Лучи ультракрасные – польза и вред для организма человека, что такое ИК лучи, применение свойств (фонарь, прожектор, лазер), а также лечение в медицине

Содержание

Инфракрасное излучение — Википедия

Изображение собаки, полученное в инфракрасном излучении

Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны[1] λ = 0,74 мкм[2] и частотой 430 ТГц) и микроволновым радиоизлучением (λ ~ 1—2 мм, частота 300 ГГц)[3].

Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Например, слой воды в несколько сантиметров непрозрачен для инфракрасного излучения с λ = 1 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, газоразрядных ламп, около 50 % излучения Солнца; инфракрасное излучение испускают некоторые лазеры. Для его регистрации пользуются тепловыми и фотоэлектрическими приёмниками, а также специальными фотоматериалами[4].

Весь диапазон инфракрасного излучения условно делят на три области:

  • ближняя: λ = 0,74—2,5 мкм;
  • средняя: λ = 2,5—50 мкм;
  • дальняя: λ = 50—2000 мкм[5].

Длинноволновую окраину этого диапазона иногда выделяют в отдельный диапазон электромагнитных волн — терагерцевое излучение (субмиллиметровое излучение).

Инфракрасное излучение также называют «тепловым излучением», так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне. Инфракрасное излучение испускают возбуждённые атомы или ионы.

История открытия и общая характеристика[править | править код]

Эксперимент Гершеля

Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем. Занимаясь исследованием Солнца, Гершель искал способ уменьшения нагрева инструмента, с помощью которого велись наблюдения. Определяя с помощью термометров действия разных участков видимого спектра, Гершель обнаружил, что «максимум тепла» лежит за насыщенным красным цветом и, возможно, «за видимым преломлением». Это исследование положило начало изучению инфракрасного излучения.

Раньше лабораторными источниками инфракрасного излучения служили исключительно раскалённые тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней инфракрасной-области (до ~1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы. Излучение в дальней ИК-области регистрируется болометрами — детекторами, чувствительными к нагреву инфракрасным излучением

[6].

ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решётки и зеркала. Чтобы исключить поглощение излучения в воздухе, спектрометры для дальней ИК-области изготавливаются в вакуумном варианте

[6].

Поскольку инфракрасные спектры связаны с вращательными и колебательными движениями в молекуле, а также с электронными переходами в атомах и молекулах, ИК-спектроскопия позволяет получать важные сведения о строении атомов и молекул, а также о зонной структуре кристаллов[6].

Объекты обычно испускают инфракрасное излучение во всём спектре длин волн, но иногда только ограниченная область спектра представляет интерес, поскольку датчики обычно собирают излучение только в пределах определенной полосы пропускания. Таким образом, инфракрасный диапазон часто подразделяется на более мелкие диапазоны.

Обычная схема деления[править | править код]

Чаще всего разделение на более мелкие диапазоны производится следующим образом:[7]

АббревиатураДлина волныЭнергия фотоновХарактеристика
Near-infrared, NIR0,75—1,4 мкм0,9—1,7 эВБлижний ИК, ограниченный с одной стороны видимым светом, с другой — прозрачностью воды, значительно ухудшающейся при 1,45 мкм. В этом диапазоне работают широко распространенные инфракрасные светодиоды и лазеры для систем волоконной и воздушной оптической связи. Видеокамеры и приборы ночного видения на основе ЭОП также чувствительны в этом диапазоне.
Short-wavelength infrared, SWIR1,4—3 мкм0,4—0,9 эВПоглощение электромагнитного излучения водой значительно возрастает при 1450 нм. Диапазон 1530—1560 нм преобладает в области дальней связи.
Mid-wavelength infrared, MWIR3—8 мкм150—400 мэВВ этом диапазоне начинают излучать тела, нагретые до нескольких сотен градусов Цельсия. В этом диапазоне чувствительны тепловые головки самонаведения систем ПВО и технические тепловизоры.
Long-wavelength infrared, LWIR8—15 мкм80—150 мэВВ этом диапазоне начинают излучать тела с температурами около нуля градусов Цельсия. В этом диапазоне чувствительны тепловизоры для приборов ночного видения.
Far-infrared, FIR15— 1000 мкм1,2—80 мэВ

CIE схема[править | править код]

Международная комиссия по освещённости (англ. International Commission on Illumination) рекомендует разделение инфракрасного излучения на следующие три группы[8]:

  • IR-A: 700 нм — 1400 нм (0,7 мкм — 1,4 мкм)
  • IR-B: 1400 нм — 3000 нм (1,4 мкм — 3 мкм)
  • IR-C: 3000 нм — 1 мм (3 мкм — 1000 мкм)

ISO 20473 схема[править | править код]

Международная организация по стандартизации предлагает следующую схему:

ОбозначениеАббревиатураДлина волны
Ближний инфракрасный диапазонNIR0,78—3 мкм
Средний инфракрасный диапазонMIR3—50 мкм
Дальний инфракрасный диапазонFIR50—1000 мкм

Астрономическая схема[править | править код]

Астрономы обычно делят инфракрасный спектр следующим образом[9]:

ОбозначениеАббревиатураДлина волны
Ближний инфракрасный диапазон
NIR(0.7…1) — 5 мкм
Средний инфракрасный диапазонMIR5 — (25…40) мкм
Дальний инфракрасный диапазонFIR(25…40) — (200…350) мкм

Теплово́е излуче́ние или лучеиспускание — передача энергии от одних тел к другим в виде электромагнитных волн, излучаемых телами за счёт их внутренней энергии. Тепловое излучение в основном приходится на инфракрасный участок спектра от 0,74 мкм до 1000 мкм. Отличительной особенностью лучистого теплообмена является то, что он может осуществляться между телами, находящимися не только в какой-либо среде, но и вакууме. Примером теплового излучения является свет от лампы накаливания. Мощность теплового излучения объекта, удовлетворяющего критериям абсолютно чёрного тела, описывается законом Стефана — Больцмана. Отношение излучательной и поглощательной способностей тел описывается законом излучения Кирхгофа. Тепловое излучение является одним из трёх элементарных видов переноса тепловой энергии (помимо теплопроводности и конвекции). Равновесное излучение — тепловое излучение, находящееся в термодинамическом равновесии с веществом.

Органы восприятия человека и других высших приматов не приспособлены под инфракрасное излучение (проще говоря, человеческий глаз его не видит), однако, некоторые биологические виды способны воспринимать органами зрения инфракрасное излучение. Так, например, зрение некоторых змей позволяет им видеть в инфракрасном диапазоне и охотиться на теплокровную добычу ночью (когда её силуэт обладает наиболее выраженным контрастом на фоне остывшей местности). Более того, у обыкновенных удавов эта способность имеется одновременно с нормальным зрением, в результате чего они способны видеть окружающее одновременно в двух диапазонах: нормальном видимом (как и большинство животных) и инфракрасном. Среди рыб способностью видеть под водой в инфракрасном диапазоне отличаются такие рыбы как пиранья, охотящаяся на зашедших в воду теплокровных животных, и золотая рыбка. Среди насекомых инфракрасным зрением обладают комары, что позволяет им с большой точностью ориентироваться на наиболее насыщенные кровеносными сосудами участки тела добычи

[10].

Прибор ночного видения[править | править код]

Существует несколько способов визуализировать невидимое инфракрасное изображение:

  • Современные полупроводниковые видеокамеры чувствительны в ближнем ИК. Во избежание ошибок цветопередачи обычные бытовые видеокамеры снабжаются специальным фильтром, отсекающим ИК изображение. Камеры для охранных систем, как правило, не имеют такого фильтра. Однако в темное время суток нет естественных источников ближнего ИК, поэтому без искусственной подсветки (например, инфракрасными светодиодами) такие камеры ничего не покажут.
  • Электронно-оптический преобразователь — вакуумный фотоэлектронный прибор, усиливающий свет видимого спектра и ближнего ИК. Имеет высокую чувствительность и способен давать изображение при очень низкой освещенности. Являются исторически первыми приборами ночного видения, широко используются и в настоящее время в дешевых ПНВ. Поскольку работают только в ближнем ИК, то, как и полупроводниковые видеокамеры, требуют наличия освещения.
  • Болометр — тепловой сенсор. Болометры для систем технического зрения и приборов ночного видения чувствительны в диапазоне длин волн 3—14 мкм (средний ИК), что соответствует излучению тел, нагретых от 500 до −50 градусов Цельсия. Таким образом, болометрические приборы не требуют внешнего освещения, регистрируя излучение самих предметов и создавая картинку разности температур.

Термография[править | править код]

Изображение девушки, полученное в инфракрасном диапазоне

Инфракрасная термография, тепловое изображение или тепловое видео — это научный способ получения термограммы — изображения в инфракрасных лучах, показывающего картину распределения температурных полей. Термографические камеры или тепловизоры обнаруживают излучение в инфракрасном диапазоне электромагнитного спектра (примерно 900—14000 нанометров) и на основе этого излучения создают изображения, позволяющие определить перегретые или переохлаждённые места. Так как инфракрасное излучение испускается всеми объектами, имеющими температуру, согласно формуле Планка для излучения чёрного тела, термография позволяет «видеть» окружающую среду с или без видимого света. Величина излучения, испускаемого объектом, увеличивается с повышением его температуры, поэтому термография позволяет нам видеть различия в температуре. Когда смотрим через тепловизор, то тёплые объекты видны лучше, чем охлаждённые до температуры окружающей среды; люди и теплокровные животные легче заметны в окружающей среде, как днём, так и ночью. Как результат, продвижение использования термографии может быть приписано военным и службам безопасности.

Инфракрасное самонаведение[править | править код]

Инфракрасная головка самонаведения — головка самонаведения, работающая на принципе улавливания волн инфракрасного диапазона, излучаемых захватываемой целью. Представляет собой оптико-электронный прибор, предназначенный для идентификации цели на окружающем фоне и выдачи в автоматическое прицельное устройство (АПУ) сигнала захвата, а также для измерения и выдачи в автопилот сигнала угловой скорости линии визирования.

Инфракрасный обогреватель[править | править код]

Инфракрасное излучение повсеместно применяют для обогрева помещений и уличных пространств. Инфракрасный обогреватель — отопительный прибор, отдающий тепло преимущественно излучением, а не конвекцией — используется для организации дополнительного или основного отопления в помещениях (домах, квартирах, офисах и т. п.), а также для локального обогрева уличного пространства (уличные кафе, беседки, веранды)[11].

Инфракрасный обогреватель в быту иногда неточно называется рефлектором. Лучистая энергия поглощается окружающими поверхностями, превращаясь в тепловую энергию, нагревает их, которые в свою очередь отдают тепло воздуху. Это дает существенный экономический эффект по сравнению с конвекционным обогревом, где тепло существенно расходуется на обогрев неиспользуемого подпотолочного пространства. Кроме того, при помощи ИК обогревателей появляется возможность местного обогрева только тех площадей в помещении, в которых это необходимо без обогрева всего объёма помещения; тепловой эффект от инфракрасных обогревателей ощущается сразу после включения, что позволяет избежать предварительного нагрева помещения. Эти факторы снижают затраты энергии.

При покраске[править | править код]

Инфракрасные излучатели применяют в промышленности для сушки лакокрасочных поверхностей. Инфракрасный метод сушки имеет существенные преимущества перед традиционным, конвекционным методом. В первую очередь это, безусловно, экономический эффект: процесс идёт гораздо быстрее, а энергии, при этом, затрачивается гораздо меньше, чем при традиционных методах.

Инфракрасная астрономия[править | править код]

Раздел астрономии и астрофизики, исследующий космические объекты, видимые в инфракрасном излучении. При этом под инфракрасным излучением подразумевают электромагнитные волны с длиной волны от 0,74 до 2000 мкм. Инфракрасное излучение находится в диапазоне между видимым излучением, длина волны которого колеблется от 380 до 750 нанометров, и субмиллиметровым излучением.

Инфракрасная астрономия начала развиваться в 1830-е годы, спустя несколько десятилетий после открытия инфракрасного излучения Уильямом Гершелем. Первоначально прогресс был незначительным и до начала 20 века отсутствовали открытия астрономических объектов в инфракрасном диапазоне помимо Солнца и Луны, однако после ряда открытий, сделанных в радиоастрономии в 1950-х и 1960-х годах, астрономы осознали наличие большого объёма информации, находящегося вне видимого диапазона волн. С тех пор была сформирована современная инфракрасная астрономия.

Инфракрасная спектроскопия[править | править код]

Инфракрасная спектроскопия — раздел спектроскопии, охватывающий длинноволновую область спектра (>730 нм за красной границей видимого света). Инфракрасные спектры возникают в результате колебательного (отчасти вращательного) движения молекул, а именно — в результате переходов между колебательными уровнями основного электронного состояния молекул. ИК излучение поглощают многие газы, за исключением таких как О2, N2, H2, Cl2 и одноатомных газов. Поглощение происходит на длине волны, характерной для каждого определенного газа, для СО, например, таковой является длина волны 4,7 мкм.

По инфракрасным спектрам поглощения можно установить строение молекул различных органических (и неорганических) веществ с относительно короткими молекулами: антибиотиков, ферментов, алкалоидов, полимеров, комплексных соединений и др. Колебательные спектры молекул различных органических (и неорганических) веществ с относительно длинными молекулами (белки, жиры, углеводы, ДНК, РНК и др.) находятся в терагерцевом диапазоне, поэтому строение этих молекул можно установить с помощью радиочастотных спектрометров терагерцевого диапазона. По числу и положению пиков в ИК спектрах поглощения можно судить о природе вещества (качественный анализ), а по интенсивности полос поглощения — о количестве вещества (количественный анализ). Основные приборы — различного типа инфракрасные спектрометры.

Передача данных[править | править код]

Распространение инфракрасных светодиодов, лазеров и фотодиодов позволило создать беспроводной оптический метод передачи данных на их основе. В компьютерной технике обычно используется для связи компьютеров с периферийными устройствами (интерфейс IrDA) В отличие от радиоканала инфракрасный канал нечувствителен к электромагнитным помехам, и это позволяет использовать его в производственных условиях. К недостаткам инфракрасного канала относятся необходимость в оптических окнах на оборудовании, правильной взаимной ориентации устройств. На данный момент существует большое количество производителей сетевого оборудования, основанного на передаче света в атмосфере (FSO), как правило это точка – точка. Сейчас учёными достигнута скорость передачи данных в атмосфере более 4 Тбит/с. При этом известны серийно выпускаемые терминалы связи со скоростью до 100 Гбит/с. В условиях прямой видимости инфракрасный канал может обеспечить связь на расстояниях в несколько километров. О скрытности канала связи не приходится и говорить, так как ИК диапазон не виден человеческому глазу (без использование специального прибора), и угловая расходимость канала связи не превышает 17 мкрад по всем осям.

Тепловое излучение применяется также для приёма сигналов оповещения[12].

Дистанционное управление[править | править код]

Инфракрасные диоды и фотодиоды повсеместно применяются в пультах дистанционного управления, системах автоматики, охранных системах, некоторых мобильных телефонах (инфракрасный порт) и т. п. Инфракрасные лучи не отвлекают внимание человека в силу своей невидимости.

Интересно, что инфракрасное излучение бытового пульта дистанционного управления легко фиксируется с помощью дешёвых цифровых фотоаппаратов или видеокамер с ночным режимом, в которых нет специального инфракрасного фильтра.

Медицина[править | править код]

Наиболее широко инфракрасное излучение в медицине применяется в различных датчиках потока крови (PPG).

Широко распространённые измерители частоты пульса (ЧСС, HR — Heart Rate) и насыщения крови кислородом (SpO2) используют светодиоды зелёного (для пульса) и красного и инфракрасного (для SpO2) излучений.

Излучение инфракрасного лазера используется в методике DLS (Digital Light Scattering) для определения частоты пульса и характеристик потока крови.

Инфракрасные лучи применяются в физиотерапии.

Влияние длинноволнового инфракрасного излучения:

  • Стимуляция и улучшение кровообращения. При воздействии длинноволнового инфракрасного излучения на кожный покров происходит раздражение рецепторов кожи и, вследствие реакции гипоталамуса, расслабляются гладкие мышцы кровеносных сосудов, в результате сосуды расширяются.
  • Улучшение процессов метаболизма. При тепловом воздействии инфракрасного излучения стимулируется активность на клеточном уровне, улучшаются процессы нейрорегуляции и метаболизма.

Стерилизация пищевых продуктов[править | править код]

С помощью инфракрасного излучения стерилизируют пищевые продукты с целью дезинфекции[источник не указан 539 дней].

Пищевая промышленность[править | править код]

Особенностью применения ИК-излучения в пищевой промышленности является возможность проникновения электромагнитной волны в такие капиллярно-пористые продукты, как зерно, крупа и мука, на глубину до 7 мм. Эта величина зависит от характера поверхности, структуры, свойств материала и частотной характеристики излучения. Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах (крахмал, белок, липиды). Конвейерные сушильные транспортёры с успехом могут использоваться при закладке зерна в зернохранилища и в мукомольной промышленности.

Недостатком же является существенно большая неравномерность нагрева, что в ряде технологических процессов совершенно неприемлемо.

Проверка денег на подлинность[править | править код]

Инфракрасный излучатель применяется в приборах для проверки денег. Нанесённые на купюру как один из защитных элементов специальные метамерные краски возможно увидеть исключительно в инфракрасном диапазоне. Инфракрасные детекторы валют являются самыми безошибочными приборами для проверки денег на подлинность[источник не указан 3209 дней]. Нанесение на купюру инфракрасных меток, в отличие от ультрафиолетовых, фальшивомонетчикам обходится дорого и соответственно экономически невыгодно[источник не указан 539 дней]. Потому детекторы банкнот со встроенным ИК излучателем, на сегодняшний день, являются самой надёжной защитой от подделок[источник не указан 539 дней].

Очень сильное инфракрасное излучение в местах высокого нагрева может высушивать слизистую оболочку глаз. Наиболее опасно, когда излучение не сопровождается видимым светом. В таких ситуациях необходимо надевать специальные защитные очки для глаз[13].

Инфракрасное излучение с длиной волны 1.35 мкм, 2.2 мкм при достаточной пиковой мощности в лазерном импульсе может вызывать эффективное разрушение молекул ДНК, более сильное, чем излучение в ближнем ИК-диапазоне[14].

Поверхность Земли и облака поглощают видимое и невидимое излучение от Солнца и переизлучают большую часть поглощённой энергии в виде инфракрасного излучения обратно в атмосферу. Некоторые вещества в атмосфере, главным образом капли воды и водяной пар, а также диоксид углерода, метан, азот, гексафторид серы и хлорфторуглерод поглощают это инфракрасное излучение и вновь излучают его во всех направлениях, включая обратно на Землю. Таким образом, парниковый эффект удерживает атмосферу и поверхность в более нагретом состоянии, чем если бы инфракрасные поглотители отсутствовали в атмосфере[15][16].

Польза и вред инфракрасного излучения, применение, влияние на организм

Ежедневно каждый человек, так или иначе, испытывает на себе воздействие инфракрасного излучения. Его формируют электрические приборы, но это не единственный источник. Встает вопрос, отражается ли постоянное их воздействие на организме человека. Немаловажно знать, в чем заключаются польза и вред инфракрасного излучения.

Что такое инфракрасное излучение

Инфракрасное излучение – это вид тепловой энергии. По-другому его называют «тепловое излучение». Оно производится лампами накаливания, а также составляет около половины от всего излучения Солнца. Это электромагнитное излучение, чья длина волны достигает от 0,74 мкм до 2000 мкм (что составляет 2 мм). Невооруженным глазом увидеть его нельзя, для его регистрации существуют специальные приборы.

Данная энергия бывает нескольких видов:

  • ближняя λ = 0,74-2,5 мкм;
  • средняя λ = 2,5-50 мкм;
  • дальняя λ = 50-2000 мкм.

Часть средневолнового инфракрасного излучения, а именно от 7 до 14 мкм, обладает свойствами, способными положительным образом влиять на организм, поскольку данная длина волны соответствует естественному излучению человеческого тела.

Влияние инфракрасного излучения на организм человека

Намеренное использование свойств ИК-лучей приносит пользу организму человека. Вот примеры, как именно они способствуют общему укреплению здоровья:

  1. Лучи способствуют уничтожению болезнетворных бактерий, тем самым помогая в борьбе с простудными заболеваниями.
  2. Действие инфракрасных лучей укрепляет иммунитет детей и взрослых.
  3. Также докторами отмечена их польза для кожи. За счет усиления кровотока коже легче получить необходимые вещества, вследствие этого она становится более подтянутой.
  4. Косметическим эффектом польза лучей для кожи неограниченна. Многочисленные исследования показывают, что они способствуют излечению кожных заболеваний, таких как крапивница, псориаз, дерматит.
  5. Насыщенность замкнутого пространства инфракрасным излучением способствует снижению вреда от пыли для организма человека.

Важно! Лечебное действие инфракрасного излучения обусловлено тем, что лучи, проникая в организм человека, запускают цепочки сложных биохимических реакций.

Лечение инфракрасным излучением

Таким образом, польза инфракрасного излучения для человека достигается через следующий механизм:

  1. Тепло, поступающее от лучей, запускает и ускоряет биохимические реакции.
  2. В первую очередь, начинается усиление процессов регенерации тканей, сеть сосудов становится шире, ускоряется ток крови.
  3. Вследствие этого рост здоровых клеток становится все более интенсивным, плюс ко всему в организме начинают самостоятельно вырабатываться биологически активные вещества.
  4. Все это снижает артериальное давление за счет лучшего кровоснабжения, благодаря чему достигается мышечная релаксация.
  5. Обеспечивается легкий доступ белых кровяных тел к очагам воспаления. Это приводит к укреплению иммунитета и усилению защитных функций организма в борьбе с различными заболеваниями.

Именно благодаря таким особым свойствам и достигается общеукрепляющий эффект для организма при лечении инфракрасными лучами.

При лечении облучению может подвергаться как организм целиком, так и некоторая его пораженная часть. Процедуры могут проводиться до 2 раз в день, а продолжительность сеанса – до получаса. Количество процедур зависит от потребностей пациента. Чтобы не навредить, во время сеансов обязательно необходимо защитить от воздействия излучения глаза и зону вокруг них. Для этого используются различные способы.

Внимание! Покраснение кожи, проявившееся после процедуры на коже, исчезнет в течение часа.

Польза инфракрасных лучей

Научно доказана польза применения инфракрасных лучей в медицине. Общее укрепление здоровья человека, лечение бактериальных инфекций, снижение артериального давления и расслабление мышц – вот неполный список положительных сторон этого удивительного открытия.

Человек, благодаря своему упорству, сумел найти этому удивительному явлению полезное применение в самых различных и иногда даже не связанных друг с другом сферах своей деятельности. Разумеется, за всем этим стоит внимательное изучение свойств лучей.

Сферы применения инфракрасного излучения

Его используют в пищевой промышленности, при физико-химическом анализе, а также во многих других сферах:

  1. С его помощью стерилизуют продукты питания.
  2. В пищевом производстве лучи используют не только для термической обработки сырья, но и для ускорения биохимических реакций в нем.
  3. ИК-спектроскопия является методом качественного и количественного анализа, позволяющего устанавливать строение многих молекул, благодаря особым свойствам инфракрасного излучения.
  4. При проверке купюр на подлинность также используется данная технология. При изготовлении купюр, их помечают специальными красителями, которые можно увидеть только с помощью ИК-лучей. Мошенникам такие деньги подделать очень сложно.
  5. Свойства инфракрасных лучей полезны для использования в приборах ночного видения, считывающих объекты в темноте.
  6. Лучи применяются для дистанционного управления.

Особого внимания заслуживает ранее упомянутое применение инфракрасных лучей в медицине. Однако все же существует некоторый вред от воздействия лучей и противопоказания к их применению. Как правило, польза и вред инфракрасного излучения для человека обусловлены длиной волны.

Вред и последствия воздействия инфракрасных лучей

Сильное воздействие инфракрасного света наносит вред, а не пользу оболочке глаза, если, точнее, высушивает ее. Это встречается в местах с очень высокой степенью нагрева.

Сильное облучение также вызывает ожог кожи. В этом случае сначала происходит покраснение кожи. К профессиональным заболеваниям людей, часто сталкивающихся на рабочем месте с облучением, относят как раз болезни, симптомами которых является поражения кожи. Могут возникнуть и новообразования. К более легким последствиям вредного воздействия относят дерматит, что тоже является непростым заболеванием.

Противопоказания к применению инфракрасного излучения

Следует избегать использования инфракрасного излучения в качестве лечебной или профилактической процедуры в следующих случаях:

  • беременность и период лактации;
  • частые кровотечения;
  • гнойные процессы;
  • хронические заболевания в стадии обострения;
  • болезни крови;
  • онкологические заболевания.

Особые свойства инфракрасного излучения в данных случаях могут стать причиной нанесения организму вреда, что усугубит уже имеющиеся заболевания. Пользу при наличии подобных противопоказаний такое лечение точно не принесет.

Как избежать вредного воздействия инфракрасного излучения

Патогенное действие на организм инфракрасных лучей происходит, если они являются коротковолновыми. Их основными источниками являются бытовые обогреватели. Таким образом, во избежание вреда для организма, следует либо максимально ограничить их использование в быту, либо находиться как можно дальше от источника тепла. В этом случае бытовое инфракрасное излучение очень вредно. В инструкции, прикладываемой в комплекте к безопасному обогревателю, обязательно должно быть указано, что его поверхность покрыта материалом, защищенным от тепла, или же что поверхность его излучения меньше 100 оС. Они излучают лишь длинные волны, свойства которых не причинят здоровью вреда, даже могут оказать некую пользу.

С источниками вредного воздействия можно столкнуться на производстве. Это могут быть различные технические печи. Для защиты от пагубных свойств лучей работникам в обязательном порядке выдается специальная одежда и снаряжение, которое позволит минимизировать вред.

Первая помощь при тепловом ударе

Если же осложнений избежать не удалось, необходимо предпринять комплекс определенных мер.

При оказании первой помощи от теплового удара следует произвести следующие действия.

  1. Вызвать бригаду скорой помощи.
  2. Переместить пострадавшего в прохладное место, лучше всего в тень, где будет доступ свежего воздуха.
  3. Облегчить ему дыхание, сняв или расстегнув одежду. Дать валидол.
  4. Положить пострадавшего в горизонтальное положение, приподняв ему ноги.
  5. Напоить пострадавшего 1 л воды с небольшим добавлением соли.
  6. Охладить человека, обмотав его холодным мокрым полотенцем, приложить ко лбу лед.
  7. В случае потери сознания необходимо дать пострадавшему понюхать нашатырный спирт.

Заключение

Таким образом, польза и вред инфракрасного излучения для человека зависят только от того, как грамотно применять лучи. Как и любая вещь, имеющая техногенную природу, инфракрасные лучи имеют свои плюсы и минусы. Со временем человечество находит их свойствам все больше полезного применения, открывая новые возможности при этом, не забывая об их возможном пагубном влиянии. К счастью, в быту не так много излучающих предметов, способных нанести человеку непоправимый вред.

Была ли Вам данная статья полезной?

Да Нет

Инфракрасное излучение. Польза и вред для человека

Существуют природные явления, которые незаметны человеческому глазу, хотя мы чувствуем силу их действия. Они способны оказывать не меньшее влияние, чем видимые процессы. Мы не видим инфракрасные лучи, но можем чувствовать их тепло. Действие инфракрасного излучения благотворно для живых организмов на Земле и играет важную роль в развитии жизни. Все живое находится под влиянием инфракрасного света.

Особенность инфракрасного излучения в том, что без него в человеческом организме появляются разные болезни, ускоряется старение. Но в данном случае граница между пользой и вредом инфракрасного излучения для человека тонкая. Поэтому важно знать, как ее не перешагнуть и что предпринять, если инфракрасные лучи привели к негативным последствиям.

Что такое инфракрасное излучение?

Изучая в 1800 году Солнце, английский ученый У. Гершель измерял температуру различных участков видимого спектра. Им было обнаружено, что за насыщенным красным цветом находится высшая точка тепла. Тогда в науке и появилось понятие инфракрасного излучения (ИК-излучение).

Инфракрасные лучи недоступны невооруженному взору, но ощущаемы кожей как тепло. Они относятся к электромагнитному излучению, которое располагается между красным концом видимого света и микроволновым радиоизлучением. ИК-излучение еще принято называть тепловым.

Оно излучается атомами, которые обладают избыточной энергией, и ионами. Каждое тело с температурой выше нуля – это источник инфракрасного излучения. Солнце – известный природный источник ИК-лучей.

Длина волн в ИК-излучении зависит от температуры нагревания. Самая высокая температура у коротких волн с большой интенсивностью излучения. Диапазон инфракрасных лучей широк. Он делится на разновидности:

  • короткие волны – температура выше 800 градусов Цельсия,
  • средние волны – до 600 градусов Цельсия,
  • длинные волны – до 300 градусов Цельсия.

Влияние инфракрасного излучения на организм человека определяется длиной этих волн, а также временным отрезком воздействия.

Польза инфракрасных лучей для человека

Длинноволновые инфракрасные лучи благоприятны для здоровья человека. Это часто используется в медицине, в частности в физиотерапевтических процедурах, с помощью которых можно улучшить кровообращение, метаболизм и нейрорегуляцию.

Положительное влияние ИК-излучения на человеческий организм сказывается следующим образом:

  • улучшается память и функции мозга,
  • приводится в норму артериальное давление,
  • нормализируется гормональный баланс,
  • выводятся соли, токсины и тяжелые металлы,
  • останавливается размножение грибков и вредных микроорганизмов,
  • восстанавливается водно-солевой баланс,
  • происходит обезболивание,
  • происходит противовоспалительный процесс,
  • подавляются раковые клетки,
  • нейтрализуются результаты радиоактивного излучения,
  • повышается инсулин у больных диабетом,
  • излечивается дистрофия,
  • проходит псориаз,
  • укрепляется иммунитет.

Отопление, в котором используются ИК-лучи, убивает вредоносные бактерии и помогает укрепить иммунитет. Ионизирование воздуха защищает от аллергических проявлений. Длинные волны инфракрасного тепла действуют успокаивающе при усталости, раздражительности, стрессе, способствуют заживлению ран, приводят к выздоровлению при гриппе.

Вред от инфракрасного излучения

Несмотря на полезные свойства ИК-лучей у них существуют и противопоказания. Особую опасность представляют короткие волны. Их вред может выражаться в покраснении кожи и ожоге, тепловом ударе и дерматите, появлении судорог и нарушении водно-солевого баланса. Коротковолновое излучение особенно опасно для слизистой оболочки глаз. Оно не просто пересушивает ее, но и способно вызвать серьезные глазные недуги.

Коротковолновое действие на организм человека выражается в определенных признаках:

  • головокружение,
  • тошнота,
  • потемнение в глазах,
  • учащенное сердцебиение,
  • нарушение координации движений,
  • потеря сознания.

Такие симптомы возникают, если температура головного мозга повышается хотя бы на один градус Цельсия. При повышении на два градуса Цельсия – появляется менингит и энцефалит.

Противопоказаниями к применению инфракрасных лучей служат:

  • заболевания крови,
  • кровотечения,
  • островоспалительные процессы,
  • острые гнойные проявления,
  • злокачественные опухоли.

Где встречается инфракрасное излучение?

Инфракрасное излучение применяется в разных областях человеческой деятельности. Сюда относятся: термография, астрономия, медицина, пищевая промышленность и другие.

ИК-излучателями могут являться разные приборы:

  • головка самонаведения в прицельном устройстве,
  • приборы ночного видения,
  • оборудование для физиотерапии,
  • системы отопления,
  • обогреватели,
  • устройства с дистанционным управлением.

Любые нагретые тела – это источники инфракрасного излучения.

Что касается обогревателей, при их покупке стоит обратить внимание на характер излучения прибора, который обычно указывается в техническом паспорте. Если спираль, выделяющая тепло, имеет теплоизолирующую защиту, это значит, что действие ее длинных волн будет положительно сказываться на организме. Если же нагревательный элемент не изолирован, то устройство выделяет короткие волны, вызывающие проблемы со здоровьем.

Важно! Если прибор выделяет коротковолновое излучение, не находитесь возле него долго и держите его на расстоянии от себя.

Помощь пострадавшему от теплового удара

Влияние на человека инфракрасного тепла может привести к тепловому удару. При этом необходимо оказать пострадавшему следующие меры помощи:

  • поместить его в прохладное место,
  • высвободить от тесной одежды,
  • приложить холод на шею, голову, область сердца, позвоночник и паховые промежности,
  • обернуть человека в намоченную холодной водой простыню,
  • включить вентилятор и направить на пострадавшего воздух,
  • часто поить холодным,
  • провести искусственное дыхание, если возникла потребность,
  • вызвать скорую помощь.

Заключение

Понимая природу ИК-лучей, мы осознаем их незаменимость для жизни и нормального функционирования человеческого организма. Несмотря на пользу инфракрасного излучения для человека, оно может наносить и непоправимый вред, если действуют в коротковолновом диапазоне. Поэтому будьте осторожны, попадая под влияние инфракрасного света. Учитывайте противопоказания, которые к нему имеются. А если тепловой удар случился с кем-то из окружающих, окажите ему необходимую помощь.

Оцените статью: Поделитесь с друзьями!

польза и вред для организма человека, свойства, область применения

Инфракрасные лучи используются во многих сферах жизни человека. Такой вид излучения применяется в обогревателях, пультах дистанционного управления, системах отопления, медицинском оборудовании. Эти лучи человеческий глаз не воспринимает, но почувствовать их силу действия можно. В зависимости от длины волны они способны оказывать различное воздействие на всё живое. Поэтому польза и вред инфракрасного излучения напрямую зависят от этого показателя.

инфракрасное излучениеИнфракрасные лучи используются для лечения

Источники инфракрасного излучения

Инфракрасные лучи относятся к электромагнитному излучению. Они располагаются в спектре рядом с микроволновым радиоизлучением. Солнце — это естественный и самый большой источник такого излучения. Эти волны имеют обширный диапазон от 7 до 14 мкм.

Источником теплового излучения являются также любые тела, температура которых выше нуля. Длина таких волн напрямую зависит от температуры нагревания. Различают следующие виды волн:

  • короткие — выше +800°C;
  • средние — до +600°C;
  • длинные — до +300°C.

Таким образом, короткие волны имеют самую высокую температуру и большую интенсивность излучения. Тепловые лучи образуются благодаря ионам вещества, а также атомам с избыточной энергией. Каждый из диапазонов ИК волн имеет свою интенсивность, проникающую способность и оказывает различное воздействие на организм человека.

В этом видео вы узнаете о влиянии различных излучений на организм:

В наше время инфракрасные лучи активно применяются во многих сферах. Например, на их основе работают современные видеокамеры, которые используются для охранных целей, болометры и многие другие приборы. С помощью таких лучей осуществляется беспроводная связь между компьютерами и другими стационарными устройствами.

В продаже можно найти большое разнообразие отопительных приборов, работающих за счёт инфракрасных лучей. Такие приборы позволяют значительно экономить электроэнергию. В промышленных целях их используют для сушки поверхностей, покрытых краской или лаком.

Польза и вред

Инфракрасные лучи по-разному воздействуют на живые организмы. Например, длинные волны оказывают оздоровительное действие на состояние здоровья человека, поэтому их часто используют в лечебных целях. Именно на таком принципе основана работа оборудования для проведения физиотерапевтических процедур.

лечение инфракрасными лучамиИнфракрасные приборы могут принести как пользу, так и вред

Длинноволновые ИК лучи оказывают следующее положительное воздействие на человека:

  • улучшают мозговое кровообращение и память;
  • укрепляют иммунную систему;
  • нормализуют водно-солевой баланс;
  • улучшают гормональный фон;
  • нормализуют артериальное давление;
  • очищают организм от токсинов исолей тяжёлых металлов;
  • препятствуют размножению бактерий, грибков и болезнетворных микробов.

Также лучи помогают при воспалительных процессах в организме, повышают содержание инсулина у больных сахарных диабетом и даже снижают уровень радиоактивного излучения.

Таким образом, длинноволновое ИК излучение не только полезно для человека, но и необходимо ему. При недостатке таких лучей страдает иммунитет и запускается процесс ускоренного старения.

В этом видео вы узнаете, что такое инфракрасное тепло:

Обогреватели на основе инфракрасных лучей устраняют различные вредные и опасные бактерии, а специальные ИК лампы помогают при:

  • радикулите;
  • нарушении работы яичников;
  • бронхиальной астме;
  • остеохондрозе;
  • нарушении слизистой оболочки.

Также с помощью такого облучателя можно вылечить пневмонию, простатит в стадии обострения, ринит, тонзиллит и отит без гнойных образований.

Несмотря на большое количество полезных и лечебных свойств, у этого прибора имеются противопоказания. Вредно инфракрасное излучения для человека, если у него наблюдаются острые воспалительные заболевания.

Нельзя использовать такие лучи и при злокачественных образованиях, острых гнойных заболеваниях и кровотечении.

побочные действияИнфракрасные лучи могут вызвать побочные действия

Большой вред инфракрасного излучения на организм человека оказывают также короткие волны. Под их воздействием могут появиться следующие симптомы:

  • тошнота;
  • сильное головокружение;
  • потемнение в глазах;
  • обморок;
  • нарушение координации движений;
  • учащённое сердцебиение.

Обычно под воздействием таких лучей начинает краснеть кожа, могут появиться ожоги, судороги. Длительное пребывание рядом с короткими волнами приводит к нарушению водно-солевого баланса или тепловому удару. Такое излучение представляет большую опасность и для слизистой оболочки глаз, так как оно может привести к развитию светобоязни, катаракте и другим проблемам со зрением.

Подробнее об инфракрасном обогревателе:

Первая помощь при тепловом ударе

При интенсивном или длительном воздействии на человека коротких волн может произойти тепловой удар. Обычно это случается, если температура головного мозга резко повышается хотя бы на 1 градус. В таком случае пострадавшему сразу же следует оказать первую помощью. Для этого его нужно аккуратно переложить или перевезти в прохладное место и постараться снять с него тесную одежду. К сердцу, голове, подмышечным впадинам и паховой области следует приложить что-нибудь холодное.

После этого пострадавшего нужно обернуть мокрой простынёй и направить на него воздух от вентилятора.

Такие действия помогут снизить температуру тела. В тяжёлых случаях следует сделать искусственное дыхание и обязательно вызвать скорую помощь. На протяжении этого времени пострадавшему нужно давать прохладное и обильное питьё.

Обогревательные приборы

За последние несколько лет очень популярными стали инфракрасные обогреватели. И многие люди, приобретая их, даже не знают о том, что они могут оказывать негативное влияние на человека.

инфракрасные обогревателиПлюсом инфракрасных обогревателей является мгновенное нагревание помещения

Инфракрасное излучение способно нанести вред при постоянном и длительном воздействии. Поэтому при покупке обогревательного прибора нужно обращать внимание на характер его излучения. Такие данные обычно указываются в техническом паспорте. Отдавать предпочтение следует таким обогревателям, у которых нагревательный элемент имеет теплоизолирующую защиту. В этом случае прибор будет выделять длинные волны, которые, наоборот, полезны для здоровья.

Если же спираль, которая выделяет тепло, не изолирована, то такое устройство распространяет короткие волны и может навредить человеку. Находиться долгое время рядом с такими приборами нежелательно. Не следует их монтировать в спальнях и детских комнатах. Если это всё-таки необходимо сделать, то отдавать предпочтение следует маломощным моделям.

Подробнее об инфракрасном обогревателе:

Когда следует установить обогревательную систему на потолке, делать это нужно на максимально возможном расстоянии. При этом направлять её лучше в такую сторону, чтобы постоянно не находиться под инфракрасными лучами. Покупать ИК обогреватели нужно только у проверенных производителей. Выполненные из материалов низкого качества, они могут нанести непоправимый вред здоровью.

Инфракрасное излучение может принести как пользу, так и вред для здоровья человека. Относиться к нему нужно крайне осторожно, а использовать приборы на его основе следует в соответствии со всеми правилами безопасности.

Применение инфракрасных лучей в медицине, Инфракрасные лучи, ИК-лучи

Немного истории. Инфракрасные лучи для лечения болезней начали использоваться с античных времен, когда врачи применяли горящие угли, очаги, нагретое железо, песок, соль, глину и т.п. для излечения обмораживания, язв, карбункулов, ушибов, кровоподтеков и т.д. Гиппократ описывал способ их применения для обработки ран, язв, повреждений от холода.

В 1894 г. Келлог ввел в терапию электрические лампы накаливания, после чего инфракрасные лучи были с успехом применены при заболеваниях лимфатической системы, суставов, грудной клетки (плевриты), органов брюшной полости (энтериты, рези и т.п.), печени и желчного пузыря. Этими же лампами стали лечить невралгии, невриты, миальгии, мышечную атрофию, кожные заболевания (фурункулы, карбункулы, абсцессы, пиодермиты, импетиго, сикозы и т.д.), экземы, накожные сыпи (оспа, рожа, скарлатина и т.д.), волчанку, келоиды и уродующие шрамы, травматические повреждения: вывихи, переломы, мышечные контрактуры, остеиты, гидроартрозы, артрозы). Инфракрасные лучи нашли применение в качестве средства для исправления переломов, активизации обмена в парализованных органах, ускорения окисления, воздействующего на общий обмен веществ, стимулирования эндокринных желез, исправления последствий неправильного питания (ожирение), заживления ран и т.д.

Позже для применения инфракрасных лучей было разработано различное медицинское оборудование для создания испарины, солнечных ванн, загара, а также простые излучатели, в которых использованы нагревательные элементы при высокой температуре: солнечные концентраторы, инфракрасные лампы. Ранее считалось, что инфракрасные лучи не оказывают никакого химического, биологического или прямого физиологического действия на ткани, а эффект, производимый ими, основан на их проникновении и поглощении тканями, вследствие чего инфракрасные лучи, как считалось, играют, в основном, тепловую роль. Действие инфракрасных лучей сводилось к их косвенному проявлению — изменению теплового градиента в коже либо на ее поверхности.

Впервые биологическое действие ИК-излучения было обнаружено по отношению к культурам клеток, растениям, животным. В большинстве случаев подавлялось развитие микрофлоры. У людей и животных активизировался кровоток, и, как следствие этого, ускорялись процессы обмена. Было доказано, что инфракрасные лучи оказывают одновременно болеутоляющее, антиспазматическое, противовоспалительное, циркуляторное, стимулирующее и отвлекающее действие.

Левицкий В.А. (1935) выдвинул концепцию, согласно которой биохимический эффект инфракрасного излучения обусловлен 1-фотохимическим действием в результате поглощения его белками кожи и активацией ферментативных процессов внутри клетки, благодаря глубокому внутриклеточному прониканию инфракрасных лучей. Насонов и Александров (1940) также считали белки основной резонирующей субстанцией, в которой под воздействием инфракрасного излучения разыгрываются фотохимические процессы.

Исследователи отметили, что инфракрасные лучи улучшают циркуляцию крови, а вызванная инфракрасными лучами гиперемия оказывает болеутоляющее действие. Также замечено, что хирургическое вмешательство, проведенное при инфракрасном излучении, обладает некоторыми преимуществами — переносятся легче послеоперационные боли, быстрее происходит и регенерация клеток. К тому же инфракрасные лучи, по-видимому, позволяют избежать внутреннего охлаждения в случае открытой брюшной полости. Практика подтверждает, что при этом понижается вероятность операционного шока и его последствий. Применение ИК-лучей у обожженных больных создает условия для удаления некроза и проведения ранней аутопластики, снижает сроки лихорадки, выраженность анемии и гипопротеинемии, частоту осложнений, предупреждает развитие внутрибольничной инфекции.

ИК-излучение также позволяет ослабить действие ядохимикатов. В настоящее время многие врачи и больные продолжают использовать в процессе лечения обычные ИК-лампы (например, так называемая, синяя лампа). Однако терапия ИК-излучением широкого спектра имеет и свои минусы. Эти минусы связаны с наличием в широком спектре ИК-излучения его короткой части (или как мы его называем ближнего диапазона)

Прежде всего чрезмерное облучение широким спектром ИК-лучей приводит не только к быстро проходящей эритеме, но и ожогу. Наблюдались случаи появления опухоли на лице у рабочих — металлургов. Также отмечены случаи дерматита, вызванного инфракрасными лучами. Редко отмечались несчастные случаи от сильного облучения на слишком больших поверхностях (тепловой удар). Слишком продолжительные сеансы ИК-терапии способствуют развитию астении. Наконец, имеет место обострение болей.

В практике использования широкого спектра инфракрасных лучей реальной опасностью, о которой надо постоянно помнить, является повреждение глаз. Именно для органов зрения инфракрасные лучи, особенно в интервале 0,76-1,5 мкм, представляют опасность. Продолжительное и достаточно сильное воздействие инфракрасных лучей может привести к тяжелым несчастным случаям, так как никакого экранирования не происходит, и инфракрасные лучи свободно действуют на все части глаза. Излучения с длиной волны 1-1,9 мкм особенно нагревают хрусталик и водянистую влагу. Это вызывает различные нарушения, главным из которых является фотофобия (светобоязнь) — сверхчувствительное состояние глаза, когда нормальное световое воздействие порождает болезненные ощущения. Фотофобия часто не зависит от обширности повреждения: при небольшом повреждении глаза больной может чувствовать себя тяжело пораженным.

Дальнее ИК- излучение в медицинской практике

Для того, чтобы понять причину возникновения отрицательных реакций ИК- излучения на организм, вспомним, что квантовая энергия излучения обратно пропорциональна длине волны. Если учесть, что наше собственное излучение лежит в пределах 9-10 мкм, то использование ИК с длиной волны 1,5 мкм обладает энергией в 6 раз большей, чем наше собственное излучение. Именно это излучение, обладающее большой квантовой энергией, и обуславливает появление отрицательных эффектов при применении широкого спектра инфракрасного излучения. Кроме того, следует отметить, что вода имеет максимумы поглощения в диапазоне 1,3 мкм и 2,7 мкм. Учитывая, что мы на две трети состоим из воды, можно объяснить и то отрицательное воздействие, которое оказывает ИК-излучение ближнего диапазона при высоких уровнях.

Как использовать полезные свойства ИК-излучения и избежать в то же время его минусов? Начнем с того, что уже известно. Первые сведения о положительном влиянии дальних инфракрасных лучей на организм человека появились еще в 40-50 годы двадцатого столетия: «Инфракрасные лучи могут в этой области противодействовать эффекту от ультрафиолетовых лучей или далее уничтожать его. Так как инфракрасные лучи, как, впрочем, и все другие средства нагревания, препятствуют образованию фотоактивности, возникающей под действием ультрафиолетовых лучей в жирах.»

В последние годы в зарубежной литературе в диапазоне появились публикации о результатах применения инфракрасного излучения от 2 до 8 мкм. В частности, опубликованы данные о результатах применения инфракрасной сауны для лечения диабетических ангиопатий, трофических язв. Эффективность действия авторы объясняют активизирующим влиянием применяемого излучения на первичные NO радикалы, что способствует более быстрой регенерации тканей.

В своих работах авторы используют только один вид излучателя, имеющего достаточно широкий спектр излучения. Однако, как известно, каждое вещество, а значит и каждая межмолекулярная связь имеет свой определенный спектр, как излучения, так и поглощения. Это значит, что ткани организма обладают селективной чувствительностью, что и поддерживает их жизнедеятельность.

Поэтому было бы целесообразнее для успешного лечения больных использовать узкие спектры дальнего ИК-диапазона. Именно такие узкоспектральные излучатели разработаны на основе оксидной керамики в Институте Материаловедения. Спектр их излучения лежит в диапазоне от 8 до 50 мкм. Это является принципиально важным моментом, т.к. означает, что квантовая энергия преобразованного керамикой излучения находится в пределах квантовой энергии собственного излучения человека или же ниже ее, и, соответственно, не может оказывать отрицательное воздействие на физиологические процессы организма человека. Это объясняется тем, что патологические процессы сопровождаются, как правило, снижением интенсивности собственного излучения и имеют более слабые межмолекулярные связи, и для их восстановления нужны энергии, не превышающие собственного излучения организма человека. Излучатели имеют различные временные характеристики и могут быть непрерывными, импульсными или излучать энергию в сложной временной последовательности.

Механизм действия ИК-излучателей

А. Серия К (регистрационное удостоверение № УЗТТ 00798) — рабочий диапазон длины волн полезного излучения 9,5 мкм. Хорошо известно, что нормальный обмен веществ не означает неизменное, «замороженное» состояние всех реакций организма, он изменяется в зависимости от внешних и внутренних факторов. Все должно рассматриваться в динамике — адекватном ответе на внешние или внутренние раздражители (процессы). В организме человека непрерывно происходят различные процессы, ход которых представляет собой цепь химических реакций, протекающих в строгой последовательности.

Большинство химических реакций, происходящих в организме человека, являются фотохимическими с резонансом в области собственного излучения человека, поэтому скорость и согласованность их протекания находится в строгой зависимости от мощности этого излучения. Закономерно предположить, что если извне подать энергию, соответствующую излучению организма человека, это будет способствовать восстановлению (согласованию) скоростей химических реакций и, соответственно, восстановлению процессов. Избыточное излучение не окажет отрицательного воздействия, так как скорость реакций ограничивается наличием необходимых компонентов в данный момент времени для конкретной реакции. Керамические материалы серии К позволяют получить излучение, соответствующее излучению человека.

Многочисленные исследования свидетельствуют об иммунокоррегирующем действии данного вида излучения. Так, экпериментальными исследованиями подтверждено иммунокоррегирующее действие этих излучателей при иммунодефицитных состояниях различной природы (голодании, отравлении четыреххлористым углеродом, применении иммунодепрессантов). Применение излучателей приводило к восстановлению показателей как клеточного, так и гуморального звена иммунитета. Серия R (регистрационное удостоверение № УЗТТ 00898) — рабочий диапазон длины волны полезного излучения 16.25 мкм. Излучатели серии R обладают антиоксидантным действием.

Испуская два последовательных импульса за очень короткое время (миллионные доли секунды), излучатель RC нейтрализует активный радикал. Первый импульс длится 10 мкс, при плотности энергии 320 Вт на см2. Он способствует образованию свободных радикалов из гидроперекисей и супероксидов. Второй импульс длится приблизительно 13 мкс и способствует рекомбинации образовавшихся радикалов.

Действие излучателей серии G (регистрационное удостоверение № УЗТТ 00698) — рабочий диапазон длины волны полезного излучения 8,2 и 6,4 мкм. Излучатель GI создан на основе материалов, используемых для синтеза излучателя RC. В отличие от последнего, основным материалом является муллит, который получается по специальной технологии и имеет ширину спектра пропускания до 40 микрон. Доля материалов RC в материале GI составляет 0.5%. Результатом добавления к керамическому материалу RC муллита является «разбавление» интенсивности потока его излучения и снижение частоты импульсов. Таким образом, получаемое излучение оказывает более «мягкое» действие, чем действие материала RC.

Излучение эмиттеров типа GI обладает антибактериальным действием, оказывает восстанавливающее действие: 1-на состояние иммунной системы путем нормализации микрофлоры кишечника и, особенно, в его мукоидном слое; 2-на процессы диссоциации липопротеидов и связанных с белками гормонов, 3-на процессы синтеза простогландинов.

Излучатель GI применялся при лечении заболеваний воспалительной природы (бронхиты, пневмонии, простатиты и пр.), при нарушения жирового обмена.

Излучатели серии Z

ZB (ЗК) — предназначен для перевода нерастворимых соединений (тромбы, атеросклеротические бляшки, патологический коллаген и др.) в растворимое состояние и вывода их из организма (регистрационное удостоверение № УЗТТ 00898) — рабочий диапазон длины волн полезного излучения 22,5 мкм.

Результаты собственных исследований

Нами для улучшения результатов лечения перитонитов применены излучатели GI (ГЛ) и RC (P2M). Исследования проведены у 56 больных с перитонитом в возрасте от 16 до 87 лет (средний возраст 37,8). Из них 17 (30,0%) женщины и 39 (70,0%) мужчины. Исследованные больные были разделены на 2 группы: I группу составили 27 больных с перитонитом (10 больных с перфоративной язвой двенадцатиперстной кишки, 6 — с деструктивным аппендицитом, 4 — с пельвиоперитонитом, 1 — с деструктивным панкреатитом, 5 — с острой кишечной непроходимостью и 1 больной с тромбозом мезентериальных сосудов), лечение которых проведено общепринятым методом: оперативное вмешательство с тщательной санацией брюшной полости и ликвидацией патологического очага, дезинтоксикационная терапия, антибиотикотерапия, общеукрепляющие средства, обработка раны и др., II группу составили 29 больных с перитонитом (8 больных с перфоративной язвой двенадцатиперстной кишки, 9 — с деструктивным аппендицитом, 5 — с острой кишечной непроходимостью, 1 — с деструктивным панкреатитом, 3-е деструктивным холециститом, 1 — с острым мезоденитом, 1 — с перфорацией тонкого кишечника, 1 — с проникающим колото-резаным ранением живота), которым наряду с традиционным лечением проводилась терапия методом «Infra-R». Воздействие УИК-излучателями проводилось как во время операции (использовались излучатели локального действия), так и в послеоперационном периоде (использовались излучатели общего и локального действия) по 10 минут одновременно 2 раза в день) ежедневно в течение 5 суток.

У всех больных исследовали состояние перекисного окисления липидов (по содержанию ацилгидроперекиси и по уровню малонового диальдегида), антиокислительной защиты (по активности ферментов супероксиддисмутазы и каталазы) и степень эндогенной интоксикации (по концентрации средних молекулярных пептидов и по сорбционной способности эритроцитов). Контролем служили полученные данные от 20 практически здоровых лиц. Кровь на анализ брали до операции и на 3-и, 5 сутки после операции.

У 54 больных (мужчин — 40, женщин — 14) изучен бактериальный пейзаж перитонеального экссудата. I группу составили 24 больных с перитонитом, лечение которых проведено общепринятым методом, а II группу составили 30 больных с перитонитом, которым наряду с традиционным лечением как во время операции (локальные), так и в послеоперационном периоде (по 10 мин. одновременно локальными и стационарными излучателями) ежедневно в течение 5 суток проводили воздействие узкоспектральными инфракрасными керамическими излучателями. Посев экссудата проводили в начале и в конце операции, затем через сутки и трое суток после операции.

Проведенные нами исследования показывают, что применяемые обычные методы послеоперационного ведения больных являются недостаточно эффективными в восстановлении нарушенных метаболических показателей. У этих больных степень обсемененности перитонеального экссудата к концу операции и в первый день после операции не уменьшалась, в некоторых случаях повышалась. К концу 3 суток микрофлора не исчезала, у некоторых больных отмечалась замена грамположительной микрофлоры на грамотрицательную. Это проявилось тяжелым течением послеоперационного периода.

Сочетание применения последовательного курса терапии с использованием узкоспектрального инфракрасного излучения (УИКИ) вместе с общепринятым методом повышает эффективность лечения, направленного на коррекцию выявленных нарушений системы ПОЛ — АОЗ, параметров эндотоксемии, ускоряет заживления ран, приводит к снижению обсемененности перитонеального экссудата, исчезновению грамотрицательной флоры, а в 85,7% случаях через трое суток после операции микрофлора не обнаруживалась, что способствовало благоприятному течению заболевания.

Методика использования излучателей

Излучатели рекомендуется применять на фоне общепринятой терапии, как во время проведения операции, так и послеоперационном периоде. Излучатели устанавливаются на расстоянии 25-30 см от поверхности.

Применение излучателей в период операции

Излучатели устанавливаются в область операционной раны:
• Излучатель локального действия RC — 10 минут;
• Излучатель локального действия GI — 10 минут.

Применение излучателей в послеоперационном периоде

Применение излучателей в послеоперационном периоде проводится в течение 5 дней:
• Излучатель общего действия RC — 10 минут;
• Излучатель общего действия GI — 10 минут.

В период экспозиции излучателей общего действия на область раны проводится лечение и локальными излучателями:
• Излучатель RC — 10 минут;
• Излучатель GI — 10 минут.

Инфракрасные лучи: польза и вред

Инфракрасные лучи: польза и вред

В различных сферах жизни человек использует инфракрасные лучи. Польза и вред излучения зависят от длины волны и времени воздействия.

Инфракрасные лучи: польза и вредВ повседневной жизни человек постоянно находится под действием инфракрасного излучения (ИК-излучение). Естественным его источником является солнце. К искусственным относятся электронагревательные элементы и лампы накаливания, любые нагретые или раскаленные тела. Этот вид излучения используется в обогревателях, системах отопления, приборах ночного видения, пультах дистанционного управления. На ИК-излучении основан принцип действия медицинского оборудования для физиотерапии. Что же собой представляют инфракрасные лучи? В чем польза и вред этого вида излучения?

Что такое ИК-излучение

ИК-излучение – это электромагнитное излучение, форма энергии, которая нагревает предметы и примыкает к красному спектру видимого света. Глаз человека не видит в этом спектре, но мы чувствуем эту энергию как высокую температуру. Другими словами, люди кожей воспринимают инфракрасное излучение от нагретых предметов как ощущение тепла.

Инфракрасные лучи бывают коротковолновыми, средневолновыми и длинноволновыми. Длины волн, излучаемые нагретым предметом, зависят от температуры нагревания. Чем она выше, тем короче длина волны и интенсивнее излучение.

Впервые биологическое действие этого вида излучения было изучено на примере культур клеток, растений, животных. Обнаружено, что под влиянием ИК-лучей подавляется развитие микрофлоры, улучшаются обменные процессы вследствие активизации кровотока. Доказано, что это излучение улучшает циркуляцию крови и оказывает болеутоляющее и противовоспалительное действие. Отмечено, что под влиянием инфракрасного излучения пациенты после хирургического вмешательства легче переносят послеоперационные боли, а их раны быстрее заживают. Установлено, что ИК-излучение способствует повышению неспецифического иммунитета, что позволяет уменьшить действие ядохимикатов и гамма-излучения, а также ускоряет процесс выздоровления при гриппе. ИК-лучи стимулируют выведение из организма холестерина, шлаков, токсинов и других вредных веществ через пот и мочу.

Польза инфракрасных лучей

Благодаря этим свойствам ИК-излучение широко используется в медицине. Но применение ИК-излучений с широким спектром действия может привести к перегреву организма и покраснению кожи. Вместе с тем, длинноволновое излучение не оказывает негативного влияния, поэтому в быту и медицине более распространены длинноволновые приборы или излучатели с селективной длиной волны.

Воздействием длинноволновых ИК-лучей способствует следующим процессам в организме:

  • Нормализация артериального давления за счет стимуляции кровообращения
  • Улучшение мозгового кровообращения и памяти
  • Очищение организма от токсинов, солей тяжелых металлов
  • Нормализация гормонального фона
  • Прекращение распространения вредных микробов и грибков
  • Восстановление водно-солевого баланса
  • Обезболивание и противовоспалительный эффект
  • Укрепление иммунной системы.

Лечебное воздействие ИК-лучей может использоваться при следующих заболеваниях и состояниях:

  • бронхиальная астма и обострение хронического бронхита
  • очаговая пневмония в стадии разрешения
  • хронический гастродуоденит
  • гипермоторная дискинезия органов пищеварения
  • хронический бескаменный холецистит
  • остеохондроз позвоночника с неврологическими проявлениями
  • ревматоидный артрит в ремиссии
  • обострение деформирующего остеоартроза тазобедренного и коленного суставов
  • облитерирующий атеросклероз сосудов ног, невропатии периферических нервов ног
  • обострение хронического цистита
  • мочекаменная болезнь
  • обострение хронического простатита с нарушением потенции
  • инфекционные, алкогольные, диабетические полиневропатии ног
  • хронический аднексит и нарушения функции яичников
  • абстинентный синдром

Отопление с использованием ИК-излучения способствует укреплению иммунной системы, подавляет размножение бактерий в окружающей среде и в человеческом организме, улучшает состояние кожи за счет усиления циркуляции крови в ней. Ионизирование воздуха является профилактикой обострений аллергии.

Когда ИК-излучение может навредить

Прежде всего, нужно учесть существующие противопоказания, прежде чем в лечебных целях использовать инфракрасные лучи. Вред от их применения может быть в следующих случаях:

  • Острые гнойные заболевания
  • Кровотечения
  • Острые воспалительные заболевания, приведшие к декомпенсации органов и систем
  • Системные заболевания крови
  • Злокачественные новообразования

Кроме того, чрезмерное облучение широким спектром ИК-лучей приводит к сильному покраснению кожи и может вызвать ожог. Известно о случаях появления опухоли на лице у рабочих-металлургов в результате длительного воздействия этого вида излучения. Также отмечены случаи появления дерматита, возникновения теплового удара.

Инфракрасные лучи, особенно в интервале 0,76 – 1,5 мкм (коротковолновая область) представляют опасность для глаз. Продолжительное и длительное воздействие излучения чревато развитием катаракты, светобоязни и других нарушений зрения. По этой причине нежелательно длительно находиться под воздействием коротковолновых обогревателей. Чем ближе к такому обогревателю находится человек, тем меньше должно быть время, которое он проводит возле этого прибора. Нужно отметить, что этот тип обогревателей предназначен для уличного или локального обогрева. Для отопления жилых и производственных помещений, предназначенных для длительного пребывания людей, используются длинноволновые ИК-обогреватели.

ЧИТАЙТЕ ТАКЖЕ:

Лучшие средства физиотерапии

Климатическая техника для дома

Чем инфракрасные лучи отличаются от ультрафиолетовых

Теоретически вопрос «Чем инфракрасные лучи отличаются от ультрафиолетовых? » мог бы заинтересовать любого человека. Ведь и те, и другие лучи входят в состав солнечного спектра – а воздействию Солнца мы подвергаемся ежедневно. На практике же его чаще всего задают себе те, кто собирается приобрести устройства, известные как инфракрасные обогреватели, и хотел бы убедиться в том, что подобные приборы абсолютно безопасны для здоровья человека.

Потолочные обогреватели встраиваемые и подвесные для потолков всех типов

Подвесные потолочные обогреватели (П профиль)

Встраиваемые потолочные нагреватели для подвесных потолков Армстронг

Чем инфракрасные лучи отличаются от ультрафиолетовых с точки зрения физики

Как известно, кроме семи видимых цветов спектра за его пределами имеются и невидимые глазу излучения. Помимо инфракрасных и ультрафиолетовых, к ним относятся рентгеновские лучи, гамма-лучи и микроволны.

Инфракрасные и УФ-лучи сходны в одном: и те, и другие относятся к той части спектра, который не видим невооруженному глазу человека. Но этим и ограничивается их сходство.

Инфракрасное излучение

Инфракрасные лучи были обнаружены за пределами красной границы, между длинноволновым и коротковолновым участками этой части спектра. Стоит отметить, что почти половина солнечной радиации – это именно инфракрасное излучение. Основная характеристика этих не видимых глазу лучей – сильная тепловая энергия: ее непрерывно излучают все нагретые тела.
Излучение этого вида подразделяется на три области по такому параметру, как длина волны:

  • от 0,75 до 1,5 мкм – ближняя область;
  • от 1,5 до 5,6 мкм – средняя;
  • от 5,6 до 100 мкм – дальняя.

Нужно понимать, что инфракрасное излучение является не продуктом всевозможных современных технических устройств, к примеру, ИК-обогревателей. Это фактор природной окружающей среды, который постоянно действует на человека. Наше тело непрерывно поглощает и отдает инфракрасные лучи.

Ультрафиолетовое излучение


Существование лучей за фиолетовой границей спектра было доказано в 1801 году. Диапазон ультрафиолетовых лучей, испускаемых Солнцем, составляет от 400 до 20 нм, однако до земной поверхности доходят только незначительная часть коротковолнового спектра – до 290 нм.
Ученые считают, что ультрафиолету принадлежит значительная роль в образовании первых на Земле органических соединений. Однако воздействие этого излучения носит и отрицательный характер, приводя к распаду органических веществ.
При ответе на вопрос, чем инфракрасное излучение отличается от ультрафиолетового, необходимо обязательно рассмотреть воздействие на организм человека. И здесь основное отличие заключается в том, что эффект инфракрасных лучей ограничивается преимущественно тепловым действием, в то время как ультрафиолетовые лучи способны оказывать еще и фотохимическое воздействие.
УФ-излучение активно поглощается нуклеиновыми кислотами, следствием чего являются изменения важнейших показателей жизнедеятельности клеток – способности к росту и делению. Именно повреждение ДНК является главным компонентом механизма воздействия на организмы ультрафиолетовых лучей.
Основной орган нашего тела, на который действует ультрафиолетовое излучение – это кожа. Известно, что благодаря УФ-лучам запускается процесс образования витамина Д, который необходим для нормального усвоения кальция, а также синтезируются серотонин и мелатонин – важные гормоны, оказывающие влияние на суточные ритмы и настроение человека.

Воздействие ИК и УФ-излучения на кожу

Когда человек подвергается воздействию солнечных лучей, на поверхность его тела оказывают влияние и инфракрасные, ультрафиолетовые лучи. Но результат этого воздействия будет различным:

  • ИК-лучи вызывают прилив крови к поверхностным слоям кожи, повышение ее температуры и покраснение (калорическая эритема). Этот эффект исчезает сразу же, как только действие облучения прекращается.
  • Воздействие УФ-излучения имеет скрытый период и может проявляться через несколько часов после облучения. Длительность ультрафиолетовой эритемы составляет от 10 часов до 3-4 дней. Кожа краснеет, может шелушиться, затем окраска ее становится более темной (загар).


Доказано, что избыточное воздействие ультрафиолета может привести к возникновению злокачественных заболеваний кожи. В то же время в определенных дозах УФ-излучение полезно для организма, что позволяет применять его для профилактики и лечения, а также для уничтожения бактерий в воздухе помещений.

Безопасно ли инфракрасное излучение?

Опасения людей по отношению к такому виду устройств, как инфракрасные обогреватели, вполне понятно. В современном обществе уже сформировалась устойчивая тенденция с изрядной долей опасения относиться ко многим видам излучения: радиация, рентгеновские лучи и др.
Рядовым потребителям, которые собираются приобрести устройства, основанные на использовании инфракрасного излучения, важнее всего знать следующее: инфракрасные лучи совершенно безопасны для здоровья человека. Именно это стоит подчеркнуть, рассматривая вопрос, чем инфракрасные лучи отличаются от ультрафиолетовых.
Исследованиями доказано: длинноволновое ИК-излучение не только полезно для нашего тела – оно ему совершенно необходимо. При недостатке ИК-лучей страдает иммунитет организма, а также проявляется эффект его ускоренного старения.

Положительное воздействие инфракрасного излучения уже не вызывает сомнений и проявляется в различных аспектах:

  • уничтожаются некоторые виды вирусов;
  • подавляется рост злокачественных образований;
  • у больных диабетом повышается выработка инсулина;
  • нейтрализуется результат воздействия вредных излучений, в частности, радиации и электромагнитных волн;
  • улучшается состояние при кожных и других болезнях.

В настоящее время на основе использования ИК-лучей созданы не только эффективные обогреватели, но и специальные устройства, испускающие длинноволновое излучение: инфракрасные лампы, ИК-сауны и др.

Большие встраиваемые потолочные нагреватели для подвесных потолков Армстронг

Инфракрасные потолочные обогреватели для потолков любого типа под заказ

Leave Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *