошего производителя равно 2%. При планировании надежного и долговременного освещения, покупать следует в специализированных светодиодных интернет-магазинах или торговых точках

Указанные проблемы в некоторых случаях можно решить простым ремонтом. В других же, потребуется замена источника света.

Когда необходима проверка?

Напряжение на осветительном приборе проверяют сразу же после установки или при проблемах в работе. Первым «звоночком» становится мерцание или ухудшение яркости. Диагностика также осуществляется в том случае, если отдельные участки цепи перестали работать или лампа не включается.

Поделитесь информацией в социальных сетях, если тема была для Вас интересной.

Leave Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *