Коэффициент паропроницаемости строительных материалов – Расчеты и пересчеты по паропроницаемостям ветрозащитных мембран. Паропроницаемость стен – избавляемся от вымыслов Коэффициент паропроницаемости материала слоя ограждающей конструкции

Содержание

Паропроницаемость материалов — таблица

Понятие «дышащих стен» считается положительной характеристикой материалов, из которых они выполнены. Но мало кто задумывается о причинах, допускающих это дыхание. Материалы, способные пропускать как воздух, так и пар, являются паропроницающими.

Наглядный пример строительных материалов, обладающих высокой проницаемостью пара:

  • древесина;
  • керамзитовые плиты;
  • пенобетон.

Бетонные или кирпичные стены менее проницаемы для пара, чем деревянные или керамзитовые.

Источники пара внутри помещения

Дыхание человека, приготовление пищи, водяной пар из ванной комнаты и многие другие источники пара при отсутствии вытяжного устройства создают высокий уровень влажности внутри помещения. Часто можно наблюдать образование испарины на оконных стеклах в зимнее время, или на холодных водопроводных трубах. Это примеры образования водяного пара внутри дома.

Что такое паропроницаемость

Правила проектирования и строительства дают следующее определение термина: паропроницаемость материалов – это способность пропускать насквозь капельки влаги, содержащиеся в воздухе, вследствие различных величин парциальных давлений пара с противоположных сторон при одинаковых значениях давления воздуха. Еще ее определяют, как плотность парового потока, проходящего сквозь определенную толщину материала.

Таблица, имеющая коэффициент паропроницаемости, составленная для строительных материалов, носит условный характер, т. к. заданные расчетные величины влажности и атмосферных условий не всегда соответствуют реальным условиям. Точка росы может быть рассчитана, на основании приблизительных данных.

Конструкция стен с учетом паропроницаемости

Даже если стены возведены из материала, имеющего высокую паропроницаемость, это не может являться гарантией, что он не превратится в воду в толще стены. Чтобы этого не произошло, нужно защитить материал от разности парциального давления паров изнутри и снаружи. Защита от образования парового конденсата производится при помощи плит ОСБ, утепляющих материалов типа пеноплекса и паронепроницаемых пленок или мембран, недопускающих проникновения пара в утеплитель.

Стены утепляют с тем расчетом, чтобы ближе к наружному краю располагался слой утеплителя, неспособный образовать конденсацию влаги, отодвигающий точку росы (образование воды). Параллельно с защитными слоями в кровельном пироге необходимо обеспечить правильный вентиляционный зазор.

Разрушительные действия пара

Если стеновой пирог имеет слабую способность поглощения пара, ему не грозит разрушение вследствие расширения влаги от мороза. Главное условие – не допустить накапливания влаги в толще стены, а обеспечить свободное ее прохождение и выветривание. Не менее важно устроить принудительную вытяжку лишней влаги и пара из помещения, подключить мощную вентиляционную систему. Соблюдая перечисленные условия, можно уберечь стены от растрескивания, и увеличить срок службы всего дома. Постоянное прохождение влаги сквозь строительные материалы ускоряет их разрушение.

Использование проводящих качеств

Учитывая особенности эксплуатации зданий, применяется следующий принцип утепления: снаружи располагаются наиболее паропроводящие утепляющие материалы. Благодаря такому расположению слоев уменьшается вероятность накапливания воды при снижении температуры на улице. Чтобы стены не намокали изнутри, внутренний слой утепляют материалом, имеющим низкую паропроницаемость, например, толстый слой экструдированного пенополистирола.

С успехом применяется противоположный метод использования паропроводящих эффектов строительных материалов. Он состоит в том, что кирпичную стену покрывают пароизолирующим слоем пеностекла, который прерывает движущийся поток пара из дома на улицу в период низких температур. Кирпич начинает аккумулировать влажность комнат, создавая приятный климат внутри помещения благодаря надежному паровому барьеру.

Соблюдение основного принципа при возведении стен

Стены должны отличаться минимальной способностью проводить пар и тепло, но одновременно быть теплоемкими и теплоустойчивыми. При использовании материала одного вида требуемых эффектов достичь невозможно. Внешняя стеновая часть обязана задерживать холодные массы и не допускать их воздействия на внутренние теплоемкие материалы, которые сохраняют комфортный тепловой режим внутри помещения.

Для внутреннего слоя идеально подходит армированный бетон, его теплоемкость, плотность и прочность имеют максимальные показатели. Бетон успешно сглаживает разность ночных и дневных температурных перепадов.

При проведении строительных работ составляют стеновые пироги с учетом основного принципа: паропроницаемость каждого слоя должна повышаться в направлении от внутренних слоев к наружным.

Правила расположения пароизолирующих слоев

Чтобы обеспечить лучшие эксплуатационные характеристики многослойных конструкций сооружений, применяется правило: со стороны, имеющей более высокую температуру, располагают материалы с увеличенной устойчивостью к проникновению пара с повышенной теплопроводностью. Слои, расположенные снаружи, должны иметь высокую паропроводимость. Для нормального функционирования ограждающей конструкции необходимо, чтобы коэффициент наружного слоя в пять раз превышал показатель слоя, расположенного внутри.

При выполнении этого правила водяным парам, попавшим в теплый слой стены, не составит труда с ускорением выйти наружу через более пористые материалы.

При несоблюдении этого условия внутренние слои строительных материалов замокают и становятся более теплопроводными.

Знакомство с таблицей паропроницаемости материалов

При проектировании дома, учитываются характеристики строительного сырья. В Своде правил содержится таблица с информацией о том, какой коэффициент паропроницаемости имеют строительные материалы при условиях нормального атмосферного давления и среднего значения температуры воздуха.

Материал

Коэффициент паропроницаемости
мг/(м·ч·Па)

экструдированный пенополистирол

0,013

пенополиуретан

0,05

минеральная вата

0,3 – 0,55

фанера

0,02

железобетон, бетон

0,03

сосна или ель

0,06

керамзит

0,21

пенобетон, газобетон

0,26

кирпич

0,11

гранит, мрамор

0,008

гипсокартон

0,075

дсп, осп, двп

0,12

песок

0,17

пеностекло

0,02

рубероид

0,001

полиэтилен

0,00002

линолеум

0,002

Таблица опровергает ошибочные представления о дышащих стенах. Количество пара, выходящего через стены, ничтожно мало. Основной пар выносится с потоками воздуха при проветривании или с помощью вентиляции.

Важное значение таблицы паропроницаемости материалов

Коэффициент паропроницаемости является важным параметром, который используется для расчета толщины слоя утеплительных материалов. От правильности полученных результатов зависит качество утепления всей конструкции.

Что еще почитать по теме?

Автор статьи:

Сергей Новожилов — эксперт по кровельным материалам с 9-летним опытом практической работы в области инженерных решений в строительстве.

Понравилась статья? Поделись с друзьями в социальных сетях:

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Паропроницаемость строительных материалов, таблица

Чтобы создать в доме благоприятный для проживания климат, нужно учитывать свойства используемых материалов.Особое внимание стоит уделить паропроницаемости. Этим термином называется способность материалов пропускать пары. Благодаря знаниям о паропроницаемости можно правильно подобрать материалы для создания дома.

Оборудование для определения степени проницаемости

Профессиональные строители имеют специализированное оборудование, которое позволяет точно определить паропроницаемость определенного строительного материала. Для вычисления описываемого параметра применяется следующее оборудование:

  • весы, погрешность которых является минимальной;
  • сосуды и чаши, необходимые для проведения опытов;
  • инструменты, позволяющие точно определить толщину слоев строительных материалов.

Благодаря таким инструментам точно определяется описываемая характеристика. Но данные о результатах опытов занесены в таблицы, поэтому во время создания проекта дома не обязательно определять паропроницаемость материалов.

Что нужно знать

Многие знакомы с мнением, что «дышащие» стены полезны для проживающих в доме. Высокими показателями паропроницаемости обладают следующие материалы:

  • дерево;
  • керамзит;
  • ячеистый бетон.

Стоит отметить, что стены, сделанные из кирпича или бетона, также обладают паропроницаемостью, но этот показатель является более низким. Во время скопления в доме пара он выводится не только через вытяжку и окна, но еще и через стены. Именно поэтому многие считают, что в строениях из бетона и кирпича дышится «тяжело».

Но стоит отметить, что в современных домах большая часть пара уходит через окна и вытяжку. При этом через стены уходит всего лишь около 5 процентов пара. Важно знать о том, что в ветреную погоду из строения, выполненного из дышащих стройматериалов, быстрее уходит тепло. Именно поэтому во время строительства дома следует учитывать и другие факторы, влияющие на сохранение микроклимата в помещении.

Стоит помнить, что чем выше коэффициент паропроницаемости, тем больше стены вмещают в себя влаги. Морозостойкость стройматериала с высокой степенью проницаемости является низкой. При намокании разных стройматериалов показатель паропроницаемости может увеличиваться до 5 раз. Именно поэтому необходимо грамотно производить закрепление пароизоляционных материалов.

Влияние паропроницаемости на другие характеристики

Стоит отметить, что, если во время строительства не был установлен утеплитель, при сильном морозе в ветреную погоду тепло из комнат будет уходить достаточно быстро. Именно поэтому необходимо грамотно производить утепление стен.

При этом долговечность стен с высокой проницаемостью является более низкой. Это связано с тем, что при попадании пара в стройматериал влага начинает застывать под воздействием низкой температуры. Это приводит к постепенному разрушению стен. Именно поэтому при выборе стройматериала с высокой степенью проницаемости необходимо грамотно установить пароизоляционный и теплоизоляционный слой. Чтобы узнать паропроницаемость материалов стоит использовать таблицу, в которой указаны все значения.

Паропроницаемость и утепление стен

Во время утепления дома необходимо соблюдать правило, согласно которому паропрозрачность слоев должна увеличиваться по направлению наружу. Благодаря этому зимой не будет происходить накопление воды в слоях, если конденсат станет накапливаться в точке росы.

Утеплять стоит изнутри, хотя многие строители рекомендуют закреплять тепло- и пароизоляцию снаружи. Это объясняется тем, что пар проникает из помещения и при утеплении стен изнутри влага не будет попадать в стройматериал. Часто для внутреннего утепления дома применяется экструдированный пенополистирол. Коэффициент паропроницаемости такого строительного материала является низким.

Еще одним способом утепления является разделение слоев при помощи пароизолятора. Также можно применить материал, который не пропускает пар. В пример можно привести утепление стен пеностеклом. Несмотря на то, что кирпич способен впитывать влагу, пеностекло препятствует проникновению пара. В таком случае кирпичная стена будет служить аккумулятором влаги и во время скачков уровня влажности станет регулятором внутреннего климата помещений.

Стоит помнить, что если утеплить стены неправильно, стройматериалы могут потерять свои свойства уже через небольшой отрезок времени. Именно поэтому важно знать не только о качествах используемых компонентов, но еще и о технологии их закрепления на стенах дома.

От чего зависит выбор утеплителя

Часто владельцы домов для утепления используют минеральную вату. Данный материал отличается высокой степенью проницаемости. По международным стандартам сопротивления паропроницаемости равен 1. Это означает, что минеральная вата в этом отношении практически не отличается от воздуха.

Именно об этом многие производители минеральной ваты упоминают достаточно часто. Часто можно встретить упоминание о том, что при утеплении кирпичной стены минеральной ватой ее проницаемость не снизится. Это действительно так. Но стоит отметить, что ни один материал, из которого изготавливаются стены, не способен выводить такое количество пара, чтобы в помещениях сохранялся нормальный уровень влажности. Также важно учитывать, что многие отделочные материалы, которые используются при оформлении стен в комнатах, могут полностью изолировать пространство, не пропуская пар наружу. Из-за этого паропроницаемость стены значительно уменьшается. Именно поэтому минеральная вата незначительно влияет на обмен паром.

Во время принятия решения о выборе утеплителя и различных отделочных материалов стоит помнить о том, что наружный слой должен быть более паропроницаемым. Если же этому правилу следовать невозможно, стоит разделить слои при помощи пароизолятора. Это позволит прекратить движение пара в конструкции и восстановить равновесие слоев со средой, в которой они находятся. Во время отделки дома стоит учитывать паропроницаемость используемых строительных материалов.

Паропроницаемость строительных материалов

В отечественных нормах сопротивление паропроницаемости (сопротивление паропроницанию Rп, м2• ч • Па/мг) нормируется в главе 6 «Сопротивление паропроницанию ограждающих конструкций» СНиП II-3-79 (1998) «Строительная теплотехника».

Международные стандарты паропроницаемости строительных материалов приводятся в стандартах ISO TC 163/SC 2 и ISO/FDIS 10456:2007(E) — 2007 год.

Показатели коэффициента сопротивления паропроницанию определяются на основании международного стандарта ISO 12572 «Теплотехнические свойства строительных материалов и изделий — Определение паропроницаемости». Показатели паропроницаемости для международных норм ISO определялись лабораторным способом на выдержанных во времени (не только что выпущенных) образцах строительных материалов. Паропроницаемость определялась для строительных материалов в сухом и влажном состоянии.
В отечественном СНиП приводятся лишь расчетные данные паропроницаемости при массовом отношении влаги в материале w, %, равном нулю.
Поэтому для выбора строительных материалов по паропроницаемости при дачном строительстве лучше ориентироваться на международные стандарты ISO, котрые определяют паропроницаемость «сухих» строительных материалов при влажности менее 70% и «влажных» строительных материалов при влажности более 70%. Помните, что при оставлении «пирогов» паропроницаемых стен, паропроницаемость материалов изнутри-кнаружи не должна уменьшаться, иначе постепенно произойдет «замокание» внутренних слоев строительных материалов и значительно увеличится их теплопроводность.

Паропроницаемость материалов изнутри кнаружи отапливаемого дома должна уменьшаться: СП 23-101-2004 Проектирование тепловой защиты зданий, п.8.8: Для обеспечения лучших эксплуатационных характеристик в многослойных конструкциях зданий с теплой стороны следует располагать слои большей теплопроводности и с большим сопротивлением паропроницанию, чем наружные слои. По данным Т.Роджерс (Роджерс Т.С. Проектирование тепловой защиты зданий. / Пер. с англ. – м.: си, 1966) Отдельные слои в многослойных ограждениях следует располагать в такой последовательности, чтобы паропроницаемость каждого слоя нарастала от внутренней поверхности к наружной. При таком расположении слоев водяной пар, попавший в ограждение через внутреннюю поверхность с возрастающей легкостью, будет проходить через все спои ограждения и удаляться из ограждения с наружной поверхности. Ограждающая конструкция будет нормально функционировать, если при соблюдении сформулированного принципа, паропроницаемость наружного слоя, как минимум, в 5 раз будет превышать паропроницаемость внутреннего слоя.

Механизм паропроницаемости строительных материалов:

При низкой относительной влажности влага из атмосферы транспортируется через поры строительных материалов в виде отдельных молекул водяного пара. При повышении относительной влажности поры строительных материалов начинают заполняться жидкостью и начинают работать механизмы смачивания и капиллярного подсоса. При повышении влажности строительного материала его паропроницаемость увеличивается (снижается коэффициент сопротивления паропроницаемости).

Пример пренебрежения паропроницаемостью строительных материалов в многослойных стенах: укрытие деревянных стен паронепроницаемым рубероидом привело к биологическому разрушению дерева в условиях постоянного увлажнения. При укрытии ячеистых бетонов паронепроницаемыми материалами (кирпичная кладка, ЭППС) происходит переувлажнение стен и их постепенное разрушение при периодическом промерзании.

Показатели паропроницаемости «сухих» строительных материалов по ISO/FDIS 10456:2007(E) применимы для внутренних конструкций отапливаемых зданий. Показатели паропроницаемости «влажных» строительных материалов применимы для всех наружных конструкций и внутрених конструкций неотапливаемых зданий или дачных домов с переменным (временным) режимом отопления.

Паропроницаемость стен и материалов

Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.

Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.

Что такое паропроницаемость

Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.

Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).

Сопротивляемость слоя материала будет зависеть от его толщины.
Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.

Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.

Какая паропроницаемость у строительных материалов

Ниже приведены значения коэффициента паропроницаемости для нескольких строительных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).
Битум 0,008
Тяжелый бетон 0,03
Автоклавный газобетон 0,12
Керамзитобетон 0,075 — 0,09
Шлакобетон 0,075 — 0,14
Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе)
Известковый раствор 0,12
Гипсокартон, гипс 0,075
Цементно-песчаная штукатурка 0,09
Известняк (в зависимости от плотности) 0,06 — 0,11
Металлы 0
ДСП 0,12 0,24
Линолеум 0,002
Пенопласт 0,05-0,23
Полиурентан твердый, полиуретановая пена
0,05
Минеральная вата 0,3-0,6
Пеностекло 0,02 -0,03
Вермикулит 0,23 — 0,3
Керамзит 0,21-0,26
Дерево поперек волокон 0,06
Дерево вдоль волокон 0,32
Кирпичная кладка из силикатного кирпича на цементном растворе 0,11

Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.

Как конструировать утепление — по пароизоляционным качествам

Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.

Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.

Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.

Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.

Разделение слоев пароизолятором

Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.

Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?

Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.

Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.

Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.

Международная классификация пароизоляционных качеств материалов

Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.

Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом. Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т.е. пенополистирол в 150 раз пропускает пар хуже чем воздух.

Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.
Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.

Коэффициент сопротивляемости движению пара

Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).
Воздух 1, 1
Битум 50 000, 50 000
Пластики, резина, силикон — >5 000, >5 000
Тяжелый бетон 130, 80
Бетон средней плотности 100, 60
Полистирол бетон 120, 60
Автоклавный газобетон 10, 6
Легкий бетон 15, 10
Искусственный камень 150, 120
Керамзитобетон 6-8, 4
Шлакобетон 30, 20
Обожженная глина (кирпич) 16, 10
Известковый раствор 20, 10
Гипсокартон, гипс 10, 4
Гипсовая штукатурка 10, 6
Цементно-песчаная штукатурка 10, 6
Глина, песок, гравий 50, 50
Песчаник 40, 30
Известняк (в зависимости от плотности) 30-250, 20-200
Керамическая плитка ?, ?
Металлы ?, ?
OSB-2 (DIN 52612) 50, 30
OSB-3 (DIN 52612) 107, 64
OSB-4 (DIN 52612) 300, 135
ДСП 50, 10-20
Линолеум 1000, 800
Подложка под ламинат пластик 10 000, 10 000
Подложка под ламинат пробка 20, 10
Пенопласт 60, 60
ЭППС 150, 150
Полиурентан твердый, полиуретановая пена 50, 50
Минеральная вата 1, 1
Пеностекло ?, ?
Перлитовые панели 5, 5
Перлит 2, 2
Вермикулит 3, 2
Эковата 2, 2
Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50

Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.

Откуда возникла легенда о дышащей стене

Очень много компаний выпускает минеральную вату. Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.

Действительно, это «дышащий» утеплитель. Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!

Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.

А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.

Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.

Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.

Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.

Коэффициенты паропроницаемости строительных материалов

Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.

Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.

Что такое паропроницаемость

Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.

Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).

Сопротивляемость слоя материала будет зависеть от его толщины.
Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.

Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.

Какая паропроницаемость у строительных материалов

Ниже приведены значения коэффициента паропроницаемости для нескольких строительных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).
Битум 0,008
Тяжелый бетон 0,03
Автоклавный газобетон 0,12
Керамзитобетон 0,075 — 0,09
Шлакобетон 0,075 — 0,14
Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе)
Известковый раствор 0,12
Гипсокартон, гипс 0,075
Цементно-песчаная штукатурка 0,09
Известняк (в зависимости от плотности) 0,06 — 0,11
Металлы 0
ДСП 0,12 0,24
Линолеум 0,002
Пенопласт 0,05-0,23
Полиурентан твердый, полиуретановая пена
0,05
Минеральная вата 0,3-0,6
Пеностекло 0,02 -0,03
Вермикулит 0,23 — 0,3
Керамзит 0,21-0,26
Дерево поперек волокон 0,06
Дерево вдоль волокон 0,32
Кирпичная кладка из силикатного кирпича на цементном растворе 0,11

Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.

Как конструировать утепление — по пароизоляционным качествам

Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.

Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.

Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.

Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.

Разделение слоев пароизолятором

Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.

Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?

Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.

Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.

Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.

Международная классификация пароизоляционных качеств материалов

Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.

Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом. Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т.е. пенополистирол в 150 раз пропускает пар хуже чем воздух.

Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.
Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.

Коэффициент сопротивляемости движению пара

Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).
Воздух 1, 1
Битум 50 000, 50 000
Пластики, резина, силикон — >5 000, >5 000
Тяжелый бетон 130, 80
Бетон средней плотности 100, 60
Полистирол бетон 120, 60
Автоклавный газобетон 10, 6
Легкий бетон 15, 10
Искусственный камень 150, 120
Керамзитобетон 6-8, 4
Шлакобетон 30, 20
Обожженная глина (кирпич) 16, 10
Известковый раствор 20, 10
Гипсокартон, гипс 10, 4
Гипсовая штукатурка 10, 6
Цементно-песчаная штукатурка 10, 6
Глина, песок, гравий 50, 50
Песчаник 40, 30
Известняк (в зависимости от плотности) 30-250, 20-200
Керамическая плитка ?, ?
Металлы ?, ?
OSB-2 (DIN 52612) 50, 30
OSB-3 (DIN 52612) 107, 64
OSB-4 (DIN 52612) 300, 135
ДСП 50, 10-20
Линолеум 1000, 800
Подложка под ламинат пластик 10 000, 10 000
Подложка под ламинат пробка 20, 10
Пенопласт 60, 60
ЭППС 150, 150
Полиурентан твердый, полиуретановая пена 50, 50
Минеральная вата 1, 1
Пеностекло ?, ?
Перлитовые панели 5, 5
Перлит 2, 2
Вермикулит 3, 2
Эковата 2, 2
Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50

Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.

Откуда возникла легенда о дышащей стене

Очень много компаний выпускает минеральную вату. Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.

Действительно, это «дышащий» утеплитель. Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!

Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.

А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.

Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.

Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.

Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.

МАТЕРИАЛЫ И ИЗДЕЛИЯ СТРОИТЕЛЬНЫЕ

Методы определения паропроницаемости и сопротивления паропроницанию

Building materials and products. Methods for determination of water vapour permeability and steam-tightness

Дата введения 2014-01-01

Цели, основные принципы и основной порядок работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

1 РАЗРАБОТАН федеральным государственным бюджетным учреждением «Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук» («НИИСФ РААСН»)

2 ВНЕСЕН Техническим комитетом ТК 465 «Строительство»

3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и оценке соответствия в строительстве (МНТКС) (приложение Е к протоколу от 18 декабря 2012 г. N 41)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа государственного управления строительством

Министерство строительства и регионального развития

Министерство регионального развития

Агентство по строительству и архитектуре при Правительстве

4 В настоящем стандарте учтены требования международного стандарта ISO 12572:2001* Hydrothermal performance of building materials and products — Determination of water vapour transmission properties (Тепловлажностные свойства строительных материалов и изделий. Определение характеристик паропроницаемости) в части условий проведения испытаний.
________________
* Доступ к международным и зарубежным документам, упомянутым здесь и далее по тексту, можно получить, перейдя по ссылке на сайт http://shop.cntd.ru. — Примечание изготовителя базы данных.

Перевод с английского языка (en).

Степень соответствия — неэквивалентная (NEQ)

5 Приказом Федерального агентства по техническому регулированию и метрологии от 27 декабря 2012 г. N 2013-ст межгосударственный стандарт ГОСТ 25898-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2014 г.

6 ВЗАМЕН ГОСТ 25898-83

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

1 Область применения

Настоящий стандарт распространяется на строительные материалы и изделия, включая тонкослойные покрытия, листы и пленки, и устанавливает методы определения паропроницаемости строительных материалов и изделий и сопротивления паропроницанию тонкослойных покрытий, листовых и пленочных материалов.

Результаты испытаний применяют при теплотехнических расчетах, для производственного контроля качества строительных материалов и изделий и при разработке нормативных документов на материалы и изделия конкретных видов.

2 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

2.1 плотность потока водяного пара: Масса потока водяного пара, проходящего через единицу площади рабочей поверхности образца за единицу времени.

Примечание — Рабочая поверхность образца — поверхность, через которую проходит поток водяного пара.

2.2 однородный материал: Материал, плотность которого одинаковая по всему объему.

2.3 паропроницаемость: Величина, численно равная количеству водяного пара в миллиграммах, проходящего за 1 ч через слой материала площадью 1 м и толщиной 1 м при условии, что температура воздуха у противоположных сторон слоя одинаковая, а разность парциальных давлений водяного пара равна 1 Па.

2.4 сопротивление паропроницанию: Показатель, характеризующий разность парциальных давлений водяного пара в паскалях у противоположных сторон изделия с плоскопараллельными сторонами, при которой через изделие площадью 1 м за 1 ч проходит 1 мг водяного пара при равенстве температуры воздуха у противоположных сторон изделия; величина, численно равная отношению толщины слоя испытуемого материала к значению паропроницаемости.

2.6 сравнительный коэффициент паропроницаемости: Отношение значения коэффициента паропроницаемости воздуха к значению коэффициента паропроницаемости испытуемого материала.

Примечание — Сравнительный коэффициент паропроницаемости показывает, на сколько при одинаковой температуре сопротивление паропроницанию слоя материала больше сопротивления паропроницанию слоя неподвижного воздуха такой же толщины; определяют, как показано в приложении А.

3 Общие положения

3.1 Сущность методов определения сопротивления паропроницанию и паропроницаемости заключается в создании стационарного потока водяного пара через исследуемый образец и определении интенсивности этого потока.

В настоящем стандарте приведены методы «мокрой чашки» и «сухой чашки». Метод «мокрой чашки» является основным. Метод «сухой чашки» является дополнительным при определении характеристик материалов и изделий, применяемых в сухом режиме эксплуатации.

3.2 Если изделия применяют в специальных условиях, то при проведении испытаний значения температуры и относительной влажности воздуха могут быть согласованы между изготовителем и потребителем.

По требованию потребителя определение паропроницаемости материалов и изделий или сопротивления паропроницанию тонкослойных покрытий, пленок и др. может быть проведено методом «сухой чашки», при этом в сосуде под образцом должен находиться влагопоглотитель.

3.3 Сопротивление паропроницанию определяют для листовых и пленочных строительных материалов толщиной менее 10 мм, а также для тонкослойных покрытий (тонкие штукатурные слои систем наружного утепления; кровельные рулонные материалы; лакокрасочные, пароизоляционные покрытия и т.п.). Для остальных материалов определяют паропроницаемость.

3.4 При испытании для герметизации зон прилегания образцов к верхним кромкам испытательных сосудов применяют паронепроницаемые герметики, не изменяющие во время испытания своих физических и химических свойств и не вызывающие изменения физических и химических свойств материала испытуемого образца.

3.5 Обозначения и единицы измерения

Обозначения и единицы измерения основных параметров определения характеристик паропроницаемости, применяемые в настоящем стандарте, приведены в таблице 1.

Таблица 1 — Обозначения и единицы измерения

Сопротивление паропроницанию образцов

Масса испытательного сосуда с образцом

Интервал времени между двумя последовательными взвешиваниями

Относительная влажность воздуха

Площадь поверхности образца, через которую проходит поток водяного пара (площадь рабочей поверхности образца)

Давление насыщенного водяного пара

Давление водяного пара

Интенсивность потока водяного пара, проходящего через образец за 1 ч

Сопротивление паропроницанию воздуха

Коэффициент паропроницаемости материала

Средняя толщина испытуемого образца

Плотность потока водяного пара через образец

Примечание — В приложении Б приведена таблица перевода единиц измерения при определении характеристик паропроницаемости.

3.6 Методы, приведенные в настоящем стандарте, обеспечивают определение характеристик паропроницаемости с относительной ошибкой, не превышающей 10%.

4 Испытательное оборудование

5 Образцы для испытаний

5.1 Изготовление образцов

5.1.1 Образцы должны быть типовыми представителями изделий, из которых вырезают эти образцы.

5.1.2 Пленки, образованные в процессе производства изделия, или покрытия, приклеенные на изделия, при определении паропроницаемости удаляют с образцов.

5.1.3 При изготовлении образцов не допускаются повреждения поверхностей, которые могут вызвать изменение количества или направления потока водяного пара.

5.1.4 Площадь рабочей поверхности образцов должна быть не менее 90% площади открытой поверхности испытательного сосуда.

5.2 Размеры и форма образцов

5.2.1 Для испытаний подготавливают образцы квадратного сечения со стороной размером 100 мм или цилиндрического сечения диаметром 100 мм.

5.2.2 При испытании неоднородных материалов допускается изготовлять образцы диаметром (для круглых образцов) или длиной сторон (для квадратных образцов), превышающих толщину не менее чем в три раза.

5.2.3 Отклонение от плоскостности верхней и нижней поверхностей образцов допускается не более 10% среднего значения толщины образца.

5.3 Толщина образцов

5.3.1 Для материалов, изделия из которых имеют толщину 10-30 мм, толщина образцов должна соответствовать толщине изделия. Из материалов, изделия из которых имеют толщину более 30 мм, изготовляют образцы толщиной 30 мм. Толщина образцов из неоднородных материалов (бетон и т.п.) должна превышать размер максимального зерна в 3-5 раз.

5.3.2 Толщину образцов измеряют три раза, поворачивая образец вокруг оси симметрии на 60°. Толщиной образца считают среднеарифметическое значение результатов трех измерений. Для образцов сжимаемых, сыпучих материалов и образцов неправильной формы применяемый метод измерения толщины указывают в протоколе испытаний.

5.4 Число образцов

Если площадь рабочей поверхности образца меньше 0,02 м , испытывают не менее пяти образцов. В других случаях испытывают не менее трех образцов.

5.5 Кондиционирование образцов

Образцы перед испытанием выдерживают при температуре (23±5) °С и относительной влажности воздуха (50±5)% до достижения постоянной массы, когда результаты взвешивания в течение трех последующих дней отличаются не более чем на 5%.

6 Проведение испытаний

6.1 Подготовленные образцы устанавливают в верхней части испытательного сосуда. Зазоры между боковыми гранями образца и стенками сосуда тщательно герметизируют и проводят первое (контрольное) взвешивание сосуда с образцом. При необходимости для фиксации тонкослойных образцов используют удерживающие шаблоны. Схемы испытательных сосудов с образцами представлены в приложении В.

6.2 Образцы устанавливают в испытательный сосуд так, чтобы направление потока водяного пара соответствовало предполагаемому потоку водяного пара при эксплуатации изделия. Если направление потока водяного пара неизвестно, изготовляют два идентичных образца и измерения проводят при разных направлениях потока водяного пара.

6.4 При проведении испытаний по методу «мокрой чашки» испытательные сосуды с образцами взвешивают на аналитических весах через определенные промежутки времени, но не реже чем через 7 сут. В момент взвешивания фиксируют значения температуры и относительной влажности воздуха. Результаты измерений заносят в протокол испытаний. Форма протокола испытаний приведена в приложении Г.

6.5 При проведении испытаний по методу «сухой чашки» первое после контрольного (см. 6.1) взвешивание испытательного сосуда с образцом проводят через 1 ч, следующие — через 2, 4, 12 и далее через каждые 24 ч (ежедневно).

6.6 Испытания считают законченными после установления стационарного потока водяного пара через образец, когда плотность потока в течение нескольких последовательных взвешиваний колеблется не более чем на 5% среднего значения.

6.7 Испытания по методу «сухой чашки» прекращают досрочно, если при испытании масса сосуда с образцом увеличилась более чем на 1,5 г на каждые 25 мл находящегося в чашке влагопоглотителя.

6.8 Сопротивление паропроницанию лакокрасочных покрытий определяют на шести образцах, три из которых являются основой и три — основой с нанесенным слоем лакокрасочного покрытия. В качестве основы подготавливают образцы из материала, на который в реальном изделии наносят лакокрасочное покрытие.

В протокол испытания (см. приложение Г) заносят информацию о способе нанесения лакокрасочного покрытия, числе слоев и другие данные, необходимые для идентификации покрытия. Одновременно с испытанием лакокрасочного покрытия, нанесенного на основу, определяют характеристики паропроницаемости основы. Сопротивление паропроницанию лакокрасочного покрытия, нанесенного на основу, определяют как разность между сопротивлением паропроницанию основы с покрытием и сопротивлением паропроницанию основы.

6.9 Сопротивление паропроницанию защитного, клеевого и декоративного слоев систем наружной теплоизоляции с толщиной слоев менее 5 мм допускается определять по 6.8. В качестве основы используют минераловатные плиты, соответствующие проектной документации на систему наружной теплоизоляции. Размеры образцов должны соответствовать приведенным в 5.2.2.

7 Обработка результатов испытаний

7.1 Для расчета сопротивления паропроницанию используют полученные значения плотности потока водяного пара через образец, значения упругостей водяного пара в воздухе камеры и в испытательном сосуде под образцом (давление насыщенного водяного пара и давление водяного пара в камере вокруг испытательного сосуда). Значения парциального давления насыщенного водяного пара приведены в приложении Д.

Результаты испытаний заносят в протокол испытаний (см. приложение Г).

где — изменение массы испытательного сосуда с образцом за интервал времени , мг;

— интервал времени между двумя последовательными взвешиваниями, ч;

— площадь рабочей поверхности образца, через которую проходит поток водяного пара, м .

где — давление насыщенного водяного пара в испытательном сосуде, Па; определяют по приложению Д;

— давление водяного пара в камере вокруг сосуда, Па;

— сопротивление паропроницанию воздуха, (м ·ч·Па)/мг, определяемое по формуле

где — толщина слоя воздуха (расстояние от поверхности воды в испытательном сосуде до нижней поверхности образца), м;

— паропроницаемость воздуха в испытательном сосуде, мг/(м·ч·Па), определяют по приложению А.

Давление водяного пара в камере вокруг испытательного сосуда определяют по формуле

где — относительная влажность воздуха в камере вокруг испытательного сосуда с образцом, %.

где — средняя толщина испытуемого образца, м.

Приложение А (справочное). Определение сравнительного коэффициента паропроницаемости

При определении сравнительного коэффициента паропроницемости применяют обозначения и единицы измерения параметров, приведенные в таблице А.1.

Таблица А.1 — Обозначения и единицы измерения параметров

Газовая постоянная для водяного пара, равная 462

Среднее давление воздуха

Нормальное атмосферное давление

Температура воздуха в испытательной камере

Паропроницаемость слоя неподвижного воздуха

Сравнительный коэффициент паропроницаемости

или определяют графически по графику зависимости коэффициента паропроницаемости воздуха от давления при температуре 23 °С (см. рисунок А.1).

Рисунок А.1 — График зависимости коэффициента паропроницаемости воздуха от давления при температуре 23 °С

Рисунок А.1 — График зависимости коэффициента паропроницаемости воздуха от давления при температуре 23 °С

Давление воздуха при испытании определяют барометром.

Толщину слоя неподвижного воздуха , имеющего сопротивление паропроницанию, эквивалентное сопротивлению паропроницанию испытуемого образца материала толщиной , определяют по формуле

Паропроницаемость строительных материалов по отечественным строительным нормам и международным стандартам.

Паропроницаемость строительного материала — это способность слоя материала пропускать водяной пар в результате разности парциального давления водяного пара при одинаковом атмосферном давлении на обеих сторонах слоя строительного материала. Эта способность задерживать или пропускать водяной пар характеризуется величиной коэффициента паропроницаемости или сопротивления паропроницаемости: µ

Значение µ («мю») коэффициента паропроницаемости строительного материала является относительным значением сопротивления материала паропереносу по сравнению со свойствами сопротивления паропереносу воздуха. Например, значение µ = 1 для минеральной ваты означает, что она проводит водяной пар точно также хорошо, как и воздух. А значение µ = 10 для газобетона означает, что этот строительный материал проводит пар в 10 раз хуже воздуха. Значение µ умноженное на толщину в метрах дает эквивалентную по паропроницаемости толщину воздуха Sd (м).

В отечественных нормах сопротивление паропроницаемости (сопротивление паропроницанию Rп, м2• ч • Па/мг) нормируется в главе 6 «Сопротивление паропроницанию ограждающих конструкций» СНиП II-3-79 (1998) «Строительная теплотехника».

Международные стандарты паропроницаемости строительных материалов приводятся в стандартах ISO TC 163/SC 2 и ISO/FDIS 10456:2007(E) — 2007 год.

Показатели коэффициента сопротивления паропроницанию определяются на основании международного стандарта ISO 12572 «Теплотехнические свойства строительных материалов и изделий — Определение паропроницаемости». Показатели паропроницаемости для международных норм ISO определялись лабораторным способом на выдержанных во времени (не только что выпущенных) образцах строительных материалов. Паропроницаемость определялась для строительных материалов в сухом и влажном состоянии.
В отечественном СНиП приводятся лишь расчетные данные паропроницаемости при массовом отношении влаги в материале w, %, равном нулю.
Поэтому для выбора строительных материалов по паропроницаемости при дачном строительстве лучше ориентироваться на международные стандарты ISO, котрые определяют паропроницаемость «сухих» строительных материалов при влажности менее 70% и «влажных» строительных материалов при влажности более 70%. Помните, что при оставлении «пирогов» паропроницаемых стен, паропроницаемость материалов изнутри-кнаружи не должна уменьшаться, иначе постепенно произойдет «замокание» внутренних слоев строительных материалов и значительно увеличится их теплопроводность.

Паропроницаемость материалов изнутри кнаружи отапливаемого дома должна уменьшаться: СП 23-101-2004 Проектирование тепловой защиты зданий, п.8.8: Для обеспечения лучших эксплуатационных характеристик в многослойных конструкциях зданий с теплой стороны следует располагать слои большей теплопроводности и с большим сопротивлением паропроницанию, чем наружные слои. По данным Т.Роджерс (Роджерс Т.С. Проектирование тепловой защиты зданий. / Пер. с англ. – м.: си, 1966) Отдельные слои в многослойных ограждениях следует располагать в такой последовательности, чтобы паропроницаемость каждого слоя нарастала от внутренней поверхности к наружной. При таком расположении слоев водяной пар, попавший в ограждение через внутреннюю поверхность с возрастающей легкостью, будет проходить через все спои ограждения и удаляться из ограждения с наружной поверхности. Ограждающая конструкция будет нормально функционировать, если при соблюдении сформулированного принципа, паропроницаемость наружного слоя, как минимум, в 5 раз будет превышать паропроницаемость внутреннего слоя.

Механизм паропроницаемости строительных материалов:

При низкой относительной влажности влага из атмосферы транспортируется через поры строительных материалов в виде отдельных молекул водяного пара. При повышении относительной влажности поры строительных материалов начинают заполняться жидкостью и начинают работать механизмы смачивания и капиллярного подсоса. При повышении влажности строительного материала его паропроницаемость увеличивается (снижается коэффициент сопротивления паропроницаемости).

Показатели паропроницаемости «сухих» строительных материалов по ISO/FDIS 10456:2007(E) применимы для внутренних конструкций отапливаемых зданий. Показатели паропроницаемости «влажных» строительных материалов применимы для всех наружных конструкций и внутрених конструкций неотапливаемых зданий или дачных домов с переменным (временным) режимом отопления.

Для удобства сравнения паропроницаемости строительных материалов мы приводим сводную таблицу с данными по международным ISO/FDIS 10456:2007(E) и отечественным нормам СНиП II-3-79 (1998) (Приложение 3. Теплотехнические показатели строительных материалов и конструкций). Как вы увидете — расчетные данные в наших нормах не всегда сопадают с данными международных стандартов, полученных лабораторными испытаниями. Например, в отечественных СНиП паропроницаемость керамзитобетона и шлакобетона практически не отличается, по международным стандартам она отличается в 5 раз. В отечественых нормах паропроницаемость гипсокартона и шлакобетона почти одинакова, а в международных стандартах она отличается в 2-3 раза. Пеностекло по международным стандартам абсолютно паронепроницаемо, по нашим нормам — оно всего лишь в три раза менее паропроницаемо, чем цементная штукатурка и т.д. и т.п.

Полезной информацией для строителей могут оказаться данные по сравнительной паропроницаемости строительных материалов в U.S. perm единицах. Посмотрите статью о спсообах избавления от высокой влажности в доме.

Строительные материалы / материалы

коэффициент сопротивления паропроницаемости(µ)

коэффициент сопротивления паропроницаемости(µ)

Расчетный коэффициент паропроницаемости
(m, м2• ч • Па/мг)

сухое состояние
вл. 70%

для неотапливаемых зданий и всех наружных конструкций

базовые значения для дальнейших расчетов с учетом реальной влажности

Расчеты и пересчеты по паропроницаемостям ветрозащитных мембран. Паропроницаемость стен – избавляемся от вымыслов Коэффициент паропроницаемости материала слоя ограждающей конструкции

В таблице даны значения сопротивления паропроницанию материалов и тонких слоев пароизоляции для распространенных . Сопротивление паропроницанию материалов Rп может быть определено, как частное от деления толщины материала на его коэффициент паропроницаемости μ.

Следует отметить, что сопротивление паропроницанию может быть указано только для материала заданной толщины , в отличие от , который к толщине материала не привязан и определяется только структурой материала. Для многослойных листовых материалов общее сопротивление паропроницанию будет равно сумме сопротивлений материала слоев.

Чему равно сопротивление паропроницанию? Например, рассмотрим значение сопротивления паропроницанию обыкновенного толщиной 1,3 мм. По данным таблицы это значение равно 0,016 м 2 ·ч·Па/мг. Что же значит эта величина? Означает она следующее: через квадратный метр площади такого картона за 1 час пройдет 1 мг при разности его парциальных давлений у противоположных сторон картона, равной 0,016 Па (при одинаковых температуре и давлении воздуха с обеих сторон материала).

Таким образом, сопротивление паропроницанию показывает необходимую разность парциальных давлений водяного пара , достаточную для прохода 1 мг водяного пара через 1 м 2 площади листового материала, указанной толщины, за 1 час. Согласно ГОСТ 25898-83, сопротивление паропроницанию определяют для листовых материалов и тонких слоев пароизоляции имеющих толщину не более 10 мм. Следует отметить, что пароизоляция с наибольшим сопротивлением паропроницанию в таблице — это .

Таблица сопротивления паропроницанию
Материал Толщина слоя,
мм
Сопротивление Rп,
м 2 ·ч·Па/мг
Картон обыкновенный 1,3 0,016
Листы асбоцементные 6 0,3
Листы гипсовые обшивочные (сухая штукатурка) 10 0,12
Листы древесно-волокнистые жесткие 10 0,11
Листы древесно-волокнистые мягкие 12,5 0,05
Окраска горячим битумом за один раз 2 0,3
Окраска горячим битумом за два раза 4 0,48
Окраска масляная за два раза с предварительной шпатлевкой и грунтовкой 0,64
Окраска эмалевой краской 0,48
Покрытие изольной мастикой за один раз 2 0,6
Покрытие битумно-кукерсольной мастикой за один раз 1 0,64
Покрытие битумно-кукерсольной мастикой за два раза 2 1,1
Пергамин кровельный 0,4 0,33
Полиэтиленовая пленка 0,16 7,3
Рубероид 1,5 1,1
Толь кровельный 1,9 0,4
Фанера клееная трехслойная 3 0,15

Источники:
1. Строительные нормы и правила. Строительная теплотехника. СНиП II-3-79. Минстрой России — Москва 1995.
2. ГОСТ 25898-83 Материалы и изделия строительные. Методы определения сопротивления паропроницанию.

В процессе стройки любой материал в первую очередь должен оцениваться по его эксплуатационно-техническим характеристикам. Решая задачу построить “дышащий” дом, что наиболее свойственно строениям из кирпича или дерева, или наоборот добиться максимальной сопротивляемости паропроницанию, необходимо знать и уметь оперировать табличными константами для получения расчетных показателей паропроницаемости строительных материалов.

Что такое паропроницаемость материалов

Паропроницаемость материалов – способность пропускать или задерживать водяной пар в результате разности парциального давления водяного пара на обеих сторонах материала при одинаковом атмосферном давлении. Паропроницаемость характеризуется коэффициентом паропроницаемости или сопротивлением паропроницаемости и нормируется СНиПом II-3-79 (1998) «Строительная теплотехника», а именно главой 6 «Сопротивление паропроницанию ограждающих конструкций»

Таблица паропроницаемости строительных материалов

Таблица паропроницаемости представлена в СНиПе II-3-79 (1998) «Строительная теплотехника», приложении 3 «Теплотехнические показатели строительных материалов конструкций». Показатели паропроницаемости и теплопроводности наиболее распространенных материалов, используемых для строительства и утепления зданий представлены далее в таблице.

Материал

Плотность, кг/м3

Теплопроводность, Вт/(м*С)

Паропроницаемость, Мг/(м*ч*Па)

Алюминий

Асфальтобетон

Гипсокартон

ДСП, ОСП

Дуб вдоль волокон

Дуб поперек волокон

Железобетон

Картон облицовочный

Керамзит

Керамзит

Керамзитобетон

Керамзитобетон

Кирпич керамический пустотелый

Таблица паропроницаемости строительных материалов (СНиП)

Паропроницаемость материала выражена в его способности пропускать водяной пар. Данное свойство противостоять проникновению пара или позволять ему проходить сквозь материал определяется уровнем коэффициента паропроницаемости, который обозначается µ. Это значение, которое звучит как «мю», выступает в качестве относительной величины сопротивления переносу пара в сравнении с характеристиками сопротивления воздуха.

Диаграмма паропроницаемости наиболее распространенных строительных материалов.

Существует таблица, которая отражает способность материала к паропереносу, ее можно увидеть на рис. 1. Таким образом, значение мю для минеральной ваты равно 1, это указывает на то, что она способна пропускать водяной пар так же хорошо, как и сам воздух. Тогда как это значение для газобетона равно 10, это означает, что он справляется с проведением пара в 10 раз хуже воздуха. Если показатель мю умножить на толщину слоя, выраженную в метрах, это позволит получить равную по уровню паропроницаемости толщину воздуха Sd (м).

Из таблицы видно, что для каждой позиции показатель паропроницаемости указан при разном состоянии. Если заглянуть в СНиП, то можно увидеть расчетные данные показателя мю при отношении влаги в теле материала, приравненном к нулю.

Рисунок 1. Таблица паропроницаемости стройматериалов

По этой причине при приобретении товаров, которые предполагается использовать в процессе дачного строительства, предпочтительнее брать в расчет международные стандарты ISO, так как они определяют показатель мю в сухом состоянии, при уровне влажности не более 70% и показателе влажности более 70%.

При выборе строительных материалов, которые лягут в основу многослойной конструкции, показатель мю слоев, находящихся изнутри, должен быть ниже, в противном случае со временем внутри расположенные слои станут намокать, вследствие этого они потеряют свои теплоизоляционные качества.

При создании ограждающих конструкций нужно позаботиться об их нормальном функционировании. Для этого следует придерживаться принципа, который гласит, что уровень мю материала, который расположен в наружном слое, должен в 5 раз или больше превышать упомянутый показатель материала, находящегося во внутреннем слое.

Механизм паропроницаемости

При условиях незначительной относительной влажности частички влаги, которые содержатся в атмосфере, проникают сквозь поры строительных материалов, оказываясь там в виде молекул пара. В момент увеличения уровня относительной влажности поры слоев накапливают воду, что становится причиной намокания и капиллярного подсоса.

В момент повышения уровня влажности слоя его показатель мю увеличивается, таким образом, уровень сопротивления паропроницаемости снижается.

Показатели паропроницаемости неувлажненных материалов применимы в условиях внутренних конструкций построек, которые имеют отопление. А вот уровни паропроницаемости увлажненных материалов применимы для любых конструкций построек, которые не отапливаются.

Схема прибора для определения паропроницаемости.

Уровни паропроницаемости, которые являются частью наших норм, не во всех случаях эквивалентны показателям, которые принадлежат к международным стандартам. Так, в отечественных СНиП уровень мю керамзито- и шлакобетона почти не отличается, тогда как по международным стандартам данные отличаются между собой в 5 раз. Уровни паропроницаемости ГКЛ и шлакобетона в отечественных нормах практически одинаковы, а в международных стандартах данные отличаются в 3 раза.

Существуют различные способы определения уровня паропроницаемости, что касается мембран, то можно выделить следующие способы:

  1. Американский тест с установленной вертикально чашей.
  2. Американский тест с перевернутой чашей.
  3. Японский тест с вертикальной чашей.
  4. Японский тест с перевернутой чашей и влагопоглотителем.
  5. Американский тест с вертикальной чашей.

В японском тесте используется сухой влагопоглотитель, который расположен под тестируемым материалом. Во всех тестах используется уплотнительный элемент.

Вернуться к оглавлению

Влияние паропроницаемости на другие характеристики

Некоторые производители указывают на зависимость атмосферы легкости в доме от показателей паропроницаемости строительных материалов. Однако если даже вы возьмете в расчет данные таблиц, в которых отражены уровни мю каждого материала, и выберете тот, который обладает наиболее высоким показателем, то через стены станет удаляться лишь 4% всего объема удаляемого из помещения пара, тогда как 96% станут устраняться посредством вытяжек и окон.

А вот если помещение обклеено виниловыми или флизелиновыми обоями, то стены и вовсе не способны пропускать влагу. Если после строительства не был использован утеплительный материал, то в ветреную погоду или сильный мороз из комнат будет уходить тепло. Кроме того, долговечность стен, которые имеют высокую степень паропроницаемости и низкую плотность, гораздо ниже. Ведь при более высоком уровне паропроницаемости материал больше способен накапливать влагу, которая замерзает при морозах, уменьшая морозостойкость.

Производители материалов по типу газобетона или пенобетона хитрят, когда указывают конечную теплопроводность, так как при расчетах используется материал в идеально сухом состоянии. Если блок, выполненный из газобетона, наберет влагу, то его способности к теплоизоляции будут снижены в 5 раз, таким образом, стены в доме, которые выстроены из этого материала, будут отлично выпускать теплый воздух из помещений. Ситуация ухудшится, если температура снизится, это станет причиной смещения точки росы внутрь стены, конденсат, который образовался в стене, замерзнет.

Жидкость, замерзая, увеличится в размерах и станет способствовать разрушению материала. Через некоторое количество циклов замерзания и оттаивания материал полностью придет в негодность. Поэтому не во всех случаях стоит выбирать тот материал, который имеет высокую степень паропроницаемости.

Источник

Leave Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *