Энергосберегающие лампы и лампы накаливания: за и против. Справка
Энергосберегающими лампами принято называть люминесцентные лампы, которые входят в обширную категорию газоразрядных источников света. Газоразрядные лампы в отличие от ламп накаливания излучают свет благодаря электрическому разряду, проходящему через газ, заполняющий пространство лампы: ультрафиолетовое свечение газового разряда преобразуется в видимый нам свет.
Энергосберегающие лампы состоят из колбы, наполненной парами ртути и аргоном, и пускорегулирующего устройства (стартера). На внутреннюю поверхность колбы нанесено специальное вещество, называемое люминофор. Под действием высокого напряжения в лампе происходит движение электронов. Столкновение электронов с атомами ртути образует невидимое ультрафиолетовое излучение, которое, проходя через люминофор, преобразуется в видимый свет.
Преимущества энергосберегающих ламп
Главным преимуществом энергосберегающих ламп считается их высокая световая отдача, превышающая тот же показатель ламп накаливания в несколько раз. Энергосберегающая составляющая как раз и заключается в том, что максимум электроэнергии, запитанной на энергосберегающую лампу, превращается в свет, тогда как в лампах накаливания до 90% электроэнергии уходит просто на разогрев вольфрамовой проволоки.
Другим несомненным преимуществом энергосберегающих ламп является их срок службы, который определяется промежутком времени от 6 до 15 тысяч часов непрерывного горения. Эта цифра превышает срок службы обычных ламп накаливания приблизительно в 20 раз. Наиболее частая причина выхода из строя лампы накаливания – перегорание нити накала. Механизм работы энергосберегающей лампы позволяет избежать этой проблемы, благодаря чему они имеют более длительный срок службы.
Третьим достоинством энергосберегающих ламп можно назвать возможность выбора цвета свечения. Он может быть трех видов: дневным, естественным и теплым. Чем ниже цветовая температура, тем ближе цвет к красному, чем выше – тем ближе к синему.
Еще одним преимуществом энергосберегающих ламп является незначительное тепловыделение, которое позволяет использовать компактные люминесцентные лампы большой мощности в хрупких бра, светильниках и люстрах. Использовать в них лампы накаливания с высокой температурой нагрева нельзя, так как может оплавиться пластмассовая часть патрона, либо провод.
Следующее преимущество энергосберегающих ламп в том, что их свет распределяется мягче, равномернее, чем у ламп накаливания. Это объясняется тем, что в лампе накаливания свет идет только от вольфрамовой спирали, а энергосберегающая лампа светится по всей своей площади. Из-за более равномерного распределения света энергосберегающие лампы снижают утомляемость человеческого глаза.
Недостатки энергосберегающих ламп
Энергосберегающие лампы имеют также и недостатки: фаза разогрева у них длится до 2 минут, то есть, им понадобится некоторое время, чтобы развить свою максимальную яркость. Также у энергосберегающих ламп встречается мерцание.
Другим недостатком энергосберегающих ламп является то, что человек может находиться от них на расстоянии не ближе, чем 30 сантиметров. Из-за большого уровня ультрафиолетового излучения энергосберегающих ламп при близком расположении к ним может быть нанесен вред людям с чрезмерной чувствительностью кожи и тем, кто подвержен дерматологическим заболеваниям. Однако если человек находится на расстоянии не ближе, чем 30 сантиметров от ламп, вред ему не наносится.
Также не рекомендуется использовать в жилых помещениях энергосберегающие лампы мощностью более 22 ватт, т.к. это тоже может негативно отразиться на людях, чья кожа очень чувствительна.
Еще одним недостатком является то, что энергосберегающие лампы неприспособлены к функционированию в низком диапазоне температур (-15-20ºC), а при повышенной температуре снижается интенсивность их светового излучения.
Срок службы энергосберегающих ламп ощутимо зависит от режима эксплуатации, в частности, они «не любят» частого включения и выключения. Конструкция энергосберегающих ламп не позволяет использовать их в светильниках, где есть регуляторы уровня освещенности. При снижении напряжения в сети более чем на 10% энергосберегающие лампы просто не зажигаются.
К недостаткам можно также отнести содержание ртути и фосфора, которые, хоть и в очень малых количествах, присутствуют внутри энергосберегающих ламп. Это не имеет никакого значения при работе лампы, но может оказаться опасным, если ее разбить. По той же причине энергосберегающие лампы можно отнести к экологически вредным, и поэтому они требуют специальной утилизации (их нельзя выбрасывать в мусоропровод и уличные мусорные контейнеры).
Еще одним недостатком энергосберегающих ламп по сравнению с традиционными лампами накаливания является их высокая цена.
Материал подготовлен на основе информации открытых источников
Применение люминесцентных ламп
Для освещения жилых домов, учебных, общественных и медицинских учреждений, торговых и спортивных комплексов широко используют люминесцентные лампы. Они прочно вошли в нашу жизнь, быстрыми темпами вытеснив традиционные лампы накаливания.
Чаша весов: преимущества, недостатки
Люминесцентные лампы по технико-экономическим характеристикам во много раз эффективнее лам накаливания.
Традиционная лампочка накаливания расходует лишь 6-8% — на освещения, а остальная потребляемая энергия трансформируется в нагрев. При этом у люминесцентных источников света этот показатель на 80% больше.
Исходя из своих конструктивных особенностей, люминесцентные лампы способны создавать свечение различного спектра: теплого, холодного, естественного, дневного и пр., что дает возможность разнообразить и украсить палитру интерьера.
Кроме того, они являются источником контролируемого ультрафиолетового излучения, который оказывается весьма полезным для жителей крупных мегаполисов, проводящий большую часть времени в условиях закрытых помещениях.
Они характеризуется довольно продолжительным сроком эксплуатации (до 20 000 ч.), к тому же их можно устанавливать взамен ламп накаливания, без необходимости замены светильника.
К числу отрицательных качеств этих ламп, относят повышенную химическую опасность. В своем составе они имеют капли ртути, которая является небезопасной для здоровья человека. Также эффект мерцания, которые формируют такие источники света может вызывать повышенную утомляемость, общее снижение работоспособности при повышенной зрительной активности (работе с бумагами, за компьютером).
Рекомендации по применению
Поэтому рекомендуется линейные лампы использовать исключительно для освещения нерабочих зон жилых домов – прихожих, подсобных помещений, организации подсветки полок и пр. А для обычного общего освещения светильниками, люстрами, применять компактные лампы. Такие устройства оснащены электронными пускорегулирующими устройствами, снижающими эффект пульсаций в 10-100 раз.
Люминесцентные лампы создают прекрасную освещенность в доме, таким образом, сохраняя зрение, поднимают работоспособность, повышают настроение. Помимо этого спектральный состав их свечения обеспечивает обширные возможности для изменения цвета свечения. Все это делает их исключительно полезными, привлекательными для потребителей.
ПРЕИМУЩЕСТВА И НЕДОСТАТКИ ЛЮМИНЕСЦЕНТНЫХ ЛАМП
СВЕТЯЩИЕСЯ ТРУБКИ
Аканчивая рассказ о новых источниках света — люминесцентных лампах, рассмотрим, какими преимуществами и недостатками они обладают по сравнению с привычными лампочками накаливания. Сопоставим поочерёдно все важнейшие свойства ламп.
Экономичность. Прежде всего сравним лампы по их экономичности, т. е. по тому, какое количество света они дают при одинаковом расходе энергии. Образцом сравнения возьмём такой источник, который всю потребляемую энергию отдаёт полнвстью в виде излучения квантов с энергией 2,23 э-в, то есть квантов, лучше всего воспринимаемых глазом. Примем экономичность такого источника за единицу.
Мы уже говорили, что качество такого источника нас не удовлетворяет. С этой точки зрения наилучшим явился бы источник, дающий только видимый свет, с такой пропорцией квантов разных энергий, которая имеется в «естественном» белом свете. Если вычислить экономичность такого идеального источника, то она окажется примерно равной 0,35.
Подсчитанная таким же образом экономичность люминесцентных ламп равна 0,06, а лампочек накаливания — всего 0,02. Итак, хотя люминесцентные лампы в три раза экономичнее лампочек накаливания, они ещё очень далеки от идеального источника.
Каковы же причины потерь энергии в люминесцентных лампах, известны ли способы уменьшения этих потерь?
Подсчёты и измерения показали, что примерно две трети всей энергии, потребляемой лампой, идёт на излучение ультрафиолетовых квантов с энергией 4,9 и 6,7 э-в. Остальная треть идёт на нагревание электродов, на тепло, выделяющееся на стенках трубки при прохождении через неё тока, а также на испускание инфракрасных квантов. На непосредственное излучение видимого света расходуется лишь немногим более одного процента энергии.
Возникающие в трубке ультрафиолетовые кванты являются основным источником её свечения, поскольку под их действием происходит возбуждение люминофора, нанесённого на стенки. Однако, как мы уже говорили, при преобразовании ультрафиолетового излучения в видимое разница между энергией ультрафиолетовых квантов и квантов видимого света превращается в тепло и практически полностью для нас теряется. Вот что является основной причиной неполного использования энергии в люминесцентных лампах. Кроме того, следует учесть потери света в слое люминофора, поглощение части ультрафиолетовых квантов в стекле, потери энергии в катушке самоиндукции и некоторые другие, менее значительные потери. В результате оказывается, что люминесцентные лампы в 5—6 раз менее экономичны, чем идеальный источник света.
Из сказанного можно заключить, что основной путь повышения экономичности люминесцентных ламп заключается в более выгодном использовании возбуждающего ультрафиолетового излучения, т. е. в более благоприятном соотношении между энергией возбуждающих квантов и энергией квантов, испускаемых люминофором. Не исключена возможность и такого подбора люминофоров и газа, наполняющего трубку, при котором происходил бы «размен» ультрафиолетового кванта на два видимых.
Разумеется, не следует пренебрегать уменьшением и других непроизводительных затрат энергии, например нагреванием электродов и теплом, выделяющимся в катушке самоиндукции.
Состав света. Благодаря большому разнообразию люминофоров можно составлять их смеси с любым желаемым составом света. Кроме света, очень близкого к дневному («лампы дневного света»), можно получать разные оттенки белого света («лампы белого света», «лампы тёпло-белого света») и свет всевозможных цветов.
Возможность получения света любого состава является одним из главных преимуществ люминесцентных ламп по сравнению с лампочками накаливания.
Яркость. Смотреть прямо на нить лампочки накаливания, даже самой слабой, неприятно. Глаз быстро утомляется и теряет чувствительность. Это связано с тем, что свет излучается с очень маленькой поверхности. В светотехнике говорят «яркость источника велика», причём под яркостью подразумевают силу света с каждого квадратного сантиметра источника. Большая яркость неприятна и вредна для зрения.
Чтобы уменьшить яркость лампочек накаливания, приходится применять абажуры и колпаки, снижающие и без того низкую экономичность лампочек.
У люминесцентной лампы поверхностью излучения является вся трубка. Поэтому яркость люминесцентных ламп в сотни раз меньше яркости лампочек накаливания, и применять их можно даже без защитной арматуры.
Срок службы. Средний срок службы лампочки накаливания— 1000 часов. Прогорев этот срок, лампочка погибает, так как к этому времени у неё обычно перегорает нить. Люминесцентные лампы в два-три раза более долговечны.
Кроме того, они обычно выходят из строя не сразу, а постепенно, работая всё хуже и хуже и как бы предупреждая о необходимости замены. Сначала уменьшается поток света, который даёт лампа, затем она начинает труднее зажигаться и, наконец, совсем перестаёт работать. Сроком её службы считается не время горения до полного выхода лампы из строя, а время, в течение которого поток света уменьшается приблизительно на 20%.
Следует заметить, что срок службы лампы зависит от того, как часто она включается. При включении лампы напряжение значительно выше, чем при её горении, а это приводит к распылению электродов. Поэтому люминесцентная лампа тем долговечнее, чем дольше она каждый раз горит непрерывно.
Мелькание света. Мы знаем, что переменный ток, которым мы пользуемся для освещения, сто раз в секунду меняет направление. Лампочка накаливания этих перемен практически не чувствует. За время нарастания и убывания тока температура нити почти не меняется. Поэтому совсем незаметно колеблется и сила света лампочки.
Иначе ведёт себя люминесцентная лампа. Излучаемый ею свет к моменту прекращения тока падает почти до нуля. Остаётся лишь небольшое остаточное свечение
Рис. 23. Включение лампы в сеть трёхфазного тока: 7, 2, 3 — основные провода, 0 — нулевой провод. |
Люминофора. Глаз человека не замечает этого мелькания света, так как световое впечатление в глазу сохраняется несколько больше десятой доли секунды. Этого времени достаточно, чтобы свет люминесцентной лампы казался нам непрерывным.
Однако быстро движущийся предмет, освещённый люминесцентной лампой, как бы размножается на несколько одинаковых предметов, сдвинутых друг относительно друга. Убедиться в этом можно, быстро проведя рукой перед лампой.
Для устранения этого явления включают по две и три лампы таким образом, чтобы они гасли не одновременно. В некоторых установках применяется так называемый трёхфазный ток. В трёх проводах трёхфазного тока напряжение относительно четвёртого «нулевого» провода меняется не одновременно, а со сдвигом друг относительно друга на одну трёхсотую долю секунды.
Включив три лампы между каждым из основных проводов и нулевым проводом (рис. 23), мы получим почти
Катушка самоиндукции
——— ПШШЇЇ^-1
Іїонденса — Катушка
Тор самоиндукции
0
Источник Сопротивление тока ^Стартер
0 &
В
Б
Стартер
Рис. 24. Способ включения двух ламп в обычную осветительную сеть для уменьшения мигания.
Непрерывный свет. Сначала погаснет одна лампа, вторая — через одну трёхсотую секунды, третья — через две трёхсотые. Через три трёхсотых, т. е. через одну сотую секунды, вновь погаснет первая и т. д.
В обычных осветительных сетях, где применяется однофазный переменный ток, включаются одновременно две лампы. С помощью специального соединения катушек самоиндукции и конденсаторов (рис. 24) удаётся добиться того, чтобы каждая лампа гасла в тот момент, когда другая горит всего сильнее. При двух лампах равномерность
света хотя и меньше, чем при трех, но значительно лучше, чем когда горит только одна лампа.
Влияние окружающей температуры. Одним из важнейших недостатков люминесцентных ламп является их сильная чувствительность к окружающей температуре. Лампочка накаливания работает при любых температурных условиях, а люминесцентная лампа заметно изменяет свои свойства при понижении и при повышении температуры.
При охлаждении уменьшается плотность паров ртути. От этого снижается количество возникающих ультрафиолетовых квантов и соответственно ослабляется свечение люминофора. Дальнейшее охлаждение затрудняет зажигание лампы, а при температуре окружающей среды около нуля лампа совсем перестаёт работать. При перегреве лампы увеличивается количество испускаемых ою инфракрасных квантов и соответственно снижается её экономичность.
Такая зависимость работы люминесцентных ламп от окружающей температуры сильно сужает область их применения. Особенно сложно использовать эти лампы для уличного освещения в зимнее время. Делаются разные попытки уменьшить чувствительность люминесцентной лампы к окружающей температуре. Наиболее простой способ состоит в окружении её стеклянным кожухом. Воздушная прослойка между кожухом и лампой помогает сохранить более постоянную температуру стенок лампы.
В настоящее время ведутся опыты по освещению люминесцентными лампами улиц Москвы и Ленинграда.
Включение и обслуживание ламп. Включение в осветительную сеть лампочки накаливания весьма
просто. Универсальный винтовой патрон и выключатель — вот и все вспомогательные устройства, необходимые для этого. А для того чтобы присоединить к сети люминесцентную лампу, нужны стартёр, катушка самоиндукции и конденсатор.
Заменить вышедшую из строя лампу можно только лампой такой же мощности, иначе потребуется другая катушка самоиндукции и другой конденсатор. Кроме того, так как размеры ламп разной мощности различны, то и арматура с определённым расстоянием между патронами годится только для определённых ламп. Большая длина лампы, полезная с точки зрения уменьшения её яркости поверхности, в ряде случаев может оказаться неудобной для установки.
Обслуживание люминесцентных ламп также сложнее, чем лампочек накаливания, в частности, возможны нарушения нормальной работы лампы (затруднённое зажигание, мигание и другие), связанные не с выходом из строя лампы, а с порчей какого-либо из вспомогательных приборов.
О этой небольшой книжке мы постарались познакомить О читателя с одним из замечательных достижений современной науки и техники — люминесцентными лампами. Мы увидели, как разнообразны вопросы из различных отраслей науки, …
Ч Тобы точнее представить себе работу люминесцентной лампы, следует более подробно рассмотреть включение лампы в электрическую осветительную сеть. В этом отношении электрические лампочки накаливания имеют перед люминесцентными несомненные преимущества. Их …
преимущества и отличия от светодиодных, маркировка
Содержание статьи:
Экономия электроэнергии – это важнейшая задача для любого владельца дома или квартиры. С целью экономии происходит переход на энергосберегающие светильники, к которым и относятся люминесцентные лампы. Люминесцентные источники света активно используются как в жилых домах, так и для подсветки административных зданий или складских помещений. Перед приобретением устройства нужно понимать, какое преимущество имеют лампы дневного света перед лампами накаливания, какие у них технические характеристики и какие виды устройств бывают.
Устройство люминесцентной лампы и принцип действия
Компактная люминесцентная лампа
Люминесцентная лампа – это устройство, которое используется для создания освещения. Светильник имеет ряд конструктивных сходств с классическими лампами накаливания или галогенными приборами. Чтобы понять, что такое люминесцентная лампа, нужно разобраться с ее строением. Люминесцентное устройство состоит из герметичной колбы и электродов. В прочной стеклянной колбе находится смесь газов и ртути, внутренняя часть покрыта люминофором. По краям установлены электроды из вольфрамовой нити, к которой припаяны контакты, пропускающие ток.
Подается электрический ток, который поступает на электроды. Нить нагревается, в результате образуется разряд, сопровождающийся ультрафиолетовым излучением. Это свечение проходит через стенки колбы, люминофор и превращается в обычный видимый свет.
Из-за наличия в составе ртути и других вредных веществ с лл лампой нужно обращаться аккуратно, стараясь не повредить. Ее запрещено утилизировать как обычные бытовые отходы – люминесцентная лампочка, как и галогеновая, сдается в специальный пункт приема.
Характеристики источников света
Характеристика люминесцентных ламп
Люминесцентные лампы имеют не только технические характеристики. Как любое электротехническое изделие, они обладают электрическими характеристиками, а как осветительный прибор – световыми параметрами.
К электрическим характеристикам относятся:
- Номинальное напряжение. Напряжение сети, которое подходит для работы лампы. Составляет 220 В или 110 В.
- Рабочее напряжение. Величина на лампе при ее горении. Равняется половине номинального и составляет 100-110 В для сети 220 В и 45-60 В для электросетей 110 В.
- Напряжение зажигания. Величина на лампочке, необходимая для появления разряда. Она значительно выше сетевого значения и не является постоянной величиной. Зависит от схемы зажигания, условий окружающей среды.
- Номинальная мощность. По этому показателю выделяют слабомощные (до 18 Вт), средней мощности (до 58 Вт) и мощные (от 58 Вт) устройства. Также в продаже можно найти высокоинтенсивные лампочки с мощностью 150 Вт, но они практически не используются из-за малой эффективности.
- КПД. Люминесцентное освещение дает коэффициент полезного действия превышает 20%.
- Диаметр колбы – 12,16,26,38 мм.
- Размеры цоколя 14 и 27 мм.
Сравнительная таблица различных типов ламп
Светотехнические характеристики газоразрядных ламп:
- Номинальный световой поток. Задается через 100 часов после горения.
- Индекс цветопередачи. Зависит от исполнения лампы. В стандартных приборах равняется 50-70%, в лампах с повышенной цветопередачей составляет 97%.
- Цветовая температура. Показывает, какой оттенок будет у свечения. Люминесцентные лампы выполняются в диапазоне от 2700 К до 6500 К.
Эксплуатационные характеристики:
- Световая отдача зависит от цветности и мощности. Наибольшей обладают бытовые лампы ЛБ 40 Вт – 80 лм/Вт. Из выпускаемых ламп максимальная светоотдача у серии Т5 с электронным ПРА – 104 лм/Вт.
- Средняя продолжительность горения. Зависит от электродов и прочности покрывающей их оксидной пленки. У ламп средней мощности продолжительность составляет 15000 часов.
- Коэффициент пульсаций. В большинстве люминесцентных ламп он равняется 23%, кроме устройств с улучшенной цветопередачей, в которых достигается значение 70%.
- Зависимость от температуры окружающей среды. При низких температурах ухудшаются условия зажигания. Диапазон рабочих температур составляет от 5 до 55° С.
- Утилизация. Так как в лампе содержится ртуть и другие вредные компоненты, ее нужно утилизировать особым способом. Для этого прибор нужно отнести и сдать в специальный пункт приема.
По своим характеристикам люминесцентные источники света значительно превосходят классические лампочки.
Основные виды люминесцентных ламп
Линейная люминесцентная лампа
Люминесцентные источники света можно разделить на следующие группы:
- Линейные. Применяются для подсветки офисов, складов, производств, спортивных площадок. Имеют повышенную мощность и светоотдачу. Экономят порядка 30% электричества.
- Компактные. Также в быту называются энергосберегающими. Выглядят как обычные лампочки. Используются для общего назначения в классических светильниках. Также нашли свое применение в подсветке рекламных витрин, больничных помещениях. Обладают повышенным сроком службы и высокой светоотдачей.
Также лампы можно разделить следующим образом:
- Стандартные. Внутренняя часть колбы покрыта одним слоем люминофора. Используются в домашних светильниках, настольных осветительных устройствах.
- С повышенной светопередачей. Имеют трехслойный или пятислойный люминофор.
- Специальные. В люминофор могут добавляться различные составляющие. Применяются в шоу-бизнесе, соляриях, в бактерицидных лампах.
Самые распространенные типы – газоразрядные ртутные лампы высокого и низкого давления. Приборы высокого давления используются в уличной подсветке и светильниках повышенной мощности. Лампы низкого давления нашли применение в освещении жилых помещений и производственных предприятий.
Выбор типа лампы напрямую зависит от светильника, в котором она будет использоваться, и от ее предназначения.
Подключение к сети
ЭПРА для люминесцентных ламп
Газоразрядные лампы не могут напрямую подключаться в электросеть это связано с высоким сопротивлением при холодном состоянии и отрицательном дифференциальным сопротивлением.
Исправить эти проблемы можно путем применения балластов. Самые распространенные – это ЭмПРА (электромагнитный балласт) и ЭПРА (электронный).
ЭмПРА представляет собой электромагнитный дроссель, который подключается последовательно с лампой. Последовательно со спиралями накала подключается стартер, который является неоновой лампой с биметаллическими электродами и конденсатором. Преимущества – простота конструкции, надежность, долговечность. Недостатки – долгий пуск, требуется большое количество электроэнергии, гул во время работы, мерцание, крупные размеры.
ЭПРА питает лампочку высокочастотным напряжением, благодаря чему исключается мигание. Использует два варианта пуска ламп:
- Холодный. Светильник включается сразу же после подачи напряжения.
- Горячий. Электроды прогревается и источник загорается через 0,5—1 секунду.
К преимуществам относят долгий срок службы, меньшее энергопотребление, возможность диммирования на некоторых моделях, бесшумность.
Маркировка ЛЛ
Маркировка люминесцентных ламп
Есть два вида маркировки ламп, которые отличаются друг от друга: отечественная и зарубежная.
Российское обозначение состоит из набора букв и цифр. Определение расшифровки следующее:
- Первая буква Л обозначает лампа.
- Второй буквой обозначается характеристика светового потока. Д – дневная, ХБ – холодный белый, ТБ – теплый белый, ЕБ – естественный, Б – белый, УФ – ультрафиолет, С – синий, К – красный, З – зеленый, Г – голубой, Ж – желтый.
- Третий знак – качество передачи цвета. Ц – повышенное, ЦЦ – наилучшее.
- Четвертый символ обозначает конструкцию. А – амальгамная, К – кольцевая, Р – рефлекторная, Б – быстрый старт, У – U-образная.
- Последние цифры – мощность в ваттах.
Также на лампе может находиться аббревиатура ЛХЕ или ЛЕ. Она обозначает естественный или холодный естественный свет.
Иностранная маркировка состоит из трехзначного числа и подписи на английском языке вроде cool white (холодный свет). Найти обозначения можно в таблицах.
Плюсы и минусы люминесцентных ламп
Люминесцентные приборы занимают второе место по продаже после светодиодных устройств. Это связано с их достоинствами:
- энергосбережение;
- высокое качество света;
- хорошая светоотдача;
- широкий выбор изделий общего и специального предназначения;
- длительность эксплуатации – норма составляет 10-40 тысяч часов;
- при перегорании лампочку легко поменять.
Недостатки:
- Стоимость. Прежде всего нужно рассчитать, какой бюджет будет потрачен на установку люминесцентных приборов вместо классических источников света. Это довольно затратно, но благодаря длительности работы деньги быстро окупятся.
- Негативное влияние на здоровье человека при длительном освещении. Вред для глаз.
- Зависимость срока службы от числа циклов включения и выключения.
- Высокий риск поломки при скачках напряжения. Требуется установка стабилизатора или другого устройства для защиты от перепадов. В ином случае прибор может перегореть.
- Несовместимость с диммером.
Из-за наличия ртути лампы опасны для здоровья человека
- Шумная работа. Лампочка может гудеть довольно громко, из-за чего находящиеся в помещении люди могут испытывать дискомфорт.
- Невозможность использования в пыльных и влажных помещениях. Для работы на улице требуется высокий класс защиты от пыли и воды.
- Опасность из-за наличия ртути.
- Хрупкость колбы.
- Необходимость отвода тепла.
- Плохая работа при низких температурах.
- Выбор цвета свечения светодиодных ламп больше, чем у люминесцентной подсветки.
Недостатков у изделия много, но если соблюдать условия эксплуатации, лампочка будет светиться заявленный срок.
Сферы применения
Люминесцентные лампы в школьном классе
Люминесцентный свет применяется практически везде. Это подсветка домов, витрин, аквариумов, нежилых помещений, улиц. Люминесцентное и неоновое освещение активно применяется в различных представлениях и концертах. Также источники света могут использоваться в создании плазменных экранов телевизоров и компьютеров.
Основная область применения – подсветка крупных площадей. Стадионы, детские площадки, дворы освещаются именно люминесцентными приборами с пылевлагозащитным корпусом. Это связано с высокой световой отдачей и минимальным числом циклов включения и выключения – лампочки достаточно включить один раз в день в темное время суток.
Преимущества и недостатки люминесцентных ламп перечень
Преимущества и недостатки люминесцентных ламп, а также их физические характеристики напрямую зависят от уровня температуры окружающей среды, что обусловливается температурным режимом давления паров ртути, находящихся в лампе. Если температура стенки колбы составляет около +40 С, то лампа достигает максимально высокой световой отдачи. Основными достоинствами люминесцентных ламп являются такие, как очень высокая световая отдача, которая может достигать 75 лм/Вт, длительный срок службы, у стандартных ламп доходящий до 10 тысяч часов. Многие потребители выбирают данный тип ламп из-за возможности обладать источниками света разного спектрального состава при наилучшей цветопередаче. В ряде случаев достоинством является и относительно малая яркость, которая не сильно слепит глаза. Из недостатков можно выделить ограниченную единичную мощность лампы при больших размерах для такой мощности, относительную сложность подключения, отсутствие возможности питания лампы постоянным током. Люминесцентная лампа и ее характеристики довольно сильно зависят от уровня температуры окружающей среды. Так, для обыкновенной люминесцентной лампы наиболее оптимальной температурой окружающего воздуха является диапазон от +18 до +25 С. Если есть отклонение температуры от указанного показателя, оптимальный световой поток, световая отдача лампы значительно снижаются. Более того, когда в помещении отмечена температура ниже +10 С, зажигание лампы вообще не гарантируется. Поэтому люминесцентные лампы используются лишь там, где их эксплуатация оправданна и предполагает получение эффекта, который невозможно создать при помощи других типов ламп. <img src=»//otvet.imgsmail.ru/download/3ba8f0658682d5472e0ef64285a1ccb3_i-15742.jpg»>
Какие лампы лучше?
Магазины полны самых разнообразных типов ламп, значительно отличающихся друг от друга, не только по дизайну но и по цене.
Какие лампы лучше?
Какие лампы сэкономит вам больше всего энергии — и деньги?
Какой тип ламп самый безопасный?
В данной статье, я решил провести сравнение различных типов ламп, чтобы ответить на эти вопросы.
Для начала давайте проведем сравнение различных ламп (накаливания, люминесцентных, галогенных, светодиодных) и сравним их достоинства и недостатки.
Лампы накаливания
Лампы накаливания являются наиболее распространенными в мире, и в нашей стране. С начала прошлого века и до конца 80-х годов, лампы накаливания с вольфрамовой нитью была практически единственным доступным источником электрического освещения.
Лампы накаливания самые безопасные для зрения, особенно у детей! Однако самые «прожорливые» — потребляют очень много электроэнергии.
Принцип работы лампы основан на нагревании проводника (нити вольфрама) при протекании через него электрического тока. Вольфрам нагревается до высокой температуры (2800K или 2527 ° C), который излучает в видимом спектре для человеческого глаза свет. Но следует знать, что основная часть питающей нить накала электроэнергии превращается не в свет, а в тепло. В свет преобразуется всего 5-15% световой энергии. Это является одним из основных недостатков этой технологии.
Световая отдача и срок службы определяются температурой спирали. При повышении температуры спирали возрастает яркость, но вместе с тем и сокращается срок службы из-за сублимации вольфрама.
Сублимация вольфрама
Нить вольфрама нагревается до высокой температуры. Это приводит к сублимации (переход вещества из твёрдого состояния в газообразное) вольфрама и уменьшения толщины нити жизни. Кроме того, образующийся газ, будет осаждаться на стенках колбы, тем самым делая ее менее прозрачной и уменьшая светоотдачу.
Преимущества обычных ламп накаливания:
- Низкая цена
- Нет риска для здоровья
- Мгновенное зажигание
- Можно утилизировать вместе с бытовыми отходами
- Хорошая цветопередача
Недостатки обычных ламп накаливания:
- Ограниченный срок (1000 часов)
- Низкая мощность светового потока (от 10 до 15 лм / Вт)
- Светоотдача уменьшается с течением времени
- Опасность ожогов при прикосновении к работающей лампе
Галогенные лампы
Современный вариант ламп накаливания. Как и у обычных ламп основа «галогенок», это вольфрамовая нить, которая нагревается до высокой температуры, чтобы излучать в видимом спектре свет. Тем не менее, содержание газов галогенов (как правило, йод или бромид), в колбе лампы, будет препятствовать сублимации нити, что позволяет значительно увеличить срок службы (примерно в 2 раза больше, чем у обычной лампы накаливания).
Преимущества галогенных ламп:
- Нет риска для здоровья
- Можно утилизировать вместе с бытовыми отходами
- Мгновенное зажигание
- Мощность светового потока на 30% выше, чем у обычной лампы накаливания ( галогенная лампа — 70Вт освещает как обычная лампа накаливания — 100Вт)
- Хорошая цветопередача
Недостатки галогенных ламп:
- Ограниченный срок (2000ч)
- Опасность ожога из-за высокой температуры колбы
Компактные люминесцентные лампы
Вырабатывают свет по такому же принципу, что и обычные люминесцентные лампы. В цилиндрическую трубку с электродами, закачаны пары ртути, которые излучают ультрафиолетовые лучи, под действием электрического разряда. Нанесенный на внутренние стенки люминофор преобразуют ультрафиолетовое излучение в видимый свет.
Риск отравления ртутью
Люминесцентные лампы содержат пары ртути, от 1 до 30 мг (3-5мг в стандартных компактных люминесцентных лампах). Ртуть не опасна, когда он находится внутри колбы. Тем не менее, в случае, когда она деформируется или бьется, необходимо принять некоторые меры предосторожности.
Электромагнитные волны
Люминесцентная лампа производит значительное количество электромагнитных волн, при запуске. Таким образом, рекомендуется быть более чем 1-2 метра от лампы при запуске и не ближе 30 см в процессе работы лампы. Рекомендуется не размещать такие типы ламп возле спальных мест.
УФ-излучение
Эти лампочки производят ультрафиолетовые лучи, которые являются вредными для здоровья (рака кожи) и зрения (ожог сетчатки глаза), особенно для детей. Тем не менее, следует понимать, что флуоресцентный порошок находящейся в лампе играет роль преобразования УФ-излучения, генерируемое при ионизации газа, в видимый свет. УФ-лучи поглощаются почти полностью и риск для здоровья УФ-излучения является весьма ограниченным.
Преимущества компактных люминесцентных ламп
- Цена относительно разумна по сравнению с производительностью
- Довольно продолжительный срок службы (8000ч в среднем)
- Высокая светоотдача 70lm / Вт или 5 раз больше, чем у лампы накаливания
Недостатки люминесцентных ламп
- Цветопередача хуже, чем у лампы накаливания
- Время прогрева от нескольких секунд до нескольких минут (особенно в старых моделях)
- Опасность отравления ртутью (в случае разбития лампы)
- Подлежит обязательной утилизации. Выбрасывать вместе с бытовым мусором не допустимо.
- Не совместимы с обычным регулятором освещения.
- Производство электромагнитных волн не подходит для использования рядом с пользователем (настольная лампа, лампа возле кровати, и т.д.)
- Опасность ожога (70 ° С)
Светодиодные лампы
LED (Light Emitting Diode) — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.
Риск для зрения
Светодиодные лампы представляют определенные риски для здоровья, которые может вызвать прямое (открытое) LED освещение. Некоторые светодиоды производят немного голубоватый свет, это может ухудшить зрение, особенно у маленьких детей.
Преимущества светодиодных ламп
- Очень долгий срок службы
- Очень хорошая светоотдача (примерно в 6 раз больше, чем у обычной лампы накаливания)
- Низкая температура лампы
Недостатки светодиодных ламп
- Высокая цена
- Риск для зрения, особенно у маленьких детей
Какие лампы сэкономит вам больше всего энергии — и деньги?
Для оценки эффективности использования энергии в электрических лампочках, необходимо учитывать несколько значений:
- Люмен (Лм) Это единица измерения мощности светового потока. Иногда указывается на упаковке лампы.
- Ватт (Вт) Единица измерения количества потребляемой электрической энергии (мощность лампы). Чем выше мощность, тем больше лампа потребляет электроэнергии.
- Кандела (Кд) Определяет освещенность, или силу светового потока, испускаемого в одном направлении.
- Индекс цветопередачи (IRC) Это способность лампы передавать естественный цвет окружающих предметов. Коэффициент передачи от 0 до 100. Самые лучшие показатели у ламп накаливания и галогенных ламп (более 90). Хуже у люминесцентных и светодиодных (60-90) Для жилых помещений рекомендуется показатель 80-100
Учитывая соотношения значений Лм и Вт, мы можем сравнить эффективность различных ламп. Чем больше значение Лм на 1 Вт, тем эффективность лампы выше. Чем выше эффективность лампы, тем ниже денежные затраты за потребление электроэнергии.
Теоретически, идеальный световой поток может достигать 1W = 683 лм (при 555nm).
Для электрического освещения имеем:
- Светодиодные лампы — до 220 Лм/Вт. У современных светодиодных ламп на данный момент варьируется от 80 до 150 Лм на 1 Вт.
- Компактные люминесцентные лампы — 40-100 Лм/Вт
- Галогенные лампы — 10-40 Лм/Вт
- Обычные лампы накаливания — 7-14 Лм/Вт
- Пламя свечи (для сравнения) — от 0,2 до 0,4 Лм/Вт
С помощью данного анализа, мы видим, что все виды ламп являются экономически эффективными по сравнению с традиционными лампами накаливания несмотря на более высокую цену.
Люминесцентные лампы. Виды и работа. Применение и маркировка
Свою историю люминесцентные лампы начинают с газоразрядных приборов, изобретенных в XIX веке. По светоотдаче и экономичности они значительно превосходят лампы накаливания. Применяются для освещения жилых помещений, учреждений, больниц, спортивных сооружений, цехов производственных предприятий.
Принцип работы и основные свойства
Чтобы произошел разряд, к колбе с противоположных сторон подсоединены электроды. Напрямую подключать газоразрядные лампы к сети нельзя. Обязательно используется пусковые регулирующие устройства – балласты.
Если число включений не превышает 5 раз в день, то люминесцентный источник гарантированно прослужит 5 лет. Это почти в 20 раз больше, чем для ламп накаливания.
Среди недостатков люминесцентных ламп выделяют:
- Нестабильную работу при низкой температуре.
- Необходимость в правильной утилизации из-за паров ртути.
- Присутствие мерцания, для борьбы с которым требуется усложнять схему.
- Сравнительно большие размеры.
Однако люминесцентные лампы чрезвычайно экономичны, поскольку потребляют мало энергии, дают больше света и дольше работают. Не удивительно, что они заменили обычные лампочки почти во всех учреждениях и на предприятиях.
Разновидности люминесцентных ламп
Лампы бывают низкого и высокого давления. Трубки низкого давления устанавливают в помещениях, высокого давления – на улицах и в мощных осветительных приборах.
Ассортимент люминесцентных осветительных приборов довольно широк. Они отличаются размером и формой трубки, типом цоколя, мощностью, цветовой температурой, светоотдачей и другими характеристиками.
В зависимости от формы трубки люминесцентные лампы бывают:
- Трубчатыми (прямыми), обозначаются буквой Т или t, имеют прямую форму.
- U-образными.
- Кольцевыми.
- Компактными, применяются для светильников.
Прямые, U-образные и кольцевые типы объединят в один вид линейных ламп. Наиболее часто встречаются осветительные приборы в форме трубок. После буквы T или t стоит число. Оно указывает на диаметр трубки, выраженный в восьмой части дюйма. Т8 означает, что диаметр составляет 1 дюйм или 25,4 мм, Т4 – 0,5 дюйма или 12,7 мм, Т12 – 1,5 дюйма или 38,1 мм.
Чтобы сделать лампу более компактной, ее колбу изгибают. Для запуска таких ламп используют встроенный электронный дроссель. Цоколь делают либо под стандартные лампы, либо под специальные светильники.
Цоколь люминесцентной лампы может быть типа G (штырьковый с двумя контактами) или типа E (винтовой). Последний тип применяется в компактных моделях. Цифры после буквы G указывают на расстояние между контактами, а после буквы E – диаметр в миллиметрах.
Маркировка
Отечественная и международная маркировка отличается. Российская берет свое начало со времен Советского Союза, в ней используются буквы кириллицы. Значения букв следующие:
- Л лампа;
- Д дневной свет;
- Б белый;
- Т теплый;
- Е естественный;
- Х холодный.
Зная обозначение можно без проблем прочитать маркировку. Например, ЛХБ будет означать лампу с холодным белым светом.
Для компактных моделей впереди ставят букву К. Если в конце маркировки стоит Ц, то применяют люминофор с улучшенной цветопередачей. Две буквы Ц означают, что цветопередача самого высокого качества.
Если лампа дает цветной свет узкого спектра, то после Л стоит соответствующая буква. Например, ЛК означает источник красного свечения, ЛЖ – желтого, и так далее.
Согласно международной маркировке на лампе пишут мощность и через косую черту трехзначное число, которое определяет индекс цветопередачи и цветовую температуру.
Первая цифра числа указывает на цветопередачу, умноженную на 10. Чем больше цифра, тем точнее цветопередача. Последующие две цифры говорят о цветовой температуре, выраженной в кельвинах и деленной на 100. Для дневного света цветовая температура составляет 5-6,5 тысяч K, поэтому лампа с маркировкой 865 будет означать дневной свет с высокой цветопередачей.
Для жилья используют лампы с кодом 827, 830, 930, для внешнего освещения с кодом 880, для музеев с кодом 940. Подробнее о значении маркировки можно узнать в специальных таблицах.
Мощность традиционно обозначается буквой W. В источниках света общего назначения шкала мощности изменяется от 15 до 80 Вт. У ламп специального назначения мощность может быть менее 15 Вт (маломощные) и более 80 Вт (мощные).
Применение
Люминесцентные лампы с всевозможными оттенками белого цвета применяют для освещения помещений и улиц. С их помощью подсвечивают растения в оранжереях и теплицах, аквариумы, музейные экспонаты.
Наиболее распространенные трубки Т8 с цоколем G13 мощностью 18 и 36 Вт. Их применяют в учреждениях и на производстве. Они легко заменяют советские лампы типа ЛБ/ЛД-20 и ЛБ/ЛД-40.
Поскольку люминесцентные источники слабо нагреваются, их можно применять во всех типах светильников. Выбирая соответствующий цоколь, мощность и размер, их устанавливают в бра, подвесные люстры, ночники. Применяют на кухне, ванне, гаражах, рабочих кабинетах.
Выпускают люминесцентные лампы, излучающие ультрафиолетовый свет. Их устанавливают в лабораториях, исследовательских центрах, медицинских учреждениях – везде, где требуется этот тип излучения.
Люминофор может давать цветной свет (желтый, голубой, зеленый, красный и так далее). Такие источники применяют в дизайнерских целях для художественного оформления витрин, подсветки вывесок, фасадов зданий.
Чтобы люминесцентный прибор прослужил максимально долго, надо обеспечить ему стабильное напряжение и редкое включение/выключение. Поскольку в колбе люминесцентного источника света содержится ртуть, ее нельзя выбрасывать вместе с другим бытовым мусором. Люминесцентные лампы необходимо сдавать в специальные пункты приема. Это могут быть спасательные службы, магазины, продающие электротовары, или компании по утилизации опасного мусора.