Как устроена люминесцентная лампа – что это такое, принцип работы, из чего состоит, как устроена и для каких светильников используется прибор дневного освещения

Содержание

Принцип работы люминесцентной лампы и ее устройство

люминесцентная лампа

Принцип работы люминесцентной лампы базируется на эффекте классической люминесценции.

Электрическим разрядом в ртутных парах создаётся ультрафиолетовое излучение, преобразуемое посредством люминофора в видимое свечение.

При самостоятельном подключении и ремонте таких осветительных приборов учитываются особенности устройства и принцип их действия.

Устройство люминесцентной лампы

Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.

Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.

устройство электроприбора

Устройство лампочки

Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.

На некоторые типы электродов в обязательном порядке производится нанесение специальных активирующих веществ, представленных окислами бария, стронцием и кальцием, а также незначительным количеством тория.

Схема

Стандартная схема подключения люминесцентной лампы значительно сложнее, нежели процесс включения традиционной лампы накаливания.

Требуется применять особые пусковые устройства, качественные и мощностные характеристики которых оказывают непосредственное влияние на сроки и удобство эксплуатации осветительного прибора.

вариант подключения лампы

Схема подключения люминесцентных ламп без дросселя и стартера

В настоящее время практикуется несколько схем подключения, которые отличаются не только по уровню сложности выполняемых работ, но и набором используемых в схеме устройств:

  • подключение с применением электромагнитного балласта и стартера;
  • подключение с электронным пускорегулирующим аппаратом.

Второй вариант подключения предполагает генерирование высокочастотного тока, а сам непосредственный запуск и процесс работы осветительного прибора запрограммированы электронной схемой.

чертеж подключения лампочки

Схема подключения лампы с дросселем и стартером

Чтобы правильно выполнить подключение осветительного прибора, необходимо знать устройство дросселя и стартера, а также учитывать правила подключения такого оборудования.

Как загорается люминесцентная лампа?

Как работает люминесцентная лампа? Функционирование люминесцентного осветительного прибора обеспечивается следующими поэтапными действиями:

  • на электроды, расположенные на цокольных штырях, подаётся напряжение;
  • высокое сопротивление газовой среды в лампе провоцирует поступление тока через стартер с образованием тлеющего разряда;
  • ток, проходящий через электродные спирали, в достаточной степени прогревает их, а разогретые стартерные биметаллические контакты замыкаются, что прекращает разряд;
  • после остывания стартерных контактов происходит их полное размыкание;
  • самоиндукция вызывает возникновение импульсного напряжения дросселя, достаточного для включения освещения;
  • проходящий через газовую среду ток уменьшается, а полное отключение стартера обуславливается недостаточностью напряжения.
лампы Вуда

Лампы спецназначения

Основным назначением устанавливаемых конденсаторов является эффективное снижение помех. Входные конденсаторы обеспечивают существенное понижение реактивной нагрузки, что важно при необходимости получить качественное освещение и продлить срок службы прибора.

Блок 1

Для чего нужен дроссель в люминесцентной лампе

Дроссель позволяет обеспечить требуемый для полноценного функционирования лампы электрический импульс. Принцип такого дополнительного устройства основан на сдвиге фазы переменного тока, что способствует получению необходимого количества тока для горения паров, которыми наполнена внутренняя часть лампы.

В зависимости от уровня мощности, рабочие параметры дросселя и сфера его использования могут варьироваться:

  • 9 Вт — для стандартной энергосберегающей лампы;
  • 11 w и 15 w — для миниатюрных или компактных осветительных приборов и энергосберегающих ламп;
  • 18 w — для настольных осветительных приборов;
  • 36 Вт — для люминесцентного светильника с малыми показателями мощности;
  • 58 Вт — для потолочных светильников;
  • 65 Вт — для многоламповых приборов потолочного типа;
  • 80 Вт — для мощных осветительных приборов.

При выборе нужно также ориентироваться на индуктивное сопротивление, регулирующее показатели мощности тока, подающегося на контакты люминесцентного осветительного прибора.

Принцип работы стартера люминесцентной лампы

Конструкция устройства представлена компактной стеклянной колбой, заполненной инертным газом. Колба установлена внутри металлического или пластикового корпуса, с парой электродов, один из которых относится к биметаллическому типу.

Напряжение на зажигание стартера не должно быть выше, чем номинальное напряжение питающей сети. В процессе подключения схемы запуска к питающей электросети, значительная часть напряжения переходит на разомкнутые стартерные электроды. Под воздействием напряжения обеспечивается образование тлеющего разряда, небольшая часть которого используется для разогрева биметаллических электродов.

принцип работы люминесцентной лампы

Схема работы стартера

Результатом нагревания становится изгиб и замыкание электроцепи, с последующим прекращением тлеющего разряда внутри стартера. Проход тока по цепи последовательно соединенных дросселя и катодов вызывает их эффективный прогрев. Временем замкнутого состояния стартерных электродов определяется продолжительность прогрева катодов любой люминесцентной лампы.

Средний срок эксплуатации стартера равен продолжительности работы осветительного прибора, но с течением времени уровень интенсивности напряжения тлеющего внутреннего разряда заметно понижается.

Устройство и принцип работы люминесцентного светильника

Современные люминесцентные светильники относятся к категории наиболее распространенных типов надежных и долговечных осветительных приборов. Если до недавнего времени такие устройства использовались преимущественно в обустройстве освещения административных и офисных зданий, то в последние годы они всё чаще находят применение в жилых помещениях.

Источник света в таких видах светильников представлен люминесцентной или газоразрядной лампой, функционирующей благодаря свойству некоторых газообразных и парообразных веществ достаточно мощно светиться в условиях электрического поля.

люминесцентный источник света

Светильник люминесцентный

Люминесцентные лампы, устанавливаемые в малогабаритные и компактные светильники, могут обладать кольцевидной, спиралевидной или любой другой формой, что положительно сказывается на габаритах осветительного прибора.

Выпускаемые лампы принято подразделять на линейные и компактные модели. Первый вариант имеет характерные отличия по длине, а также диаметру колбы. Компактные модели имеют, как правило, изогнутую трубку, а основные различия представлены типом цоколя.

Блок 2

Несмотря на кажущуюся простоту устройства, и несложный принцип работы люминесцентной лампы, чтобы продлить срок службы прибора и получить качественное освещение, важно строго соблюдать схему подключения и использовать комплектующие только от проверенных и хорошо зарекомендовавших себя производителей.

Видео на тему

как устроена, какое напряжение на лампе

Вот уже продолжительное время, весь мир напряженно думает о дополнительной экономии электрической энергии. Этому способствует использование энергосберегающих ламп, которые известны миру более 50 лет. Это достойная альтернатива традиционным лампам накаливания. Единственным спорным моментом является вопрос ее утилизации. Ниже предлагается рассмотреть, как устроена люминесцентная лампа, на что обратить внимание потенциальному покупателю.

Описание

Визуально люминесцентная лампа представляет собой стеклянную колбу. Как правило, выполняется в белом цвете, по краям выступают соответствующие контакты подключения. Форма может быть выполнена в виде:

  • Трубки или стержня
  • Тора
  • Спирали

Лампа в виде спирали

В процессе производства из колбы выкачивается воздух, после чего закачивается в конструкцию инертный газ. В результате действия электричества инертный газ приводит к последующему свечению самого изделия. При этом создаются потоки холодного, теплого света, последний называется «дневным». От этого и возникло второе название ламп. Лампа светить бы не могла, если на поверхность колбы с внутренней стороны не был нанесен люминофор. В самом изделии находится ртуть.

Внимание!

 Из-за наличия ртути в составе относительно актуальности использования лампы до сих пор не угасают многочисленные споры у экологов во всем мире.

Виды ламп

Технические характеристики

Перед совершением покупки необходимо знать, какое напряжение на люминесцентной лампе и почему обязательно стоит обратить внимание на данный показатель при выборе изделия:

  • Накаливание мощностью 20 Вт будет соответствовать люминесцентной, мощностью 5-7 Вт.
  • Накаливание мощностью 40 Вт будет соответствовать люминесцентной, мощностью 10-13 Вт.
  • Накаливание мощностью 60 Вт будет соответствовать люминесцентной, мощностью 15-16 Вт.
  • Накаливание мощностью 75 Вт будет соответствовать люминесцентной, мощностью 18-20 Вт.
  • Накаливание мощностью 100 Вт будет соответствовать люминесцентной, мощностью 25-30 Вт.
  • Накаливание мощностью 150 Вт будет соответствовать люминесцентной, мощностью 40-50 Вт.
  • Накаливание мощностью 200 Вт будет соответствовать люминесцентной, мощностью 60-80 Вт.

Характеристики изделия

Достоинства и недостатки

К преимуществам данного изделия можно отнести энергоэффективность. Под данным определением принято понимать количество потребляемой во время эксплуатации светильником с подключенными люминесцентными лампами электрической энергии.

Внимание! Отмечается, что изделие куда выгоднее обычной лампы накаливания и может запросто использоваться в дальнейшем во время эксплуатации как альтернативный источник света.

Благодаря устройству светильника с люминесцентными лампами качество излучения в разы выше. При учете, что цветовая передача лампы накаливания сравнительно невысока, под действующим светом люминесцентной лампы можно запросто различать истинные цвета без искажений.

К достоинствам стоит отнести и долговечность. Они могут запросто обеспечивать свечение вплоть до 10000 часов.

Мягкий свет благоприятно влияет на зрение, при этом само освещение куда более комфортное, поскольку излучение равномерно распределено по всей поверхности изделия. К примеру, если взять лампу накаливания, то яркая спираль быстро вызывает усталость глаз.

К недостаткам относится зависимость от условий сети, а также определенное количество запусков. Выходит из строя, как правило, ранее заявленного производителем срока. Нельзя не отметить и наличие паров ртути в конструкции.

Преимущества использования

Принцип работы

Инертный газ необходим для обеспечения тлеющего разряда. Ртуть же является актуальным компонентом, который позволяет усиливать разряд. Люминофор потребуется для последующего преобразования ультрафиолетового света, что актуально в свете видимого спектра. Электроды потребуются в дальнейшем для подключения лампы в электрическую схему, создания соответствующих разрядов электронов.

Устройство и принцип работы

Как только напряжение подается на контакты, электроды начинают испускать электроны, которые, перемещаясь по колбе, создают разряд. Специально для этого, в схему дополнительно включают устройство, которое создает разовый электрический разряд, актуальный для старта свечения. Данное устройство носит название стартер фото, его задача сводится к тому, чтобы в кратковременном отрезке увеличивать силу тока примерно в 3-4 раза.

Внимание! Чтобы обеспечивать полноценный запуск, последующую работу люминесцентной лампы, потребуется дополнительное устройство, которое называется дросселем. Это название фактически устарело, но продолжает активно использоваться.

Область применения

Актуальным решением станет использование лампы для освещения жилых домов, а также медицинских, общественных и учебных заведений. Помимо этого, нашла широкое применение в спортивных, а также торговых комплексах, прочно войдя в жизнь каждого пользователя. Постепенно люминесцентные конструкции все же сумели вытеснить традиционные лампы накаливания.

Актуальными данные элементы стали по той причине, что по технико-экономическим показателям они значительно эффективнее обычных ламп накаливания. Традиционная лампочка в этом случае будет расходовать только 6-8% на выполнение освещения, остальная же энергия будет трансформироваться в нагрев. В данном случае стоит отметить, что у люминесцентных источников данный показатель будет на 80% выше, что и обеспечит выгоду от его последующей покупки. Могут обеспечивать создание разного спектра, как дневного, естественного, так и холодного или теплого. Это позволит без проблем разнообразить и украсить палитру интерьера.

Применение изделий

Помимо этого, они часто используются как источник контролируемого ультрафиолетового излучения, который отличается полезностью для жителей наиболее крупных мегаполисов. Их отличает продолжительность эксплуатации, доходит порой до 20000 часов, а также возможность легко устанавливать взамен неактуальных ламп накаливания.

Подключение к сети

Перед тем как выполнить подключение, стоит продумать разметку. Следует относиться к этому процессу с должным вниманием, ведь от этого во многом зависит качество последующей работы. Пометки необходимо делать в тех местах, где планируется установить как лампочку, так и выключатель. Выключатель ставится возле двери на высоте порядка 80-90 сантиметров от пола. Важно следить, чтобы при открытии двери выключатель не был перекрыт, чтобы оставался к нему полноценный доступ.

Подключение к светильнику

Внимание! Отмечаются маршруты последующей проводки, она должна идти непосредственно от выключателя и вплоть до распределительного элемента, после чего также нужно отметить и путь от лампочки до той же распределительной коробки или розетки.

Люминисцентные лампы на данный момент намного опережают по уровню энергоэффективности давно устаревшие лампы накаливания. Они прочно вошли в обиход как жителей квартир, так и владельцев промышленных зданий, чему способствует их широкая палитра спектра освещения и экономичность.

Принцип работы люминесцентной лампы

Категория: Источники освещения

Применение светильников дневного света позволяет экономить электроэнергию по сравнению с использованием обыкновенных осветительных приборов накаливания. О принципе работы люминесцентной лампы необходимо знать специалистам, занятым работой с электричеством.

Люминесцентные лампы

Историческая справка

Газоразрядная колба появилась еще в 1856 году и называлась трубкой Гейслера. Использование высоковольтной катушки позволило возбудить в ней свечение газа зеленого цвета. Через несколько лет предложено было покрыть внутреннюю поверхность колбы люминофором.

Изделия более яркого белого спектра появились лишь в 1926 году благодаря исследованиям Эдмунда Гермера. По своему устройству они уже стали похожи на те, которые можно видеть сегодня.

Устройство люминесцентной лампы

Для того чтобы понять принцип работы однолампового светильника, надо познакомиться с его схемой. Светильник состоит из следующих элементов:

  • стеклянная цилиндрическая трубка;
  • два цоколя с двойными электродами;
  • стартер, работающий на начальном этапе поджига;
  • электромагнитный дроссель;
  • конденсатор, подключенный параллельно питающей сети.

Колба изделия выполнена из кварцевого стекла. На начальном этапе ее изготовления из нее откачан воздух и создана среда, состоящая из смеси инертного газа и паров ртути. Последняя находится в газообразном состоянии за счет избыточного давления, созданного во внутренней полости изделия. Стенки покрыты изнутри фосфоресцирующим составом, он превращает энергию ультрафиолетового излучения в видимый человеческому глазу свет.

К выводам электродов на торцах устройства подводится переменное напряжение сети. Внутренние вольфрамовые нити покрыты металлом, который при разогреве испускает со своей поверхности большое количество свободных электронов. В качестве таких металлов могут применяться цезий, барий, кальций.

Движение электронов в лампе

Электромагнитный дроссель представляет собой катушку, намотанную для повышения индуктивности на сердечнике из электротехнической стали с большой величиной магнитной проницаемости.

Стартер работает на начальном этапе процесса тлеющего разряда, протекающего в газовой смеси. В его корпусе находятся два электрода, один из которых биметаллический, способный под действием температуры изгибаться и изменять свои размеры. Он выполняет роль замыкателя и размыкателя электрической цепи, в которую включен дроссель.

Принцип работы люминесцентного светильника

Как работает люминесцентная лампа? Сначала образуются свободно движущиеся электроны. Это происходит в момент включения питающего переменного напряжения в областях вокруг вольфрамовых нитей накаливания внутри стеклянного баллона.

Эти нити за счет покрытия их поверхности слоем из легких металлов по мере нагрева создают эмиссию электронов. Внешнего напряжения питания пока недостаточно для создания электронного потока. Во время движения эти свободные частицы выбивают электроны с внешних орбит атомов инертного газа, которым заполнена колба. Они включаются в общее движение.

На следующем этапе в результате совместной работы стартера и электромагнитного дросселя создаются условия для увеличения силы тока и образования тлеющего разряда газа. Теперь наступает время организации светового потока.

Движущиеся частицы обладают достаточной кинетической энергией, необходимой для перевода электронов атомов ртути, входящей в состав лампы в виде небольшой капли металла, на более высокую орбиту. При возвращении электрона на прежнюю орбиту высвобождается энергия в виде света ультрафиолетового спектра. Преобразование в видимый свет происходит в слое люминофора, покрывающего внутреннюю поверхность колбы.

Преобразование в видимый свет

Для чего нужен дроссель в люминесцентной лампе

Это устройство работает с момента старта и на протяжении всего процесса свечения. На разных этапах задачи, выполняемые им, различны и могут быть разделены на:

  • включение светильника в работу;
  • поддержание нормального безопасного режима.

На первом этапе используется свойство катушки индуктивности создавать импульс напряжения большой амплитуды за счет электродвижущей силы (ЭДС) самоиндукции при прекращении протекания переменного тока через ее обмотку. Амплитуда этого импульса напрямую зависит от величины индуктивности. Он, суммируясь с переменным сетевым напряжением, позволяет кратковременно создать между электродами напряжение, достаточное для разряда в лампе.

При созданном постоянном свечении дроссель выполняет роль ограничивающего электромагнитного балласта для цепи дуги с низким сопротивлением. Его цель теперь – стабилизация работы для исключения дугового замыкания. При этом используется высокое индуктивное сопротивление обмотки для переменного тока.

Принцип работы стартера люминесцентной лампы

Устройство предназначено для управления процессом запуска светильника в работу. При первоначальном подключении сетевого напряжения оно полностью прикладывается к двум электродам стартера, между которыми существует небольшой промежуток. Между ними возникает тлеющий разряд, в котором температура увеличивается.

Один из контактов, выполненный из биметалла, имеет возможность под действием температуры изменять свои размеры, изгибаться. В этой паре он выполняет роль подвижного элемента. Возрастание температуры приводит к быстрому замыканию электродов между собой. По цепи начинает протекать ток, это приводит к понижению температуры.

Через небольшой промежуток времени происходит разрыв цепи, что является командой для вступления в работу ЭДС самоиндукции дросселя. Последующий процесс был описан выше. Стартер понадобится только на этапе следующего включения.

Стартер на схеме лампы

Варианты исполнения

Существует большое разнообразие электролюминесцентных ламп, но все они могут иметь различие по:

  • форме исполнения;
  • виду балласта;
  • внутреннему давлению.

Форма исполнения может быть как у обычных люминесцентных ламп – линейная трубка либо трубка в виде латинской буквы U. К ним добавились компактные варианты, выполненные под привычный цоколь с использованием различных спиральных колб.

Балласт является приспособлением, стабилизирующим работу изделия. Электронный и электромагнитный виды являются самыми распространенными схемами включения.

Внутреннее давление определяет область использования изделий. В бытовых целях или общественных местах нашли применение лампы низкого давления или энергосберегающие образцы. В промышленных помещениях или местах с пониженными требованиями к цветопередаче используют экземпляры высокого давления.

Для оценки способности освещения применяют показатель мощности лампы и ее светоотдачи. Можно привести еще много различных параметров классификации и вариантов исполнения, но их количество постоянно увеличивается.

устройство, праметры, схема, плюсы и минусы

Современные люминесцентные лампы (ЛЛ) прекрасно справляются с освещением жилых, рабочих и технических помещений большой площади и позволяют снизить общее потребление электричества на 50-83%, уменьшив таким способом счета за коммунальные услуги.

В этой статье рассмотрим рабочие характеристики ЛЛ, их устройство, разберем основные преимущества и недостатки в сравнении с другими типами осветительных приборов. В дополнение приведем тематические фото и схемы, а также видеоролики о принципе работы лампочек люминесцентного типа и особенностях их применения.

Содержание статьи:

Принцип работы и устройство ЛЛ

Люминесцентный прибор представляет собой газозарядный источник света, где в ртутных парах электрический разряд создает интенсивное ультрафиолетовое излучение.

Компактные модули люминесцентного типа имеют стандартный цоколь, благодаря которому становятся удобной заменой ярких, но более энергозатратных ламп накаливания.

Как работает люминесцентная лампочка?

В видимый человеческому глазу свет его преображает специальный состав под названием люминофор, состоящий из галофосфата кальция, смешанного с дополнительными элементами.

После подключения к центральной электросети люминесцентной лампы, внутри стеклянной колбы требуется поддерживать так называемый тлеющий разряд.

Он дает возможность обеспечить свечение люминофорного слоя в постоянном режиме и даже в период кратковременного отключения центрального электропитания.

Люминесцентные лампы разных формЛюминесцентные лампы разных форм

Раньше классическая лампа люминесцентного типа имела вид запаянной с двух сторон трубки, внутри которой находятся пары ртути. Сейчас приборы выпускаются в более разнообразных формах и конфигурациях

Конструкционные особенности прибора

Традиционная лампа люминесцентного типа — это стеклянный цилиндр с внешним диаметром 12, 16, 26 и 38 мм, обычно представленный как:

  • прямая удлиненная трубка;
  • изогнутый U-образный модуль;
  • кольцо;
  • сложная фигура.

В торцевые края герметично впаяны ножки. На их внутренней стороне размещены вольфрамовые электроды, конструктивно напоминающие биспиральные тела накала, встроенные в лампочки «Ильича».

Ламповая триспиральЛамповая триспираль

В отдельных типах люминесцентных ламп используются более прогрессивные триспирали, представляющие собой закрученную биспираль. Оснащенные ими приборы имеют повышенный уровень КПД и более низкий порог теплопотери, существенно поднимающие общую эффективность светопотока

С наружной части электродные элементы подпаяны к металлическим штырькам металлического , на которые подается рабочее напряжение.

U-подобные и прямые приборы обычно оснащены цоколями G5 и G13, где буквенная кодировка означает штырьковый тип цокольного элемента, а цифровая показывает, на каком расстоянии друг от друга располагаются рабочие элементы.

Электропроводная среда, располагающаяся внутри стеклянной колбы, обладает отрицательным сопротивлением. Когда между двумя противоположными электродами возникает рост тока, требующий ограничения, оно проявляется и снижает рабочее напряжение.

В схему цепи включения обычной люминесцентной лампочки входит или балластник. Он отвечает за создание высокоуровневого импульсного напряжения, необходимого для корректной активации лампы.

Схема устройства люминесцентной лампыСхема устройства люминесцентной лампы

Рисунок показывает внутреннее обустройство лампы люминесцентного типа и наглядно объясняет базовый принцип работы ее основных составных элементов

Помимо этой детали, ЭмПРА комплектуется . Он представляет собой элемент тлеющего разряда, внутри которого располагаются два электрода, окруженные средой инертного газа.

Один из них состоит из биметаллической пластины. В спящем режиме оба электрода находятся в разомкнутом состоянии.

Распространенные виды таких лампочек

Первичная классификация изделий на люминесцентной основе производится по уровню базового давления. Приборы высокого давления используются для осветительных установок большой мощности и наружного уличного освещения.

Лампы низкого давления применяются в быту для подачи света в производственные, технические и жилые помещения различного назначения.

Вид #1 — модули высокого давления

Устройства высокого давления вырабатывают насыщенный светопоток хорошей плотности. Внутренняя поверхность колбового элемента имеет специальное люминофорное покрытие из фторогерманата или арсената магния.

Рабочая мощность таких люминесцентных ламп колеблется в диапазоне 50-2000 Вт.

Люминесцентная лампа высокого давленияЛюминесцентная лампа высокого давления

Ртутные модули высокого давления для корректной работы нуждаются в 220 ваттном номинальном сетевом напряжении. Коэффициент их пульсации обычно составляет от 61 до 74%

Полный розжиг осветительного модуля происходит в течение 3 секунд. Срок службы 80-125-ваттных изделий составляет около 6 000 ч, а лампы от 400 Вт и более могут проработать до 15 000 ч при беспрекословном соблюдении правил эксплуатации, установленных изготовителем.

Вид #2 — изделия низкого давления

ЛЛ низкого давления применяется для обеспечения светопотоком жилых, технических и производственных помещений.

Конструкционно прибор является трубкой из прочного стекла, содержащей внутри аргон под давлением 400 Па и в небольшом количестве ртуть либо амальгаму. На рынке предлагается в самых разнообразных модификациях и оснащается двумя электродными элементами.

Компактная люминесцентная лампаКомпактная люминесцентная лампа

Самая низкая температура, которую могут переносить ЛЛ низкого давления, составляет -15 °C. Поэтому для использования на открытых площадках эти источники света считаются неактуальными

Стеклянная колба может иметь самый разный диаметр. Уровень светоотдачи варьируется в зависимости от мощности самого устройства. Для его корректной работы требуется стартер дроссельного типа. Средний срок службы составляет 10 000 часов.

Особенности компактных ЛЛ

ЛЛ компактного типа – это изделия-гибриды, соединяющие в себе некоторые специфические отличительные черты ламп накаливания и характеристики люминесцентов.

Благодаря прогрессивным технологиям и расширившимся инновационным возможностям, имеют небольшой диаметр и некрупные габариты, свойственные лампочкам «Ильича», а также высокий уровень энергоэффективности, характерный для линейки приборов ЛЛ.

Разновидности компактных люминесцентных лампРазновидности компактных люминесцентных ламп

ЛЛ компактного типа выпускаются под традиционные цоколи E27, E14, E40 и очень активно вытесняют с рынка классические лампы накаливания за счет обеспечения качественного света при существенно меньшем потреблении электроэнергии

КЛЛ в большинстве случаев оснащаются электронным дросселем и могут использоваться в осветительных приборах специфического типа. Также применяются для замены в новых и раритетных светильниках простых и привычных ламп накаливания.

При всех достоинствах у компактных модулей есть такие специфические недостатки, как:

  • стробоскопический эффект или мерцание – основные противопоказания здесь касаются эпилептиков и людей с различными заболеваниями глаз;
  • выраженный шумовой эффект – в процессе пролонгированного применения появляется акустический фон, способный вызвать определенный дискомфорт у человека, находящегося в помещении;
  • запах – в некоторых случаях изделия издают едкие, неприятные ароматы, раздражающие обоняние.

Последняя позиция чаще наблюдается у безымянных поделок китайского происхождения, а первыми двумя часто страдают даже брендовые приборы, изготовленные согласно всем правилам и современным требованиям. Рейтинг лучших производителей КЛЛ мы привели .

Базовый спектр цветовых температур

Цвет свечения – один из самых важных параметров, напрямую зависящий от состава люминофора, преображающего ультрафиолетовое излучение в свет.

Сегодня к наиболее распространенным относятся 7 определений оттенков потока, вырабатываемого люминесцентными лампами:

  • ЛЕБ – естественный белый с заметным холодным оттенком;
  • ЛДЦ – натуральный дневной с улучшенным качеством цветопередачи;
  • ЛТБ – теплый белый;
  • ЛД – традиционный дневной белый;
  • ЛБ – классический белый;
  • ЛЕЦ – естественный с максимально качественной передачей оттенков;
  • ЛХБ – простой холодный белый.

Для жилых помещений, где человек проводит много времени, подходят оттенки теплой гаммы или натуральные дневные лампы с повышенным уровнем цветопередачи.

Белые и дневные тона, как правило, присутствуют в офисных, рабочих, промышленных помещениях, кабинетах и аудиториях. Они способствуют концентрации внимания, повышают мозговую активность и улучшают общую обучаемость и производительность труда.

Самые холодные оттенки применяются в медицинских учреждениях, лабораториях, больницах и технических помещениях. Они придают предметам дополнительную четкость и усиливают остроту зрения.

Цветные люминесцентные лампыЦветные люминесцентные лампы

Люминесценты для мясных витрин продовольственных магазинов отличаются специально подобранным спектром излучения розового цвета. Он подчеркивает естественные оттенки продукции, делая ее более привлекательной в глазах покупателей

Цветовые компоненты, добавленные в люминофор, позволяют получать розовый, голубой, зеленый и другие необычные ламповые оттенки.

Такие приборы используются в дизайнерских, рекламных и коммерческих целях. С их помощью создают оригинальное свечение, необходимое в конкретном отдельно взятом случае.

Больше информации о цветовой температуре света, особенностях восприятия цвета человеком и нюансах выбора мы писали .

Сильные и слабые стороны устройств

Как у любых технических приспособлений, предназначенных для освещения бытовых и рабочих помещений, у люминесцентных ламп имеются свои слабые и сильные стороны.

На основании этой информации можно определить, где разумнее их использовать, а в каких случаях стоит отдать предпочтение источникам света иного плана.

Положительные стороны ламп

Основным преимуществом люминесцентных изделий считается повышенная светоотдача и хороший уровень КПД. Они обеспечивают помещение освещением, не раздражающим глаз, и демонстрируют нормальную выносливость даже в условиях интенсивной эксплуатации.

Лампы накаливания и компактный люминесцентный модульЛампы накаливания и компактный люминесцентный модуль

Модуль примерно в 5 раз превышает базовую мощность обычной лампочки «Ильича». А 20-ваттный люминесцент дает световой поток, равный тому, что обеспечивает лампа накаливания в 100 Ватт

Разнообразные температуры световых оттенков, приближенные по гамме к естественному солнечному свету, позволяют подобрать подходящий осветительный прибор под различные цели и для помещений любого назначения.

Поток света, выдаваемый модулем, получается не направленным, а рассеянным. Спокойное, приятное глазу сияние исходит не только от вольфрамовой нити, располагающейся внутри, но и от всей наружной поверхности колбы.

Это позволяет использовать люминесцентные источники как для создания общего фонового освещения, так и для организации зонального света.

Люминесцентное освещениеЛюминесцентное освещение

Для применения в местах, где освещение включается автоматически, согласно сигналам датчиков движения, люминесценты не подходят. Они ограничены по допустимому количеству включений за определенный временной период и при слишком частой активации могут выйти из строя

Продолжительность службы люминесцентных изделий варьируется в зависимости от модели и доходит до 20 000 часов или до 5 лет.

Однако, покупателю следует знать, что этот ресурс лампа вырабатывает только при соблюдении таких условий, как:

  • наличие достаточного объема качественного электропитания без скачков и перепадов;
  • качественный ;
  • определенное количество активаций, обычно, не более 2000 за первые 2 года использования, что составляет всего 5 включений в день.

Нарушение этих базовых условий существенно ухудшит эффективность осветительного прибора, и значительно укоротит срок его жизни.

Люминесцентное освещение в теплицеЛюминесцентное освещение в теплице

Модули можно использовать для освещения теплиц. Они обеспечивают естественный свет, максимально приближенный к солнечному, не потребляют много электропитания и проявляют хорошую стойкость к перепадам напряжения, характерным для загородных энергоподающих сетей

Уровень энергопотребления у люминесцентов почти в 5 раз ниже, чем у традиционных изделий, поэтому их можно отнести к источникам света.

С их помощью удастся эффективно осветить большое помещение, не расходуя при этом больших денег на коммунальные платежи.

Рабочая температура на поверхности колбы не превышает 50 градусов. Это дает возможность эксплуатировать лампу в помещениях, где к пожарной безопасности предъявляются повышенные требования.

Основные недостатки модулей

Первым большим минусом изделий является излишняя чувствительность к температурным перепадам. Они сильно реагируют на движение ртутного столбика и могут перестать работать при похолодании ниже -20 °C.

Жара, превышающая +50 °C, далеко не лучшим образом сказывается на функционировании и серьезно ограничивает спектр использования этих источников света.

Влаговоспримчивость тоже не относится к плюсам и не позволяет широко применять изделия в ванных комнатах и санитарных помещениях.

Люминесцентные лампыЛюминесцентные лампы

Со временем люминофор в ламповых колбах деградирует и спектр излучения изменяется. Параллельно падает уровень светоотдачи прибора и заметно снижается КПД

Иногда к недостаткам причисляется и сам светопоток, имеющий линейчатый, неравномерный спектр, искажающий естественные оттенки находящихся в комнате предметов.

Не все ощущают это визуально, но для тех, кто улавливает этот минус слишком явственно, продаются лампы с люминофором, приближенным к сплошному, более натуральному спектральному цвету. Правда, их светоотдача существенно меньше.

Случаются ситуации, когда люминесценты мерцают с удвоенной частотой питающей сети. Проблема эта решаема некоторым усовершенствованием прибора, в частности, применением с подходящим уровнем емкости сглаживающего конденсатора выпрямленного тока на входе инвертора.

Но то, что производители пытаются сэкономить и не комплектуют приборы конденсаторами необходимой емкости, несколько огорчает.

Вкручивание люминесцентной лампы в патронВкручивание люминесцентной лампы в патрон

Бытовые ЛЛ модули лучше всего себя чувствуют, когда температура окружающего воздуха держится в диапазоне от +5 до +35 ˚С. Когда градусник демонстрирует меньшие показатели, пуск устройства существенно затрудняется, а время эксплуатации заметно сокращается

Потребность в дополнительном пусковом устройстве тоже немного снижает популярность ламп. Им обязательно требуется либо чрезмерно шумный и довольно громоздкий дроссель со стартером низкой надежности или более прогрессивный ЭПРА, имеющий функцию корректировки мощности, но при этом стоящий солидных денег.

Еще одно уязвимое место люминесцентов – высокая чувствительность к включению. Во время непосредственной активации лампы на электродах выгорает и осыпается особый состав, который обеспечивает стабильность разряда и защищает внутреннюю вольфрамовую нить от перегрева.

Постоянное включение существенно снижает срок службы прибора. Кроме того, появляется заметное глазу, раздражающее мерцание, а края ламповой колбы темнеют и теряют эстетичность.

Химическая угроза здоровью

Одним из основных недостатков люминесцентных источников света является химическая опасность. В ламповой колбе содержится высокотоксичная ртуть, причем ее количество колеблется от 1 до 70 мг.

Пары этого вещества могут нанести вред здоровью людей, постоянно находящихся в помещениях, освещаемых приборами ЛЛ типа.

Утилизация токсичных элементов люминесцентных лампУтилизация токсичных элементов люминесцентных ламп

Целостность отработавшей лампы нельзя нарушать, иначе токсичная ртуть попадет во внешнюю среду. За несанкционированную утилизацию предусмотрен штраф, поэтому лучше передать изделие в центр, занимающийся переработкой элементов, опасных для природы и человека

Когда модуль выходит из строя, его ни в коем случае нельзя разбивать или отправлять в обыкновенную урну. Его необходимо и правилам, четко описанным в действующем законодательстве.

Например, отвозить на полигоны, где от населения принимают токсичные материалы для их корректного уничтожения или переработки.

Сравнение с другими источниками света

Изделия ЛЛ-типа существенно отличаются как от устаревающих ламп накаливания, так и от прогрессивных светодиодных.

По сравнению с первыми они потребляют в 5 раз меньше электроэнергии, обеспечивая при этом такой же уровень насыщенности светопотока. Зато LED-приборам они несколько уступают по мощности в сочетании с энергопотреблением.

Сравнительная таблица ламп разных видовСравнительная таблица ламп разных видов

Таблица наглядно в цифрах показывает, насколько выгоднее использовать вместо традиционных лампочек Эдисона более современные источники качественного освещения

Правда, лампа накаливания весь период работы горит с одинаковой интенсивностью, тогда как люминесценты теряют часть насыщенности из-за выгорания внутреннего слоя, отражающего ультрафиолет.

LED-изделия в процессе эксплуатации приобретают некоторую тусклость благодаря деградации рабочих диодов. А в отдельных моделях есть возможность регулировки яркости освещения при помощи диммера.

В лампах накаливания или люминесцентах такая функция не предусмотрена. Но этот удобный режим в LED-приборах не бесплатен и за него придется отдать дополнительную сумму.

По уровню конструкционной хрупкости лампы накаливания и люминесценты схожи, так как имеют стеклянную колбу. Лед-модули в этом плане более устойчивы к ударам и механическим повреждениям. Да и отсутствие внутри каких-либо вредных и токсичных элементов делает их значительно привлекательнее для эксплуатации в домашних условиях.

Осветительные лампы разных видовОсветительные лампы разных видов

Самые высокие расходы за весь эксплуатационный период влечет за собой использование ламп накаливания. Люминесценты расходуют энергию в разумных пределах, а светодиоды дают возможность снизить затраты до самых минимальных показателей

Что касается финансовой стороны, то изначально меньше других стоит лампочка накаливания. Однако, учитывая ее рабочий ресурс всего в 1 000 часов, это вряд ли можно считать ярко выраженным достоинством.

Базовая цена люминесцентов выше, однако, и служат они значительно дольше. Как говорят солидные производители, их хватает на 10 000-15 000 часов в том случае, если количество ежедневных активаций не превышает 5-6 раз.

Светодиодные модули могут похвастаться еще лучшими показателями, но и заплатить за это удовольствие придется намного больше, а это не во всех случаях целесообразно. Хотя тенденция замены одних источников света другими, прослеживается повсеместно. О необходимости замены люминесцентных лампочек светодиодными и порядке выполнения этой работы .

Выводы и полезное видео по теме

По какому принципу работают люминесценты. Подробное объяснение всех нюансов функционирования экономичных и энергоэффективных приборов для освещения:

В чем заключаются основные отличия люминесцентных элементов от простых и традиционных ламп накаливания. Сравнение мощности, светопотока и энергопотребления двух современных осветительных изделий:

Что собой представляют компактные энергосберегающие лампочки люминесцентного типа. Как они работают, сколько ватт потребляют и для каких целей используются:

Прибор люминесцентного типа – это практичный аналог классической лампы накаливания. С его помощью можно обеспечить качественным светопотоком помещение любых габаритов, снизив при этом энергопотребление. Прослужит он долго и не доставит владельцам никаких существенных хлопот.

Потом, когда лампы отработают свой срок, их понадобится утилизировать, а взамен купить новые, более прогрессивные модули.

А какой тип лампочек предпочитаете вы и что думаете о лампочках-люминесцентах? Поделитесь с другими пользователями своим мнением, расскажите, в чем вы видите основные плюсы ЛЛ, а что, лично для вас, является существенным недостатком этих приборов.

Если вы владеете хорошими теоретическими знаниями по теме вышеизложенной статьи и хотите дополнить наш материал полезными нюансами, пишите, пожалуйста, свои комментарии в блоке ниже.

Устройство люминесцентного светильника


Люминесцентные светильники (светильники с люминесцентными лампами) бывают совершенно разнообразные. Кроме дизайна, они отличаются так же формой, количеством, размером, типом используемых люминесцентных ламп, а также электронной начинкой. И это далеко не весь список отличий между светильниками, которые в настоящее время можно купить в любом специализированном магазине. Но при всем при этом, их объединяет общий принцип работы, схема подключения и общее устройство.


Рассмотрим устройство светильника под трубчатые люминесцентные лампы T8, цоколь G13, это один из самых распространенных видов люминесцентных светильников, который вы наверняка встречали в повседневной жизни.

В качестве примера, возьмем светильник накладной люминесцентный 2х36 Вт «Айсберг» со степенью защиты ip65.

 



 

 

Устройство люминесцентного светильника

 

Конструктивно люминесцентный светильник состоит из:

 

1. Пластикового корпуса.

Который закрывает и защищает все элементы электрической схемы, а также несет на себе крепежные элементы как для монтажа светильника на стену или потолок, так и для сборки всех составляющих осветительного прибора в единое целое.


2. Металлической монтажной панели – основания.

На ней располагаются все электронные составляющие, необходимые для работы светильника, а также фурнитура для установки люминесцентных ламп.

3. Светопрозрачного рассеивателя.

Который создает более комфортное для нашего зрения освещение, так как равномерно распределяет световой поток люминесцентных ламп.

Кроме этих основных компонентов, из которых состоит светильник, в комплекте поставки обычно присутствуют:

крепежные элементы для установки люминесцентного светильника на стены или потолок.

— Фиксаторы, соединяющие светопрозрачный рассеиватель с корпусом. Позволяющие достаточно просто получать доступ к внутренностям светильника, в первую очередь к лампам, для их замены.

— Заглушки – мембраны. Которыми закрываются неиспользуемые вводные отверстия в светильник, а также герметизируется место ввода питающего кабеля.

Обратите внимание!Люминесцентные лампы, чаще всего, не входят в комплект поставки светильника и их необходимо покупать отдельно.


Устройство электрической части люминесцентного светильника


Чтобы разобраться в устройстве электрических компонентов, входящих в схему люминесцентного светильника, необходимо понимать принцип работы люминесцентных ламп.  

Обычно, люминесцентная лампа представляет собой трубку, заполненную инертным газом с парами ртути. Внутренняя поверхность лампы покрыта специальным веществом – люминофором. По краям трубки установлены электроды, между которыми, при включении электричества, образуется дуговой разряд, при этом, при прохождении электрического тока внутри лампы, образуется ультрафиолетовое (УФ) излучение, которое и воздействует на люминофор, вызывая его свечение.

Как вы понимаете, при таком сложном принципе действия, люминесцентная лампа не сможет полноценно работать при простом подключении к электрической сети. Более подробно причины этого, мы рассмотрим в одном из следующих материалах, всецелом посвященном люминесцентным лампам.

Сейчас же стоит отметить одно, для полноценной работы люминесцентых ламп в осветительных приборах, применяются специальные пускорегулирующие аппараты (ПРА) или по-другому балласты. Наиболее распространены электромагнитные балласты/пускорегулирующие аппараты (ЭмПРА) и электронные балласты/пускорегулирующие аппараты (ЭПРА).

 


В нашем примере, люминесцентном светильнике «Айсберг», использован электронный балласт, который установлен на монтажной панели – основании. Так же к пускорегулирующему аппарату подведены все необходимые провода. К одной из сторон балласта подходят провода идущие до гнезд подключения ламп, с другой стороны до клемм, к которым в подключается питающий кабель. На балласте присутствует схема подключения, согласно которой в любой момент можно восстановить соединение, или заменить неисправный ПРА, безошибочно подключив все провода к соответствующим клеммам.

Общую схему подключения люминесцентных светильников, которая разумеется полностью подходит для данного осветительного прибора Айсберг 2х36Вт, мы уже описывали в нашей статье «Схема подключения люминесцентного светильника».

Теперь, в общих чертах познакомившись с устройством люминесцентного светильника, можно переходить к его установке. В следующем материале «Установка люминесцентного светильника», мы подробно описываем весь процесс сборки и установки светильника с люминесцентными лампами. Для лучшего понимания устройства люминесцентного светильника, обязательно ознакомьтесь с этой статьей. Там довольно подробно оказаны все компоненты светильника, их взаимодействие и многое другое.

Все вопросы, которые у вас возникли после прочтения материала, задавайте в комментариях к статье, постараемся помочь!

Устройство и схема включения люминесцентной лампы

Люминесцентная лампа (ЛЛ) представляет собой источник света, создаваемый электрическим разрядом в среде паров ртути и инертного газа. При этом возникает невидимое ультрафиолетовое свечение, действующее на слой люминофора, нанесенный изнутри на стеклянную колбу. Типовая схема включения люминесцентной лампы представляет собой пускорегулирующее устройство с электромагнитным балластом (ЭмПРА).

схема включения люминесцентной лампы

Устройство и описание ЛЛ

Колба большинства ламп всегда имела цилиндрическую форму, но сейчас она может быть в виде сложной фигуры. На торцах в нее вмонтированы электроды, конструктивно похожие на некоторые спирали ламп накаливания, изготовленные из вольфрама. Они подпаяны к расположенным снаружи штырькам, на которые подается напряжение.

Газовая электропроводная среда внутри ЛЛ имеет отрицательное сопротивление. Оно проявляется в снижении напряжения между противоположными электродами при росте тока, который необходимо ограничивать. Схема включения люминесцентной лампы содержит балластник (дроссель), основное назначение которого — создание большого импульса напряжения для ее зажигания. Кроме него в ЭмПРА входит стартер — лампа тлеющего разряда с размещенными внутри нее двумя электродами в среде инертного газа. Один из них изготовлен из биметаллической пластины. В исходном состоянии электроды разомкнуты.

стартерная схема включения люминесцентных ламп

Принцип работы ЛЛ

Стартерная схема включения люминесцентных ламп работает следующим образом.

  1. На схему подается напряжение, но сначала через ЛЛ ток не идет из-за большого сопротивления среды. По спиралям катодов ток проходит и разогревает их. Кроме того, он поступает также на стартер, для которого подаваемого напряжения достаточно, чтобы внутри возник тлеющий разряд.
  2. При разогреве контактов пускателя от проходящего тока биметаллическая пластина замыкается. После этого проводником становится металл, и разряд прекращается.
  3. Биметаллический электрод остывает и размыкает контакт. При этом дроссель выдает импульс высокого напряжения из-за самоиндукции, и ЛЛ зажигается.
  4. Через лампу идет ток, который затем в 2 раза уменьшается, поскольку напряжение на дросселе падает. Его недостаточно для повторного запуска стартера, контакты которого остаются разомкнутыми при горении ЛЛ.

Схема включения двух ламп люминесцентных, установленных в одном светильнике, предусматривает использование для них одного общего дросселя. Они подключаются последовательно, но на каждой лампе установлено по одному параллельному стартеру.

схема включения двух ламп люминесцентных

Недостатком светильника является отключение второй лампы, если одна из них вышла из строя.

Важно! С люминесцентными лампами необходимо использовать специальные выключатели. У бюджетных устройств стартовые токи большие, и контакты могут залипать.

Бездроссельное включение люминесцентных ламп: схемы

Несмотря на дешевизну, электромагнитные балласты имеют недостатки. Они и явились причиной создания электронных схем зажигания (ЭПРА).

Как запускается ЛЛ с ЭПРА

Бездроссельное включение люминесцентных ламп производится через электронный блок, в котором формируется последовательное изменение напряжения при их зажигании.

бездроссельное включение люминесцентных ламп

Достоинства электронной схемы запуска:

  • возможность пуска с любой временной задержкой;
  • не нужны массивный электромагнитный дроссель и стартер;
  • отсутствие гудения и моргания ламп;
  • высокая светоотдача;
  • легкость и компактность устройства;
  • больший срок эксплуатации.

Современные электронные балласты обладают компактными размерами и низким потреблением энергии. Их называют драйверами, помещая в цоколь малогабаритной лампы. Бездроссельное включение люминесцентных ламп позволяет использовать обычные стандартные патроны.

Система ЭПРА преобразует сетевое переменное напряжение 220 В в высокочастотное. Сначала разогреваются электроды ЛЛ, а затем подается высокое напряжение. При высокой частоте повышается КПД и полностью исключается мерцание. Схема включения люминесцентной лампы может обеспечивать холодный запуск или с плавным увеличением яркости. В первом случае срок эксплуатации электродов существенно сокращается.

Повышенное напряжение в электронной схеме создается через колебательный контур, приводящий к резонансу и зажиганию лампы. Запуск совершается намного легче, чем в классической схеме с электромагнитным дросселем. Затем также снижается напряжение до необходимого значения удерживания разряда.

бесстартерная схема включения люминесцентных ламп

Выпрямление напряжения осуществляется диодным мостом, после чего оно сглаживается параллельно подключенным конденсатором С1. После подключения к сети сразу заряжается конденсатор С4 и пробивается динистор. Запускается полумостовой генератор на трансформаторе TR1 и транзисторах Т1 и Т2. При достижении частоты 45-50 кГц создается резонанс c помощью последовательного контура С2, С3, L1, подключенного к электродам, и лампа зажигается. В этой схеме также есть дроссель, но с очень малыми габаритами, позволяющими поместить его в цоколь лампы.

ЭПРА имеет автоматическую подстройку под ЛЛ по мере изменения характеристик. Через некоторое время для изношенной лампы требуется повышение напряжения для зажигания. В схеме ЭмПРА она просто не запустится, а электронный балласт подстраивается под изменение характеристик и тем самым позволяет эксплуатировать устройство в благоприятных режимах.

Преимущества современных ЭПРА следующие:

  • плавное включение;
  • экономичность работы;
  • сохранение электродов;
  • исключение мерцания;
  • работоспособность при низкой температуре;
  • компактность;
  • долговечность.

Недостатками являются более высокая стоимость и сложная схема зажигания.

Применение умножителей напряжения

Способ дает возможность включать ЛЛ без электромагнитного балласта, но применяется преимущественно для продления жизни лампам. Схема включения сгоревших люминесцентных ламп позволяет им проработать еще некоторое время, если мощность не превышает 20-40 Вт. При этом нити накала могут быть как целыми, так и перегоревшими. В обоих случаях выводы каждой нити накала нужно закоротить.

схема включения сгоревших люминесцентных ламп

После выпрямления напряжение удваивается, и лампа загорается моментально. Конденсаторы С1, С2 выбираются под рабочее напряжение 600 В. Их недостаток заключается в больших габаритах. Конденсаторы С3, С4 устанавливают слюдяные на 1000 В.

ЛЛ не предназначена для питания постоянным током. Со временем ртуть скапливается около одного из электродов, и свечение ослабевает. Для его восстановления изменяют полярность, перевернув лампу. Можно установить переключатель, чтобы ее не снимать.

Бесстартерная схема включения люминесцентных ламп

Схема со стартером требует долгого разогрева лампы. Кроме того, его иногда приходится менять. В связи с этим существует другая схема с подогревом электродов через вторичные обмотки трансформатора, который также выполняет функцию балласта.

бесстартерная схема включения люминесцентных ламп

Когда производится включение люминесцентных ламп без стартера, на них должно быть обозначение RS (быстрый старт). Светильник со стартерным запуском здесь не подойдет, поскольку его электроды дольше разогреваются, и спирали быстро перегорят.

Как включить сгоревшую лампу?

Если спирали вышли из строя, ЛЛ можно зажечь без умножителя напряжения, используя обычную схему ЭмПРА. Схема включения перегоревшей люминесцентной лампы незначительно изменяется по сравнению с обычной. Для этого к стартеру последовательно подключают конденсатор, а штырьки электродов замыкают накоротко. После такой небольшой переделки лампа проработает еще какое-то время.

Заключение

Конструкция и схема включения люминесцентной лампы постоянно совершенствуется в сторону экономичности, уменьшения размеров и повышения срока службы. Важно правильно ее эксплуатировать, разбираться во всем многообразии выпускаемых типов и знать эффективные способы подключения.

Принцип работы люминесцентной лампы

Содержание:

  1. Как появились люминесцентные лампы
  2. Особенности конструкции
  3. Как работает устройство с люминофором
  4. Дроссель: назначение и устройство
  5. Функции стартера в схеме подключения
  6. Подключение через электронный балласт – ЭПРА
  7. Видео

Среди газоразрядных осветительных приборов широкую известность получили люминесцентные лампы. Они изготавливаются в форме стеклянных цилиндров, на внутреннюю поверхность которых нанесен слой люминофора. Принцип работы люминесцентной лампы состоит в появлении внутри колбы газового разряда в газовой среде, смешанной с разреженными ртутными парами. Далее под влиянием ультрафиолетового излучения начинает светиться люминофор, являющийся источником основного светового потока.


Как появились люминесцентные лампы

Прежде чем рассматривать вопрос, как работает люминесцентная лампа, необходимо хотя бы в общих чертах изучить историю ее появления. Впервые эффект свечения наблюдал известный русский ученый М.В. Ломоносов еще в середине 18 века. В эксперименте был использован стеклянный шар, наполненный водородом. После того как к нему был приложен электрический ток, шар начал испускать видимый свет. Однако это устройство не рассматривалось в качестве источника освещения, а полноценная работа в этой области началась уже в 19 веке.

В 1856 году немецкому стеклодуву Гейслеру удалось откачать воздух из стеклянной колбы с помощью изобретенного им же вакуумного насоса. Используя высоковольтную катушку, он вызвал внутри колбы свечение зеленоватого цвета. Данное устройство получило название трубки Гейслера. Немного позднее, в 1859 году Александр Беккерель осуществил покрытие трубок изнутри веществами, обладающими люминесцирующими свойствами.

Именно с этого момента началось развитие технологий данного типа освещения. Проводимые работы так и остались экспериментами, но сама идея получила дальнейшее развитие на практике.

Первую демонстрацию трубок Гейслера в 1891 году провел американский ученый Никола Тесла. Он на практике показал возможность светиться у трубок с различными покрытиями под действием высокочастотного электрического поля. В этом же году Тесла получил патент на аргоновые газоразрядные лампы, спроектированные для систем освещения.

Первые лампы для светильника на основе ртути удалось получить американцу Питеру Хьюитту. Ртутные пары светились мягким сине-зеленым светом, а по техническим характеристикам эти устройства превосходили лампы Эдисона. Однако полученные цветовые оттенки не нашли широкого применения в искусственном освещении.

Ровное белое свечение было получено в 1926 году немецким изобретателем Эдмундом Гермером. На внутреннюю часть колбы наносился флуоресцентный порошок – люминофор, после чего внутри нее увеличивалось давление. Свет от такого источника был гораздо ярче по сравнению с лампами накаливания. Конструкция этих устройств считается максимально близкой к современным люминесцентным лампам.

С 1934 года компания General Electric приобрела патент и приступила к выпуску осветительных приборов нового типа. Они сразу же приобрели широкую популярность и стали повсеместно использоваться в искусственном освещении вместо обычных лампочек.


Особенности конструкции

Колбы всех ламп, независимо от конфигурации, всегда имеют цилиндрическую форму. Их наружный диаметр составляет 12, 16, 26 и 38 мм. Чаще всего источники света изготавливаются прямыми, но некоторые из них сформированы в кольцо, букву U, спираль и т.д.

Устройство люминесцентной лампы предполагает герметичное соединение торцов со стеклянными ножками, внутри которых установлены зажигательные электроды. Они изготавливаются из вольфрама и закручиваются в спираль, так же как у обычных ламп накаливания. Снаружи электроды соединяются со штырьками цоколя, выполняющими функцию контактов. Устройства прямой и U-образной формы для светильника оборудованы двумя видами цоколей – G5 и G13. В указанной маркировке цифры означают размер зазора между штыревыми контактами в миллиметрах.

Рассматривая вопрос, как устроена лампа, следует помнить, что в одну из стеклянных ножек впаян специальный штенгель, через который производится откачка воздуха изнутри колбы. После этого внутрь закачивается инертный газ с небольшим количеством ртути, примерно 30 мг. Вместо чистой ртути может использоваться амальгама, представляющая собой ее сплавы с такими металлами, как индий, висмут и другие. Вольфрамовые электроды покрываются активирующим веществом. Для этой цели используются оксиды бария, кальция или стронция. В некоторых случаях к ним добавляется торий.

Основной функцией электродов является отдача и прием ионов и электронов, обеспечивающих течение электрического тока в пространстве, где образуется разряд. Чтобы запустить процесс термоэмиссии, они разогреваются до температуры 1100-1200 градусов. Электроны начинают вылетать с поверхности активирующего вещества. В процессе эксплуатации слой этих веществ постепенно уменьшается, происходит его оседание на стеклянных стенках, что делает зависимым от этого общий срок эксплуатации люминесцентной лампы.

Максимальное ультрафиолетовое излучение ртути достигается наиболее эффективным использованием разряда. Для этого внутри колбы должна поддерживаться определенная температура. Ее диаметр определяется именно этим техническим условием.

Работоспособность лампы для светильника во многом зависит от плотности тока. Чтобы найти эту величину, необходимо значение тока разделить на площадь сечения цилиндра. Мощность лампы находится в прямой зависимости с ее длиной, поэтому просто так колбу нельзя сделать короче. В связи с этим, габариты стали уменьшаться за счет измененной конфигурации, при которой общая протяженность изделия остается прежней.


Как работает устройство с люминофором

Принцип работы люминесцентных ламп во многом зависит от ее конструкции. Газ, наполняющий внутреннее пространство колбы, создает электропроводную среду с отрицательным сопротивлением. Его проявление заключается в изменении напряжения между электродами, расположенными с противоположных сторон. Напряжение начинает снижаться при возрастании тока, который требует ограничения.

Включение в работу люминесцентной лампы для светильника осуществляется при помощи электромеханической пускорегулирующей аппаратуры – ЭмПРА. Основными компонентами данной схемы служат дроссель и стартер. Первое устройство создает импульс напряжения с большой величиной, обеспечивающий зажигание. Второй компонент представляет собой лампу тлеющего разряда, внутри которой в газовой среде размещаются два электрода. Один электрод является биметаллической пластиной, а в исходном положении они оба разомкнуты.

Запуск лампы и ее принцип действия происходят в следующей последовательности:

  • В пусковую схему изначально поступает напряжение. Изначально ток не будет проходить через лампу, поскольку он ограничивается высоким сопротивлением внутренней среды. Он попадает на спирали катодов и производит их разогрев. Одновременно ток идет на стартер и дает толчок к образованию внутри него тлеющего разряда.
  • После того как под действием тока контакты дросселя разогреются, наступает замыкание биметаллической пластины. В результате, металл становится проводником и действие разряда прекращается.
  • На следующем этапе происходит остывание биметаллического электрода, что приводит к размыканию контактов. В дросселе под влиянием самоиндукции образуется импульс высокого напряжения, дающий толчок к зажиганию лампы.
  • Ток, проходящий через лампу для светильника, постепенно уменьшается в два раза из-за падения напряжения на дросселе. Его не хватает, чтобы повторно запустить стартер с разомкнутыми контактами, но сама лампа будет продолжать свою работу.

Если в один светильник установлены сразу две светящиеся лампы, схема включения предусматривает для них общий дроссель. Подключение ламп осуществляется последовательно, однако к каждой из них параллельно подключен собственный стартер. При выходе из строя одной из ламп, вторая также отключается. В схеме включения рекомендуется устанавливать только качественные выключатели. У бюджетных моделей возможно залипание контактов под влиянием пусковых токов. Поскольку дроссель и стартер являются основными компонентами пусковой схемы, их работу следует рассмотреть более подробно.


Дроссель: назначение и устройство

Люминесцентные светильники не могут быть включены как обычные лампы, одной лишь подачей электроэнергии. Для того чтобы они заработали и начали светиться, необходимо использовать специальную пускорегулирующую аппаратуру.

Ток, протекающий через электроды требуется ограничить, поэтому в схеме используется сопротивление, называемое балластом. Его функции выполняет дроссель, в котором присутствует реактивное сопротивление, не выделяя при этом лишнего тепла. Он ограничивает ток, тем самым предупреждая его нарастание после подключения к сети.

Помимо включения, дроссель в пусковой схеме выполняет следующие функции:

  • Создает безопасный ток, достаточный для быстрого разогрева электродов в лампе при розжиге.
  • В обмотке образуется импульс высокого напряжения, благодаря которому внутри колбы возникает разряд.
  • Стабилизирует разряд при достижении током номинального значения.
  • Обеспечивает устойчивую работу лампы, несмотря на скачки и перепады сетевого напряжения.

Основным элементом дросселя служит катушка индуктивности, которая состоит из проводов, намотанных на сердечник. Именно она выполняет основную ограничивающую функцию. Вся конструкция залита компаундом – специальной массой, устойчивой к возгоранию. За счет этого обеспечивается дополнительная изоляция проводов. Катушка помещается в корпусе из термоустойчивой пластмассы.


Функции стартера в схеме подключения

Вторым компонентом, входящим в состав пускорегулирующей аппаратуры, является стартер, имеющий довольно простую конструкцию. Продукция разных производителей отличается собственными параметрами и техническими характеристиками, которые необходимо учитывать при покупке ламп. Однако устройство и принцип работы этих приборов одинаковый.

Конструкция стартера выполнена в виде стеклянного баллона, заполненного инертным газом – неоном или смесью водорода с гелием. В цоколь баллона неподвижно впаяны металлические электроды, выведенные наружу. Сама стеклянная конструкция располагается в металлическом или пластмассовом корпусе, покрытом термоизоляционным составом.

Параллельно с электродами подключен конденсатор емкостью 0,003-0,1 мкф, предназначенный для борьбы с радиопомехами, возникающими при контакте электродов. Кроме того, данный элемент принимает участие в запуске лампы и понижает величину импульса напряжения, возникающего во время размыкания электродов. Параллельное включение конденсатора существенно понижает вероятность залипания электродов под действием электрической дуги.

Основной функцией стартера является замыкание и размыкание электрической цепи, запуск механизма розжига инертного газа, закачанного в колбу. При замыкании цепи электроды самой лампы нагреваются, и весь процесс зажигания заметно облегчается. После нагрева цепь разрывается с одновременным образованием импульса повышенного напряжения, пробивающего газовый промежуток колбы. Такой принцип работы каждого стартера.

Несмотря на устойчивую и долговременную работу, схемы ЭмПРА с использованием стартера считается несовершенной. Рабочий процесс нередко сопровождается мерцанием, шумом дросселя и другими неприятными явлениями. Поэтому все современные люминесцентные лампы работают с более совершенной электронной пусковой схемой – ЭПРА.


Подключение через электронный балласт – ЭПРА

Схема ЭПРА с люминесцентными лампами функционирует на основе полупроводниковых элементов, что позволило снизить габариты и повысить качество работы этих устройств. Заметно возросли сроки эксплуатации, повысился КПД, появилась возможность плавной регулировки яркости, увеличился коэффициент мощности.

В состав схемы электронного пускорегулирующего устройства входят следующие компоненты:

  • Устройство для выпрямления тока и напряжения.
  • Фильтр электромагнитных излучений.
  • Корректор для регулировки коэффициента мощности.
  • Фильтр сглаживания напряжения.
  • Инверторная схема.
  • Элемент с функциями дросселя.

Схема ЭПРА может быть мостовой или полумостовой. Первый вариант предназначен для очень мощных ламп, а второй используют все остальные люминесцентные лампы низкого давления.

В основе работы электронного балласта лежат увеличенные частотные характеристики, обеспечивающие равномерное свечение, без каких-либо мерцаний. Современные микросхемы, используемые в конструкции, позволили существенно уменьшить размеры устройства и обеспечить равномерный подогрев электродов. Благодаря ЭПРА, люминесцентная лампа может быть автоматически подстроена под конкретные технические характеристики.


Отправить ответ

avatar
  Подписаться  
Уведомление о