Как восстановить люминесцентную лампу – как самостоятельно выяснить, почему не работает лампа дневного света и как починить своими руками

Содержание

Технология восстановления люминесцентных ламп » Полезные самоделки

Диоды VD1 и VD2 с конденсаторами С1 и С2 составляют двухполупериодный выпрямитель с удвоением напряжения, причём ёмкости конденсаторов С1 и С2 определяют значение напряжения, поступающего на электроды лампы HL1 (чем больше ёмкость, тем выше напряжение). В момент включения питания импульс напряжения на выходе этого выпрямителя достигает 600 В.

Диоды VD3 и VD4 в сочетании с конденсаторами С3 и С4 дополнительно повышают напряжение зажигания на электродах лампы HL1 примерно до 900 В. (Кроме того, конденсаторы С3 и С4 гасят радиопомехи, возникающие при ионизационном разряде внутри лампы). Столь высокое напряжение и обеспечивает надёжность зажигания лампы независимо от наличия нитей накала.

После зажигания лампы сопротивление её уменьшается, что приводит к уменьшению напряжения на электродах лампы и обеспечивает нормальную её работу при напряжении около 220 В (рабочее напряжение определяется номиналом резистора R1).
Устройство сохраняет работоспособность даже при отсутствии диодов VD3 и VD4, а так же конденсаторов С3 и С4, но при этом снижается надёжность зажигания лампы.

 

 

Рис. 1. Принципиальная схема питания ламп дневного света с перегоревшими нитями накала.

Элементы схемы сетевого питания ламп дневного света с перегоревшими нитями накала:

 

 

В схеме используются следующие радиодетали. Конденсаторы С1 и С2 — бумажные или металлобумажные типа МБГ, КБГ, КБЛП, МБГО или МБГП на напряжение 600 В; конденсаторы С3 и С4 типа КСГ, КСО, СГМ или СГО (со слюдяным диэлектриком) на рабочее напряжение не меньше 600 В. Резистор R1 проволочный, мощность которого соответствует мощности применяемой лампы. Подойдут резисторы типа ПЭ, ПЭВ, ПЭВР. Диоды Д205 и Д231 для ламп мощностью 80 и 100 Вт устанавливают на радиаторах (для теплоотвода).

Как видите, данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем. Применение подобной «без дроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала. 

 

Внимание!!!! Данный способ продления работоспособности люминесцентных ламп применим ТОЛЬКО для старых ламп (советского производства), которые вряд ли попадутся вам перегоревшими. Современные же, как и исправные старые, использованный автором способ поджига с помощью ударной ионизации при холодных нитях накала выводит из строя в течение нескольких часов работы (для ламп советского производства) до нескольких секунд. Кроме того, в последнем случае лампа, вследствие локального перегрева, может взорваться.

Ремонт светильников с люминесцентными лампами

Автор Фома Бахтин На чтение 3 мин. Просмотров 737 Опубликовано

10 марта

Наряду с высокой светоотдачей, экономичностью и большим сроком службы, люминесцентные лампы имеют и свои недостатки. Это – газоразрядные источники света, преобразующие электрическую энергию в световую после прохождение электрического тока через газ.

В отличие от обычных ламп накаливания, их эксплуатация требует обязательного наличия в схеме подключения пускорегулирующей аппаратуры – дросселя и стартера.

Поэтому, светильники с люминесцентными лампами имеют гораздо большее количество контактов и соединений, чем в светильниках с теми-же лампами накаливания, что не может не сказаться на их надёжности в эксплуатации.

«Плохой» контакт

Контакт в светильнике

Очень частой причиной неисправности люминесцентных светильников является плохой контакт. Даже при установке и подключении новых светильников нередки случаи, когда лампы или часть ламп в них не загорается именно по этой причине.

Ремонт светильника, в этом случае заключается в протяжке контактов. Обычно, это клеммы дросселя, контакты в ламподержателях (патронах ламп), патроны стартеров. Для устранения плохого контакта лампы в патроне иногда достаточно просто пошевелить лампу.

Неисправности пускорегулирующей аппаратуры (ПРА)

Стартер светильника

Наиболее частая причина неисправности пускорегулирующей аппаратуры – это негодный стартер, функция которого состоит в замыкании цепи накала электродов лампы («зажигание» лампы). С нерабочим стартером лампа попросту работать не будет – необходима его замена.

Ещё один признак неработающего стартера в светильнике – свечение (мерцание) по краям лампы. Убедиться в его неисправности можно, выкрутив стартер из патрона – свечение по краям исчезает и лампа начинает работать в нормальном режиме. Способ устранения такой неисправности тот-же:  замена стартера.

Неисправность дросселя

Признаки неисправности дросселя могут быть следующими:

Ремонт светильников с люминесцентными лампами

  • Нормальный запуск лампы, но в процессе её работы видно неравномерное заполнение разрядом пространство в колбе между электродами, а на отдельных её участках свечение в виде змейки. Необходимо проверить значение рабочего и пускового токов лампы. В случае их выхода за пределы нормы, указанные в вольтамперной характеристике, дроссель следует заменить.
  • Перегорание спирали в лампе и выход её из строя  – признак частично или полностью пробитой изоляции обмотки. Ремонт – замена дросселя.
  • Постоянное гудение дросселя – результат вибрации пластин  его магнитопровода. Устраняется заменой дросселя.

Дроссель лампы

Неисправности люминесцентных ламп

Спираль люминесцентной лампы

В процессе эксплуатации лампы, её герметичность может быть нарушена и в колбу попадает воздух. Это сопровождается появлением и исчезанием неяркого свечения.

Сгоревшая спираль (наличие чёрного налёта по краям) – визуально проверить это можно, посмотрев внутрь лампы с торцевой части колбы или-же убедиться, «прозвонив» её.

Прозвонить лампу

Обломанный или незафиксированный (болтающийся) контакт, напр. в результате неаккуратной установки (снятия) лампы или при неосторожной транспортировке. Такая лампа, по понятным причинам работать не будет и должна быть заменена.

Ремонт люминисцентной лампы


Из старого- как новое! Переборка светильника дневного света.


Радиосхемы. — Восстановление ламп дневного света

материалы в категории

Восстановление лампы дневного света с перегоревшей нитью накала

Способов восстановить лампу дневного света в интернете и литературе описано немало (и мы не исключение- смотрите материал Вечная люминесцентная лампа ), но почти во всех этих случаях оживить лампу дневного света возможно лишь когда обе нити канала исправны.
Здесь-же мы приводим пару вариантов как можно оживить лампу дневного света если одна из нитей накала оборвана.

При повторении этих схем нужно иметь в виду, что нить накаливания ЛДС, которая остается «живой”, работает с перегрузкой, поскольку перегоревшая нить накаливания шунтирована “проволочной перемычкой”. Такой форсированный режим работы лампы из-за уменьшения сопротивления цепи нитей накаливания в два раза приводит к ее быстрому износу, и она выходит из строя. Кроме того, схема «реанимации», приведенная в [2], требует дополнительной установки пусковой кнопки, поэтому при управлении ЛДС с помощью настенного выключателя возникает проблема — где же разместить эту пусковую кнопку, чтобы включать лампу, установленную на потолке?


В схеме “реанимации», которая показана на рис.1, этих недостатков нет. Как видно из рис.1, перегоревшая нить накала ЛДС шунтирована не перемычкой, а проволочным резистором, сопротивление которого равно холодному сопротивлению нити накала. Для ламп мощностью 20 и 30 Вт (ЛБК22, ЛБУЗО) это сопротивление составляет 2…3 Ом. Проволочный резистор R1 выполнен на резисторе типа ВС-0,25 10 кОм и состоит из 2-3 витков нихромового провода диаметром 0,15…0,2 мм.

В качестве резистора R1 очень удобно использовать переменный проволочный резистор типа СП5-28А номиналом 33 Ом или подобные ему, подбирая при наладке величину его сопротивления так, чтобы нить накаливания ЛДС не перегружать (при пуске она должна быть красного или розового цвета при уверенном зажигании лампы). При наладке схемы необходимо также учитывать рекомендации [1], которые обеспечивают уверенное зажигание ЛДС.


Чтобы больше приблизить работу ЛДС во время ее пуска к работе с целыми нитями накаливания, последовательно с «холодным» сопротивлением резистора R1 включают три параллельно соединенные лампочки накаливания типа МН 13,5-0,18 (с напряжением 13,5 В и током 0,18 А). Вольтамперная характеристика (ВАХ) их такая же, как и ВАХ нити накаливания ЛДС. Вместо этих трех лампочек можно использовать одну автомобильную лампу 12 В х 6 св.

Однако при «реанимации” могут быть случаи, когда добиться нормальной работы ЛДС с помощью схемы рис.1 не удается. Лампа загорается тяжело и мигает с частотой 25 Гц, несмотря на все хитрости, указанные в [1]. Это мигание не устраняется и при вынутом стартере SF1 и сопровождается повышенным нагревом дросселя. Такая работа лампы объясняется тем, что она перешла в однополупериодный режим работы из-за потери эмиссии одним из электродов, т.е. лампа работает как диод, пропуская ток только в одном направлении, в результате через дроссель течет постоянная составляющая выпрямленного тока, что и вызывает его нагрев.
В данном случае обеспечить нормальную работу ЛДС непосредственно от сети переменного тока не удается. Но оживить лампу можно и в этом случае, она может еще надежно поработать, если перевести ее на питание током одного направления, соединив ее с выходом однополупериодного выпрямителя. На рис.2 показана такая схема включения. Работа лампы по этой схеме подобна работе лампы по рис.1 за исключением того, что по ней течет однонаправленный ток с частотой 100 Гц, при этом целая нить накаливания выполняет функцию катода лампы, а поврежденная — анода.
В качестве диодов моста VD1…VD4 можно использовать сборки типов КЦ402…КЦ405 на 600 В и ток 1 А для ЛДС мощностью 20, 30, 40 и 65 Вт. Очень удобна сборка типа КЦ404, которая имеет держатель предохранителя.


Автор: К.В. Коломойцев. г. Ивано-Франковск

Литература
1. Ховайко В. Восстановление люминесцентных ламп//Радио. — 1997.
— №7 -С.37
2. Есеркенов К. Способ “реанимации”ламп дневного света//Радио.
— 1998. — №2. — C.61.

Обсудить на форуме

Ремонт люминесцентных светильников и люстр своими руками

Как таковые испорченные люминесцентные лампы восстановлению не подлежат. Во-первых, внутри разреженная атмосфера, во-вторых, колба заполнена парами ртути. Люминесцентные лампы подлежат обязательной утилизации. Факт потери герметичности несёт опасность. Отравление ртутью проявляется не сразу. Сегодня поговорим, как выполняется ремонт люминесцентных светильников и люстр собственноручно.

Виды ламп

Виды ламп

Как работает люминесцентная лампа

Внутри люминесцентной лампы разжигается дуга. Постоянно присутствует разряд плазмы. За счёт этого выделяется энергия излучения, в инфракрасном диапазоне. При взаимодействии лучей с люминофором последний начинает светиться. Частота электромагнитных волн меняется на диапазон видимого света. Обычно разрядной средой служат пары ртути. К примеру, на внутренней стенки колбы присутствует капелька этого вещества для поддержания удельной концентрации.

Электроды люминесцентной лампы сложной конфигурации. По форме напоминают подковы. Дуга находится внутри колбы, две ножки торчат наружу. Это делается по понятным соображениям:

  1. Наиболее эффективными с точки зрения цена/качество показали себя стартеры на основе дросселей.
  2. Высокое индуктивное сопротивление цепи приводит к потерям за счёт сдвига угла между напряжением и током.
  3. Для компенсации эффекта используются конденсаторы, включаемые параллельно люминесцентной лампе, а во второй ветке размещается стартер.

Это не единственная причина. К примеру, некоторые балласты, поддерживающие регуляцию яркости, для работы на малых токах требуют подобного включения активных сопротивлений. Форма электродов люминесцентной лампы объясняется целиком особенностями работы. В частности, имеются патроны для люстр, учитывающие указанный момент. Под них выпускаются лампы с цоколем на два штыря. Стандартные газоразрядные часто с виду не отличаются от прочих. А цоколь стандартный – Е27. Отличие колбы преимущественно в классе энергоэффективности (см. цветовую шкалу на упаковке).

Пришло время сказать, что внутри каждой энергосберегающей лампочки и светодиодной заключён драйвер. Это формирователь напряжения питания. Он коренным образом отличается для лампочек светодиодных и газоразрядных (люминесцентных). Разница в амплитуде напряжения: светодиоды требуют 2-3 В для устойчивого горения. Несложно найти в продаже ленту, маркировка которой включает тип источника. К примеру, SMD 3528. Легко найти технические характеристики на указанную модель (data sheet), где показано напряжение питания 3,3 В.

В газоразрядных лампах обычно используется сильно повышенный потенциал. Сообразно продукции магазинов логично поделить наш объект на две части:

  • Привычные люминесцентные лампы дневного света.
  • Лампочки с цоколями Е27, Е14 и пр., применяются в привычных люстрах и светильниках.

Люминесцентные лампы дневного света

Ремонт люминесцентных светильников логично начать с локализации неисправности. Полагаем, что в запасе имеется сменная лампа, пора вставить её и посмотреть, станет ли гореть. Если все в порядке, неисправность заключается в сгорании электродов колбы. В противном случае поломку следует искать в области стартера и питающей цепи:

Схема подъёма напряжения до 450 В

Схема подъёма напряжения до 450 В

  1. Электроды люминесцентной лампы обычно изготавливаются из вольфрама. Как и нить лампочки накала. Но по причине повышенных нагрузок жаростойкий металл дополнительно покрывают пастами из щелочных металлов. По мере работы защитный слой расходуется: от перегрева сохнет, осыпается или испаряется. В результате через время образуются голые участки вольфрама, который не преминет сгореть при первом удобном случае. В результате дуга гаснет. Это вызывает мгновенное повышение напряжения, что приводит к срабатыванию стартера. Люминесцентная лампа станет моргать, но дуга не зажигается, цепь разомкнута. Ремонту изделие не подлежит, но можно применить схему, изображённую на рисунке. Она проста и позволяет поднять напряжения примерно до 450 В. Ниже рассмотрим, как работает драйвер, а пока заметим, что по мере старения люминесцентной лампы стекло вдоль цоколей постепенно чернеет. Это вызвано постепенным обгоранием электродов.
  2. Когда новая люминесцентная лампа не горит, пришло время смотреть драйвер. Здесь нужно заметить, что известно немало схем, сложно дать однозначные рекомендации, что и как в точности делать. Конструкции драйверов разнообразны, начиная от обычных резисторов и заканчивая электронными схемами, питающим люминесцентную лампу напряжением повышенной частоты (до 20 кГц). В результате блокируется так называемый стробоскопический эффект, возникающий за счёт частого моргания. Типичная люминесцентная лампа мерцает с частотой порядка 100 Гц (удвоенная промышленная), что попросту вредно для здоровья. Нужно сказать, что электронный балласт чаще используется в лампочках на цоколь Е27 и им подобных. Что касается нашего случая, по большей части применяется дроссельная схема с компенсирующим конденсатором. Стартер включается параллельно лампе.

Схема включения нерабочей люминесцентной лампы: бери от жизни все!

Схема без стартера

Схема без стартера

На рисунке представили возможную схему включения нерабочей люминесцентной лампы. Смысл: стартера больше нет, а электроды станут постоянно находиться под повышенным напряжением в 450 В. Этим генерируется тлеющий разряд. Принцип работы:

  1. В начальный момент времени на положительной полуволне через диод Д4 заряжается конденсатор С4 до сетевого напряжения 220 В х 1,41 (корень из двух) = 310 В. Плюс накапливается на нижней обкладке (согласно схеме).
  2. На отрицательной полуволне заряд получает конденсатор С3 через диод Д3. Разница потенциалов на обкладках достигает 310 В.
  3. Теперь люминесцентная лампа находится под суммарным напряжением порядка 600 В, этого хватает для образования тлеющей дуги.
  4. Конденсатор С4 разряжается через диоды Д1 и Д3, а С3 – через Д2 и Д4.

Назначение конденсаторов С1 и С2 на входе в развязке сети питания от высоковольтной части, в формировании правильного пути заряда и разряда ёмкостей С3 и С4. Понятно, что элементы должны выдерживать режимы работы. Рабочее напряжение конденсаторов не ниже 350 В. С1 и С2 лучше выбирать из ряда бумажных, а С3 и С4 — слюдяные (jelektro.ru). Требования к диодам схожие.

Система запуска люминесцентной лампы

Стандартная схема включения люминесцентной лампы выглядит так:

  • К одной ветви двойных электродов подаётся питание 220 В. В цепь последовательно включается дроссель и электроды лампы, параллельно стоит компенсирующий конденсатор (для нейтрализации реактивной части сопротивления дросселя).
  • Во второй ветке ставится стартер. Он представляет параллельно соединённый контактор и газоразрядную лампочку малой мощности.
Установка люминесцентной лампы

Установка люминесцентной лампы

В начальный момент времени, минуя дроссель, напряжение сети прикладывается к стартеру. В результате начинает тлеть газоразрядная лампочка. Ток её сравнительно невелик и составляет 20 – 30 мА. За счёт этого начинается подогрев биметаллического реле, которое в нужный момент замыкается. Тогда напряжение на дросселе начинает стремительно расти, но ток сильно ограничен индуктивным сопротивлением. Постепенно из-за отсутствия тока накала биметаллическое реле остывает, в результате цепь обрывается.

Потом следует резкое перераспределение потенциала по цепи. Наблюдается резкое падение напряжения на дросселе. Обе обмотки его намотаны на единый сердечник, наблюдается резонансный ответный всплеск ЭДС (катушки за счёт направления витков создают складывающийся эффект). Возросшее напряжение пробивает люминесцентную лампу, загорается тлеющая дуга. Это приводит к появлению света. Теперь смотрите, что происходит, когда выгорает электрод:

  1. Дуга тухнет, образуется разрыв цепи.
  2. Все напряжение оказывается приложенным на стартер.
  3. Газоразрядная лампочка зажигается и начинает греть биметаллическое реле.
  4. Цепь замыкается, как на старте, потом рвётся.
  5. Возникшая ЭДС пытается поджечь люминесцентную лампу, видно, как проскакивает дуга.
  6. За счёт краткости момента повышения напряжения вспышка длится мгновение.
  7. Все повторяется.

Неисправная люминесцентная лампа моргает. Умные головы догадались постоянно питать её повышенным напряжением (600 В), чтобы дуга не гасла. Понятно, что такой режим считается излишне напряжённым, при подключении по схеме, приведённой в предыдущем разделе, сломанная люминесцентная лампа долго не проработает. Что касается схемы поджига, анализ её проводится так:

  1. Ремонт люминесцентных люстр начинается с проверки дросселя. Нужно прозвонить его. Питание отключается, изымать из схемы этот элемент не нужно. Обычно дроссель люминесцентной лампы изготавливается в виде солидных размеров параллелепипеда и имеет два вывода.
  2. Компенсирующий конденсатор вряд ли явится причиной поломки, он лишь понижает реактивную часть сопротивления. Допустимо прозвонить на короткое замыкание (если постоянно выбивает пробки).
  3. Стартер можно проверить при помощи обычной розетки. Обычно в корпусе имеется окошечко, через которое наблюдают за тлением разряда. В какой-то момент контакты замкнутся. Чтобы это отследить, последовательно со стартером включите обычную лампочку накала. Процесс выглядит так:
  • Вначале ничего не происходит.
  • Потом лампочка моргает и гаснет.
  • Цикл повторяется.

Все это занимает немного времени. Гораздо быстрее, нежели рассказ про ремонт люминесцентных светильников и люстр собственноручно. В результате выполненных мероприятий неисправность окажется локализована.

Ремонт цокольных галогенных лампочек

Продающиеся в магазине лампочки на цоколь Е27 и ему подобные не всегда люминесцентные. Здесь отличие в том, что является источником света. В нашем случае испускать его должен люминофор. А если просто используется матовое стекло, это уже иной тип лампочек.

Импульсный блок питания

Импульсный блок питания

Внутри цоколя находится драйвер (формирователь напряжения). Если лампочка сломалась, пора отсоединить резьбу с основанием и посмотреть, что внутри. Понадобится маленькая шлицевая отвёртка (даже индикаторная сойдёт). Колба снимается, внутри обычный импульсный блок питания, как показано на снимке. Чтобы устранять неисправности люминесцентных светильников, следует хорошо разбираться в электронике.

Схема состоит из диодов, резисторов, конденсаторов, одного дросселя, импульсного трансформатора и пары транзисторов. Принцип работы описывали выше, что касается колбы, она отличается от своих старших сородичей толщиной и формой. Не более.

До проверки потрудитесь вычертить на листочке схему печатной платы, многое станет ясным. Монтаж выполнен в один слой, мы не видим особых сложностей. Номиналы элементов написаны здесь же, по печатной плате, как водится у зарубежной электроники, идут поясняющие обозначения.

Продление жизни люминесцентным лампам | Полезное своими руками

Широко используемые люминесцентные лампы не лишены недостатков: во время их работы прослушивается гудение дросселя, в системе питания имеется стартер, который ненадежен в работе, и самое главное-лампа имеет нить накала, которая может перегореть, из-за чего лампу приходится заменять новой.

Люминесцентная лампа становится «вечной»

Здесь показана схема, которая позволяет устранить перечисленные недостатки. Нет привычного гудения, лампа загорается моментально, отсутствует ненадежный стартер, и, что самое главное, можно использовать лампу с перегоревшей нитью накала.

Конденсаторы С1, С4 должны быть бумажными, с рабочим напряжением в 1,5 раза больше питающего напряжения. Конденсаторы С2, С3 желательно, чтобы были слюдяными.

Резистор R1 обязательно проволочный, его сопротивление зависит от мощности лампы.

Данные элементов схемы в зависимости от мощности люминесцентных ламп приведены в таблице:

Мощность лампы,
Вт

C1-C4,
мкФ

С2-С3,
пФ

Д1-Д4

R1,
Ом

30

4

3300

Д226Б

60

40

10

6800

Д226Б

60

80

20

6800

Д205

30

100

20

6800

Д231

30

Диоды Д2, Д3 и конденсаторы С1, C4 представляют двухполупериодный выпрямитель с удвоением напряжения. Величины емкостей C1, C4 определяют рабочее напряжение лампы Л1 (чем больше емкость, тем больше напряжение на электродах лампы Л1). В момент включения напряжение в точках а и б достигает 600 В, которое прикладывается к электродам лампы Л1. В момент зажигания лампы Л1 напряжение в точках а и б уменьшается и обеспечивает нормальную работу лампы Л1, рассчитанной на напряжение 220 В.

Применение диодов Д1, Д4 и конденсаторов С2, С3 повышает напряжение до 900 В, что обеспечивает надежное зажигание лампы Л1 в момент включения. Конденсаторы С2, С3 одновременно способствуют подавлению радиопомех.

Лампа Л1 может работать без Д1, Д4, С2, С3, но при этом надежность включения уменьшается.

Leave Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *