Отключающая способность – характеристики срабатывания и токовременной работы, параметры выбора и номинальный ток напряжения или расцепителя

Содержание

Номинальная отключающая способность для нагрузки 1 квт. Выбор автоматических выключателей защиты

В прошлом, для защиты электропроводки и электрооборудования в быту от таких ненормальных режимах работы как перегрузка или короткое замыкание применялись электрические пробки, как правило, из керамики. Конструкция этих устройств достаточно проста.

Недостатком этих устройств является то, что при перегорании предохранителя, вопросами о выборе плавкой вставки для него ни кто не занимался. В последствии пробка могла не сработать в нужный момент, что не редко являлось причиной многих пожаров.

В нынешнее время на замену старым пробкам пришли автоматические выключатели (АВ), которые имеют много преимуществ и более надежны в эксплуатации по сравнению с пробками. Конструктивно АВ представляет собой модуль с двумя контактами вход/выход и кнопкой включения (однополюсный автомат).

Рабочий механизм автоматического выключателя находится в закрытом пластмассовом корпусе. В задней части автомат имеет специальную защелку, благодаря которой его можно надежно зафиксировать на DIN-рейку при подключении в электрощите .

Выбор автоматических выключателей является ответственной задачей, к которой нужно отнестись серьезно. В условиях возникновения аварийных ситуаций правильно выбранный автомат является гарантией защиты не только вашего оборудования, но и вашей жизни.

Автоматический выключатель – это коммутационный аппарат предназначенный для автоматического размыкания электрической цепи в момент возникновения коротких замыканий или перегрузок.
На схемах обозначаются буквами АВ либо QF (европейский стандарт).

Критерий выбора автоматических выключателей

Основными показателями на которые ссылаются при выборе автоматов являются:

  • количество полюсов;
  • номинальное напряжение;
  • максимальный рабочий ток;
  • отключающая способность (ток короткого замыкания).

1#. Количество полюсов

Количество полюсов автомата определяется из числа фаз сети. Для установки в однофазной сети используют однополюсные или двухполюсные. Для трехфазной сети применяют трех- и четырехполюсные (сети с системой заземления нейтрали TN-S). В бытовых секторах обычно используют одно- или двухполюсные автоматы.

2#. Номинальное напряжение

Номинальное напряжение автомата это напряжение на которое рассчитан сам автомат. Не зависимо от места установки напряжение автомата должно быть равным или большим номинальному напряжению сети :

3#. Максимальный рабочий ток

Максимальный рабочий ток. Выбор автоматов по максимальному рабочему току заключается в том чтобы номинальный ток автомата (номинальный ток расцепителя) был больше или равен максимальному рабочему (расчетному) току который может длительно проходить по защищаемому участку цепи с учетом возможных перегрузок:

Чтобы узнать максимальный рабочий ток для участка сети (например для квартиры) нужно найти суммарную мощность. Для этого суммируем мощность всех приборов, которые будут подключатся через данный автомат (холодильник, телевизор, св-печь и т.п.).Величину тока из полученной мощности можно найти двумя способами: методом сопоставления или по формуле.

Для сети 220 В при нагрузке в 1 кВт, ток составляет 5 А. В сети с напряжением 380 В величина тока для 1 кВт мощности составляет 3 А. С помощью такого варианта сопоставления можно найти ток через известную мощность. К примеру, суммарная мощность в квартире получилась 4.6 кВт, ток при этом равен примерно 23 А. Для более точного нахождения тока можно воспользоваться известной формулой:

Для бытовых электроприборов .

4#. Отключающая способность

Отключающая способность. Выбор автомата по номинальному току отключения сводится к тому, чтобы ток который автомат способен отключить был больше тока короткого замыкания в точке установки аппарата:Номинальный ток отключения это наибольший ток к.з. который автомат способен отключить при номинальном напряжении.

Расчет токов короткого замыкания необходим для правиль­ного выбора и отстройки защитной аппаратуры. Ток короткого замыкания возникает при соединении токоведущих частей фаз между собой или с заземленным корпусом электроприемника в схемах с глухозаземленной нейтралью и нулевым проводом. Его величина, А, может быть определена по формуле

где U ф — фазное напряжение сети, В;

Z п — сопротивление петли фаза-нуль, Ом,

R — активное сопротивление одного провода цепи корот­кого замыкания, Ом;

X — индуктивное сопротивление, рассчитываемое по удель­ному индуктивному сопротивлению равному 0,6 Ом/км;

Z т — полное сопротивление фазной обмотки трансформа­тора на стороне низшего напряжения, Ом,

где UH , IH — номинальные напряжение и ток трансформатора;

UK % — напряжение короткого замыкания трансформатора, % от номинального.

Величины UH , l Н и U к % для соответствующего трансформа­тора приводятся в главе 5.

Выбор электрического аппарата осуществляется по его функциональному назначению, по роду напряжения и тока, ->о величине мощности.

Следует иметь в виду современную тенденцию, заклю­чающуюся в том, что при выборе между предохранителями и автоматическими выключателями, предпочтение отдается последним в силу их большей надежности, лучшей защиты от неполнофазных режимов, универсальности и т. д.

Выбор аппаратов по напряжению заключается в соответ­ствии номинального напряжения, указанного в паспорте ап­парата, и его рода (переменное, постоянное) номинальному напряжению питающей сети. При выборе аппарата по току следует учесть, что его номинальный ток должен быть не меньше рабочего тока установки.

Выбор автоматических выключателей

Автоматические выключатели выбираются прежде всего по номинальным значениям напряжения и тока. Затем опреде­ляются токи уставки теплового и электромагнитного расцепителей.

Тепловой росцепитель автомата защищает электроуста­новку от длительной перегрузки по току. Ток уставки теплового расцепителя принимается равным на 15-20% больше рабочего тока:

где 1 Р — рабочий ток электроустановки, А.

Электромагнитный расцепитель автомата защищает электроустановку от коротких замыканий. Ток уставки электромагнитного расцепителя определяется из следующих соображений: автомат не должен срабатывать от пусковых токов двигателя электроустановки

I пуск . дв ., а ток срабатывания электромагнитного расцепителя I ЭМР выбирается кратным току срабатывания теплового расцепителя:

где К = 4,5-10 — коэффициент кратности тока срабатывания электромагнитного ра

Выключатель автоматический: как выбрать — 9 схем

Со времен далекой молодости после окончания института в памяти запечатлелась картинка: я у друга в однокомнатной квартире. Мы сидим за шахматами. Его молодая жена шьет рядом.

По комнате бодро ходит малыш. Ему еще нет годика: познает мир. В левой руке какая-то погремушка, в правой — женская шпилька от волос.

И вдруг — ужас! На наших глазах он вставляет эту проволоку в розетку, получает удар током. Мышцы ног мгновенно реагируют: прыжок от стенки метра на полтора. Мальчик падает.

Из розетки вырывается пламя и дым. Знаете, чем все закончилось? Пацан отделался легким испугом, а алюминиевая проводка от розетки до распределительной коробки выгорела полностью. Свет не отключился.

Защиты от короткого замыкания не сработали: автомат заклинило, но пожара не было. Огонь просто погас внутри бетонной стены после того, как отгорел провод. Шпилька успела привариться к контакту розетки.

Вот я и решил написать подробную инструкцию, что такое выключатель автоматический: как выбрать его модуль за 9 шагов поэтапно. Будете выполнять — избавитесь от многих неприятностей.

Содержание статьи

Автоматический выключатель: принцип работы и устройство в картинках

Основное назначение автомата — ликвидировать аварийные ситуации в подключенных токовых цепях. Они бывают двух видов:

  1. Короткие замыкания (КЗ) или “коротец”, как их называют на жаргоне электриков.
  2. Перегрузки.

КЗ возникают за счет подключения к цепям действующего напряжения электрических цепочек с минимальным сопротивлением, которые создают громадные токи, зависящие от мощности питающих источников.

Токи коротких замыканий могут прожигать не только изоляцию воздушной среды во время ее ионизации, но и плавить металл проводки, вызывать
пожар, причинять другие беды.

На принципе управления токов коротких замыканий работают многочисленные сварочные аппараты, люди успешно пользуются ими. Но, внезапно появляющиеся КЗ наносят огромный вред.

Перегрузки опасны тем, что незаметно создают перегрев изоляции, повреждают ее. За счет возникших в ней дефектов появляются опасные токи утечек, которые способны выявить и ликвидировать только УЗО.

Перегрузки тоже являются частой причиной пожаров оборудования.

Конструкция автоматического выключателя состоит из двух раздельных модулей, каждый из которых работает, реагируя преимущественно на КЗ или перегрузку. Это:

  1. Электромагнитная отсечка.
  2. Тепловой расцепитель.

Простая кинематическая схема показывает устройство автоматического выключателя и принцип его работы.

Электрический ток протекает от сети к нагрузке сквозь замкнутые главные контакты и катушку соленоида отключения. Тепловое воздействие воспринимается биметаллической пластиной, а силовое — сердечником электромагнита.

Биметалл или сердечник в критической ситуации бьют по поворотному рычагу, выколачивая его из зацепления с защелкой, удерживающей главный контакт во включенном состоянии. Под действием сильной отключающей пружины он быстро размыкает электрическую цепь.

Конструктивно все производители реализуют этот принцип по своим разработкам. Поэтому они немного отличаются на всех моделях. Но, общее представление внутреннего устройства дает следующая картинка.

Принцип работы электромагнита расцепителя отсечки двумя словами

Когда по обмотке протекает ток, то в ее сердечнике, служащей магнитопроводом, создается магнитное поле.

Если сила тока достигает критической величины, то магнитная энергия выстреливает сердечник, преодолевая натяжение удерживающей пружины. Тогда боек выбивает защелку.

Современный электромагнитный расцепитель имеет небольшие габариты, подключается гибкими проводниками к контактам.

Электромагнитный расцепитель

Тепловой расцепитель автоматического выключателя: насколько просто работает

Конструкция состоит из двух соединенных пластин: сталь и латунь. У них разное линейное расширение: зависимость от температуры. При нагреве биметалл изгибается в одну сторону, а охлаждении — противоположно.

Тепловой расцепитель

Ток проходит по закрепленной на биметаллической пластине обмотке. Во время перегрузки или КЗ биметалл воздействует на поворотный механизм, а тот — отключает автомат, обесточивая подключенные потребители.

Выключатель автоматический: как выбрать по науке и жить в безопасности

Огромное количество производителей и обширный ассортимент их автоматов, предназначенных для разных условий эксплуатации, усложняют выбор их приобретения.

При покупке следует использовать только научный подход, не полагаясь на мнение даже знакомых электриков. С этой целью все ведущие заводы наносят маркировку прямо на корпусе модуля автомата. Привожу пример для Legrand.

Выбирать модуль выключателя автоматического нужно минимум по 9 характеристикам:

  1. значению действующего напряжения и форме тока;
  2. числу полюсов;
  3. величине номинального тока защищаемой цепи;
  4. времятоковой характеристике;
  5. мощности нагрузки;
  6. предельной коммутационной способности;
  7. классу токоограничения;
  8. селективности действия;
  9. степени защита корпуса IP.

Вам придется учесть их действие комплексно.

Смотрим напряжение автоматического выключателя: начальный
шаг

Сразу надо обращать внимание на условия надежной работы модуля. Дело в том, что подобные защиты могут создаваться для универсальной работы в цепях постоянного или/и переменного тока.

Примером может служить известная серия советских и российских защит, выпускаемая как автоматический выключатель АП-50.

У них бывает разный уровень напряжения. Он не всегда может подойти для надежной работы в конкретной проводке. Надо проверять внимательно.

Отдельные модули могут быть созданы только для эксплуатации в цепях переменного тока.

Число полюсов автоматического выключателя: шаг №2

Бытовые автоматы изготавливают для работы в однофазной или трехфазной цепи. На защите ввода при аварии они снимают потенциалы фаз и нуля, полностью обесточивая питающую схему.

У отходящих же линий отключается только потенциал фазы, а ноль остается в работе. Этого вполне достаточно для ликвидации аварии и создания более простой схемы подключения.

Шаг 3: выбор автоматического выключателя по току — скрытые секреты

Важно: температура окружающей среды сильно влияет на время срабатывания защиты. Все проверки и расчет проводят при +30 градусах. Реальные условия требуют учета температурных коэффициентов.

Нормальная работа автомата требует учитывать 4 значения тока:

  1. Номинальной величины.
  2. Условного нерасцепления.
  3. Условного расцепления.
  4. Длительно допустимого.

Величина номинального тока пишется Iн (In). Она указывается на корпусе, используется как базовое значение для выбора, работы и проверок защиты. Такая нагрузка должна длительно проходить через замкнутые контакты без их отключения.

Током условного нерасцепления называют величину I=1,13×Iн. При такой нагрузке защита не должна отключаться за время меньшее, чем 1 час с номиналом до 63 А и 2 часа — более мощным.

Характеристика условного тока расцепления определяет величину, которая надежно разрывает превышенную нагрузку.

Длительно допустимая величина тока введена для учета температурного состояния проводки без ее чрезмерного нагрева с учетом характеристик токопроводящей способности: вида металла и поперечного сечения.

Все эти величины я привел наглядным графиком для меди.
Можете им воспользоваться при расчете проекта новой проводки. Данные брал из
справочников, а электрическими проверками не занимался.

Если кто-то возьмется за эту работу, то результаты
обязательно опубликую. А проверять надо, ибо с длительно допустимыми токами в
медном проводе 4 и 6 квадрата просматривается интересная закономерность.

С алюминием не стал возиться: в быту он опасен. Тем пользователям, кому интересен этот вопрос, предлагаю сравнить его характеристики с медью по следующей таблице.

Выбор автоматического выключателя при проектировании проводки необходимо проводить по характеристике его номинального тока. Этот анализ осуществляют последовательно за 3 приема:

  1. Расчет тока линии по нагрузке подключенных потребителей.
  2. Выбор номинала модульной защиты по ближайшему значению стандартного ряда величин токов.
  3. Подбор сечений проводников под действующие токовые нагрузки.

Каждая из трех составляющих важна. Допущенные ошибки исправлять сложно. Поэтому каждый этап следует повторно проверять.

Одиночные или групповые потребители, как и однофазная или трехфазная схема питания накладывают свои особенности на расчет тока подключенной линии по собственным формулам. Это наиболее сложная часть анализа.

Шаг 4: времятоковая характеристика выключателя — основа правильного выбора типа конструкции

Нагрузки электрической сети носят случайный либо закономерный
характер. Они всегда меняются при подключении потребителей.

Лампы накаливания и ТЭНы с резистивными сопротивлениями не дают такие эффекты, как включение индуктивных устройств: электродвигателей, дросселей, трансформаторов. Кабельные линии обладают емкостным сопротивлением.

Любое включение прибора связано с созданием апериодических
составляющих, формирующих переходные процессы. Они характеризуются различными бросками токов.

Конструкция автоматического выключателя должна учитывать эти
явления и обеспечивать нормальное электроснабжение потребителей в любой
сложной, изменчивой ситуации.

Под эти требования технически сложно создать простой и надежный автоматический выключатель с универсальным набором возможностей.
Электротехническая наука пошла по другому пути: разделение нагрузок по типам реактивных составляющих и создание модулей защит под каждую.

С этой целью используется времятоковая характеристика выключателя, имеющая 3 типа: B, C и D. Они имеют разные параметры отстроек защиты от токов переходных процессов.

На графике по оси абсцисс приведено отношение тока действующей нагрузки к номинальной величине, а ординат — время отключения в
секундах и их долях.

Тип B применяется для потребителей с характерной резистивной нагрузкой: обогреватели, цепи освещения, протяженные линии электропитания.

Тип C используется для смешанных схем с розеточными группами и потребителями, создающими умеренные нагрузки при включении электродвигателей.

Тип D выбирают для потребителей не бытового назначения: силовые трансформаторы и нагрузки с повышенными токами при пусках оборудования.

Если использовать тип B автоматического выключателя для
дома, то он может ложно срабатывать при включениях стиральной или посудомоечной машины, электрических насосов, мощных пылесосов.

Автомат типа D просто не среагирует на опасность, когда она не достигнет величины его уставки, но потребует защиты оборудования от броска тока.

Автоматические выключатели типа С по своим характеристикам лучше всего приспособлены для работы в домашней проводке. Но их настройку все равно необходимо проверять качественно.

Выбор автоматического выключателя по мощности — шаг №5: нужно ли его делать?

Именно вопросу выбора автоматов по мощности нагрузки уделяют много внимания авторы статей для интернет. Поэтому я решил тоже высказать свое
мнение. А ваша задача: учесть или высказаться против.

Вся хитрость в том, что электрические характеристики любых бытовых приборов указываются в ваттах, а защиты маркируются амперами. Никаких
других секретов здесь больше нет.

Блогеры просто переводят нагрузку, выраженную мощностью, через напряжение бытовой сети в ток. Делают это посредством новых таблиц, схем, калькуляторов.

Я предлагаю отказаться от этой идеи, а модуль защиты рассчитывать по току номинальной величины с учетом вольтамперной характеристики. Будет меньше ошибок, да и искать их станет проще. Понимаю, что выбор остается за вами.

Шаг 6: предельная коммутационная способность — критическая характеристика модуля защиты

Исходим из того, что в природе нет контактов, способных выдерживать любые нагрузки. У них всегда есть предел, выше которого они просто сгорают.

Эту величину производитель определяет экспериментально и показывает цифрой внутри прямоугольника.

Обычно модули создаются под токи КЗ до 4,5 либо 6 или 10 килоампер. Когда автомат имеет отличия предельной коммутационной способности (ПКС) для цепей переменного и постоянного тока, то они указываются отдельно. Причем каждой величине приписывается свой символ: « ~ », « — », « ~/- ».

Это значение в принципе зависит от технического состояния электропроводки — ее сопротивления. Оно закладывается в проект, зависит от многих факторов:

  • протяженности магистралей;
  • сечения и качества токопроводящих жил;
  • количества и состояния соединительных контактов;
  • удаленности от питающей трансформаторной подстанции;
  • условий технического обслуживания.

Из практики:

  • У старых зданий с ветхой алюминиевой проводкой ПКС составляет 4500 ампер.
  • Медная электропроводка обеспечивает токи КЗ 6 килоампер.
  • Когда потребитель находится близко от трансформаторной подстанции, то автоматы надо ставить на 10кА.

Если не выполнить выбор автомата по предельной коммутационной способности, то его контакты от аварийного тока могут привариться. Тогда отключения не произойдет, а вся подключенная нагрузка выгорит.

Шаг 7: классы токоограничения автоматического выключателя — в чем суть характеристики

Скорость отключения короткого замыкания напрямую влияет на
безопасность оборудования, а модули защит работают не одинаково. Показатели быстродействия позволяют подбирать автоматы, работающие в щадящем или экстремальном режиме оборудования.

Для наглядности действия рассмотрим их срабатывание на примере длительности одного периода напряжения синусоиды тока или напряжения (обозначается Т).

В него входят две полуволны гармоники. Для стандартной частоты 50 герц время прохождения периода составляет 20 миллисекунд (мс).

Максимальное значение тока или его амплитуда достигается при четверти периода или половине полупериода. На графике я показал усредненные временные показатели трех классов токоограничения: 1, 2 и 3.

Класс №1 самый продолжительный, а значит экстремальный. Его время чуть превышает 10 мс. Для наглядности показано как Т/2. На корпусе автомата его просто не обозначают.

Класс №2 занимает промежуточное время по скорости. Такая защита должна отработать за время 6÷10 мс. На графике усреднено как 1/2(Т/2).

Класс №3 самый быстрый и экономный со временем срабатывания 2,5÷6 мс, что я обозначил как 1/3(Т/2).

Классы токоограничения 2 и 3 маркируются на корпусе под прямоугольником ПКС квадратиком с соответствующей цифрой.

Шаг 8: селективность автомата — залог качественного отключения аварии

Смысл выбора этого параметра заключается в избирательной способности защиты правильно локализовать короткое замыкание или перегруз и оставить в работе исправное оборудование.

Поясняю на простом примере квартирной проводки.

Любая розетка по разным причинам может стать источником короткого замыкания. Аварию может отключить автомат №3 квартирного щитка, №2 —
подъездный или №3 — домовой.

Однако обесточивать этаж либо подъезд /дом имеет смысл только при отказе выключателя №3, используя эту функцию как резервную. В первую
очередь надежно должны срабатывать квартирные защиты.

Поэтому они настраиваются на более быстрое срабатывание или меньшие уставки тока при наладке. Предусмотреть эту возможность следует во
время выбора конструкции.

Иногда возникают затруднения с настройкой избирательности на вводном автомате. Для таких случаев можно приобрести специальный селективный
автоматический выключатель.

Его конструкция имеет механизм, обеспечивающий два пути протекания тока: основной и дополнительный для теплового расцепителя со своими
связанными силовыми контактами.

Резистор селективности внутри дополнительного канала задерживает срабатывание своего контакта на уставку избирательности. А основной канал работает как обычный.

Общее отключение защиты происходит после разрыва контактов обоих каналов, что также способен выполнить электромагнит отсечки.

Подобный механизм может быть полезен владельцам частных домов или коттеджей, хотя в большинстве случаев селективность можно обеспечить выбором характеристик быстродействия и настройкой токовых уставок обычных модулей.

Проверка селективности срабатывания защит должна обязательно проводиться до ввода их в эксплуатацию и периодически при эксплуатации.

Заключительный шаг №9: степени защиты корпуса для помещений повышенной влажности

Обычно автоматы устанавливают в квартирном или ином щитке, защищенном от проникновения воды и посторонних предметов. Но иногда их приходится включать на мобильное оборудование или удлинители.

Когда такими приборами пользуются во влажных помещениях, то следует обращать внимание на техническую способность корпуса работать в опасной
среде.

Она маркируется индексом IP с цифрами, обозначающими степень защиты. На обычных автоматах достаточно обозначения IP20. Ее показывают в сопроводительной документации.

Во всем предшествующем материале я намеренно не рекламирую ни одного производителя автоматов. Советую выбирать модуль защиты по техническим характеристикам, реально проверяя их на стендах. Бренд — хорошая вещь, но испытания важнее.

Программа Электрик 7.8 или способ компьютерного расчета автомата

На сайте электротехнических программ можно бесплатно скачать и установить на свой компьютер доступный калькулятор расчета. Адрес я показал картинкой.

Загрузка, инсталляция и работа описаны отдельной статьей. Я проверил несколько функций этой программы. Работает нормально. Результат вычислений усредненный.
Можете использовать.

Вам придется учесть 2 фактора:

  1. Сайт работает на бесплатном конструкторе и забит навязчивой рекламой.
  2. Автор не берет на себя ответственность за конечный результат вычислений. Его вам придется проверять вручную.

В целом программа подойдет начинающим электрикам для создания первоначальной схемы своего проекта.

Ошибки электриков не только начинающих в работе защит

Выбрать выключатель автоматический правильно по техническим характеристикам — еще не значит, что он будет надежно отключать случайно возникшую неисправность.

К такому выводу я пришел на работе, занимаясь многочисленной проверкой этих защит на специализированных стендах. Поэтому еще раз рекомендую приобретенный автомат до ввода в эксплуатацию подвергать жестким испытаниям от реальной нагрузки и замерять временные характеристики.

Ошибка электрика №1: проверка петля фаза-ноль не выполнена

Суть этого теста состоит в том, что ток короткого замыкания, который должен почувствовать и отключить автомат, банально по закону Ома зависит от сопротивления подключенной в него цепи.

Другими словами, длина проводов от автомата до розетки и дальше к включенному в нее потребителю может снизить ток короткого замыкания до
такого предела, когда уставка для срабатывания защиты окажется выше: выключатель не сработает.

Эта возможность проверяется специальными приборами.

Ее следует обязательно выполнять.

Ошибка электрика №2: плохой монтаж проводки обученной бригадой

Когда писал эту статью у меня в квартире пропал свет и надолго. Старенький макбук работает девятый год, аккумулятор уже изъят…

Под окном увидел аварийную машину электриков ЖКХ. Спустился вниз по лестнице спросить, что случилось. Подъездный щит вскрыт. Бригада 3
человека: пожилой монтер, производитель среднего возраста и молодой
руководитель работ после института с бумагами.

Один работает, два стоят и наблюдают. Присоединился, стал третьим. Мне сказали, что перемычка на нулевой провод греется и ее будут менять. Я это и так понял. Там алюминиевая жила где-то примерно на 6 квадрат (оценил взглядом).

Монтер ее заменил и подключил на скрутку. Да, на скрутку, причем длиной не более 4 см. Я говорю: халява, сэр! На меня устремилось 3 пары
глаз и последовал вопрос: ты кто такой? Отвечаю: релейщик с 330.

Двое ничего не поняли, а парень с института посмотрел с уважением. Попытка объяснить ошибку встретила психологический отпор со стороны
самоуверенного монтера.

Мне, увидев такую работу, пришлось сразу идти в магазин и покупать реле контроля напряжения, хотя планировал его установку позже. Здание то старое.

Обрыв нуля трехфазной сети за счет отгорания скрутки гарантирован, а ловить 380 вольт вместо 220 в своей квартире нет желания.

Тем людям, кто любит смотреть видео, рекомендую к просмотру ролик владельца elektrik-sam.info. Он тоже доступно объясняет все про выключатель автоматический: как выбрать его правильно.

Тема немного сложная и у вас могут остаться вопросы. Задавайте их в разделе комментариев. Я обязательно отвечу.

Отключающая способность — это… Что такое Отключающая способность?

2.4.11 Отключающая способность — значение ожидаемого тока, которое УЗО — Д способно отключить при заданном напряжении в заданных условиях эксплуатации без нарушения его работоспособности.

3.4.6 отключающая способность (breaking capacity): Значение переменной составляющей ожидаемого тока, который УЗО способно отключать при заданном напряжении в заданных условиях эксплуатации.

[МЭК 60050 (442-01-49), модифицированный]

3.2.4.6 отключающая способность : Значение переменной составляющей ожидаемого тока, которое УЗО-ДП способно отключать при установленном напряжении в заданных условиях эксплуатации без нарушения его работоспособности.

Смотри также родственные термины:

2.5.12 отключающая способность (коммутационного аппарата или плавкого предохранителя) : Значение ожидаемого тока отключения, который способен отключать коммутационный аппарат или плавкий предохранитель при установленном напряжении в предписанных условиях эксплуатации и поведения. МЭК 60050(441-17-08).

Примечание

1) Напряжение устанавливается и условия предписываются в стандарте на соответствующий аппарат.

2) Для переменного тока это симметричное действующее значение периодической составляющей.

3) Определение наибольшей отключающей способности см. в 2.5.14.

2.5.12 отключающая способность (коммутационного аппарата или плавкого предохранителя): Значение ожидаемого тока отключения, который способен отключать коммутационный аппарат или плавкий предохранитель при установленном напряжении в предписанных условиях эксплуатации и поведения.

[МЭС 441-17-08]

Примечания

1. Напряжение устанавливается и условия предписываются в стандарте на аппарат конкретного вида.

2. Для переменного тока это симметричное действующее значение периодической составляющей.

3. Определение наибольшей отключающей способности см. в 2.5.14.

3.61 отключающая способность (коммутационного аппарата или предохранителя): Значение ожидаемого тока отключения, который коммутационный аппарат или предохранитель способен отключить при заданном напряжении в предписанных условиях применения и поведения.

Примечание — Для коммутационных аппаратов отключающая способность может быть определена в соответствии с видом тока, предусмотренного в предписанных условиях, например отключающая способность при отключении ненагруженной линии, отключающая способность при отключении ненагруженного кабеля, отключающая способность при отключении одиночной конденсаторной батареи и т.д.

3.62

3.5.9 отключающая способность (коммутационного устройства или плавкого предохранителя):

Значение ожидаемого тока отключения, которое способно отключать коммутационное устройство или плавкий предохранитель при установленном напряжении в предписанных условиях эксплуатации и поведения (МЭК 60050(441-17-08).

Примечания:

1. Напряжение устанавливается и условия предписываются в стандарте на соответствующее устройство.

2. Для переменного тока — это симметричное действующее значение периодической составляющей.

3. Определение наибольшей отключающей способности см. 3.5.11.

3.5.9 отключающая способность (коммутационного устройства или плавкого предохранителя) [breaking capacity (of a switching device or a fuse)]: Значение ожидаемого тока отключения, которое способно отключать коммутационное устройство или плавкий предохранитель при установленном напряжении в предписанных условиях эксплуатации и поведения.

[МЭК 60050(441-17-08)]

Примечания

1 Напряжение устанавливается и условия предписываются в стандарте на соответствующее устройство.

2 Для переменного тока — это симметричное действующее значение периодической составляющей.

3 Определение наибольшей отключающей способности см. 3.5.11.

119. Отключающая способность коммутационного аппарата

Коммутационная способность коммутационного аппарата при отключении цепи

2.3.4 отключающая способность плавкого предохранителя (breaking capacity of a fuse): Значение ожидаемого тока, способного отключить плавкий предохранитель при установленном напряжении в установленных условиях эксплуатации и обслуживания.

[МЭС 441-17-08, с изменением]

3.25 отключающая способность плавкой вставки (breaking capacity of a fuse-link): Значение (эффективное при переменном токе) ожидаемого тока, который плавкая вставка способна отключать при установленном напряжении и заданных условиях эксплуатации.

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

5.9. Предельное значение сверхтока неотключения Inm

При протекании сверхтока через главную цепь УЗО возможно его срабатывание даже при отсутствии в его главной цепи дифференциального тока — происходит так называемое «ложное» отключение УЗО.

Причиной ошибочного срабатывания УЗО является появление во вторичной обмотке дифференциального трансформатора тока небаланса, превышающего порог чувствительности расцепителя УЗО.

Стандарт ГОСТ Р 51326.1-99 устанавливает предельное значение сверхтока, протекающего через главную цепь УЗО, не вызывающего его автоматического срабатывания при условии отсутствия в главной цепи УЗО дифференциального тока.

Это значение равно 6 In как для случая многофазной равномерной нагрузки многополюсного УЗО, так и для случая однофазной нагрузки трех- и четырехполюсного УЗО.

Параметр «предельное значение сверхтока неотключения» характеризует способность УЗО не реагировать на симметричные токи короткого замыкания и перегрузки (до определенного значения) и является важным показателем качества устройства.

Неправильно считать, что при достижении током замыкания значения, равного «предельному значению сверхтока неотключения» УЗО должно производить отключение цепи.

Нормы определяют минимальное значение неотключающего тока, максимальное значение неотключающего сверхтока не нормируется и может намного превышать 6 In.

Для УЗО с защитой от сверхтоков данный параметр имеет другой смысл, поскольку сверхток отключается встроенным в УЗО автоматическим выключателем. В ГОСТ Р 51327.1-99 включены требования по проверке предельного тока несрабатывания в случае короткого замыкания. Методика испытаний предусматривает проверку предельного значения сверхтока в случае однофазной нагрузки четырехполюсного УЗО. Для этого в главной цепи УЗО устанавливают ток, равный 0,8 от значения нижнего предела соответствующих характеристик мгновенного расцепления (типов В — 2,4 In, С — 4 In и D — 8 In). УЗО не должно отключиться в течение 1 секунды.

5.10. Номинальная включающая и отключающая способность (коммутационная способность) Im

Номинальная включающая и отключающая способность является одной из важнейших характеристик УЗО, определяющей его качество и надежность. Согласно ГОСТ Р 51326.1-99 номинальная наибольшая включающая и отключающая способность — это среднеквадратичное значение переменной составляющей ожидаемого тока, указанное изготовителем, которое УЗО способно включать, проводить и отключать при заданных условиях (при наличии в главной цепи УЗО отключающего дифференциального тока).

Согласно требованиям стандарта Im должен быть не менее 10 In или 500 А (берется большее значение).

Коммутационная способность зависит от уровня технического исполнения устройства — качества силовых контактов, мощности пружинного привода, материала (пластмассовых или металлических деталей), точности исполнения механизма привода, наличия дугогасящей камеры и др. Этот параметр в значительной степени определяет надежность УЗО.

В некоторых аварийных режимах УЗО должно осуществлять отключение сверхтоков, опережая автоматический выключатель, при этом оно должно сохранить свою работоспособность.

5.11. Номинальная включающая и отключающая способность по дифференциальному току Im

Согласно ГОСТ Р 51326.1-99 номинальная наибольшая дифференциальная включающая и отключающая способность Im — это среднеквадратичное значение переменной составляющей ожидаемого дифференциального тока, указанное изготовителем, которое УЗО способно включать, проводить и отключать при заданных условиях. Минимальное значение номинальной наибольшей дифференциальной включающей и отключающей способности Im есть 10 In или 500 А (выбирают большее значение).

Leave Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *