Паропроницаемость строительных материалов – Что дает паропроницаемость. Паропроницаемость строительных материалов. Механизм паропроницаемости строительных материалов

Содержание

Паропроницаемость типовых строительных конструкций | ДОМ ИДЕЙ

Понятие «дыхание» не относится к терминологии строительной физики. «Дышащие» стены обеспечивают диффузионное движение воздуха и водяного пара сквозь конструкцию.

Зачем стене дышать

Основной причиной появления влаги в помещениях является выделение ее людьми, животными и растениями при физиологических процессах, в процессе приготовления пищи, влажной уборки, стирки и сушки, саморазморозки холодильников.

Диффузионное движение молекул сквозь стену возникает при наличии различной их концентрации по разные стороны наружной стены и зависит от температуры и влажности. Для описания диффузионных процессов введены понятия воздухо-, газо- и паропроницаемости, то есть свойств материалов пропускать через свою толщу соответственно воздух, газ и пар.

Поскольку стена аккумулирует имеющийся внутри избыток водяного пара и углекислого газа, которые движутся из помещения наружу в направлении от больших концентраций к меньшим. Вместе с тем кислород, который мы используем для дыхания, поступает снаружи вовнутрь.

И хотя в процентном отношении это количество очень мало и потому не принимается в расчёт при определении воздухообмена помещения, такая проницаемость является весьма позитивным свойством материала или конструкции. Оптимальными с точки зрения физиологии качествами проницаемости обладают деревянные стены. Любой, кто хоть некоторое время провёл в деревянном доме, отмечает лёгкость и свежесть воздуха в помещениях.

Паропроницаемость строительных конструкций

Наиболее интересной с практической точки зрения представляется эффект паропроницаемости. Относительная влажность воздуха в жилых помещениях в зависимости от времени года составляет от 25% до 50%, во влажных помещениях, например в душевых, до 97%.

Нынешние стены это слоистые конструкции, в которых помимо основного стенового материала присутствуют утеплители, декоративные и отделочные покрытия, которые либо уменьшают, либо сохраняют паропроницаемость основных строительных материалов. И очень многое зависит от характеристик сопротивления паропроницаемости различных слоев стены.

Грамотный подход к подбору материалов не только поддерживает оптимальный для человека влажностный режим, но и предотвращает разрушение стен при действии низких температур. Для более наглядного сравнения паропроницаемости материалов введена величина сопротивления диффузии μ. Чем она меньше, тем лучше протекают вышеупомянутые процессы.

Коэффициент паропроницаемости (константа диффузионного сопротивления)

Материалы

µ

Металл, стекло

Железобетон, бетонные блоки

100

Древесина

40

Пенополистирол

30-70

Керамический и силикатный кирпич

15

Ячеистый бетон

4-6

Минеральная вата

1

Известково-цементно-песчаная штукатурка

6

Минеральная штукатурка

12

Полимерная штукатурка

21

Силикатная штукатурка

29

Силиконовая штукатурка

41

Как видно, хорошей паропроницаемостью обладают современные ячеистобетонные стеновые материалы. Однако необходимо учитывать, что на величину паропроницаемости значительное влияние оказывает влажность материалов. И диффузионные процессы практически прекращаются при достижении материалом определенного порога влагонасыщенности.

Теплоизоляция фасада

Для правильной организации движения водяных паров существует правило, по которому сопротивление паропроницаемости расположенных с холодной стороны слоёв, должно быть меньше, чем расположенных с теплой стороны. Иначе образовавшаяся в стене влага сможет двигаться только вовнутрь стены, что приведёт как к опасности образования плесени, так и к повреждениям внутренней отделки, например к отслоению краски.

Ещё один важный момент, оказывающий значительное влияние на процесс высыхания свежеотстроенного здания и накопления конденсата в стенах, правильный выбор типа фасадной теплоизоляции.

Минеральная вата и пенополистирол по своим теплоизоляционным свойствам достаточно схожи. Однако паропроницаемость этих материалов совершенно различна. К примеру, у минеральной ваты μ=1, у пенополистирола μ=30-70. Это означает, что утепление минеральной ватой, в отличие от пенополистирола, не препятствует движению водяного пара из стены наружу.

Как видно, μ пенополистирола меньше чем у железобетона или бетонных блоков. Поэтому пенополистирол можно считать пригодным для утепления данных материалов. Для утепления дерева и особенно ячеистых бетонов, а также силикатного и керамического кирпича пенополистирол не пригоден, поскольку его паропроницаемость в несколько раз выше, чем утепляемых материалов. При плотном прилегании материалов это будет препятствовать диффузии пара и увеличит опасность образования конденсата и плесени в стенах.

Таким образом, накопление влажности внутри конструкций возможно и при утеплённых стенах. А неправильно подобранные теплоизоляционные и отделочные материалы ухудшают теплоизоляционные свойства стены.

Декоративная отделка фасада

Необходимо заострить внимание также и на паропроницаемости наружной отделки (краски, штукатурки).

Если паропроницаемость декоративно-отделочного покрытия в 2,5-3 раза ниже, чем материала стены, в холодную погоду возможно образование в стене конденсата на контактной поверхности под слоем наружной штукатурки или окраски.

При увеличении атмосферной температуры скопившаяся влага начинает переходить в фазу пара, интенсивно воздействуя на внутреннюю поверхность покрытий и прикладывая значительное усилие, направленное на отрыв покрытия от основания. Это, в свою очередь, вызывает образование трещин, пузырей, шелушения и иных повреждений. Избежать всего этого можно только одним способом — использовать проницаемую для паров отделку.

Например, использование полимерной штукатурки с более низкими показателями паропроницаемости поверх блоков из ячеистого бетона может привести к конденсации влаги на контактной поверхности между стеной и внешней отделкой. В связи с этим для внешней отделки ячеистых блоков рекомендуется использовать декоративную штукатурку, у которой коэффициент диффузионного сопротивления µ≤15.

ССБЧто нам стоит дом построить

 

Паропроницаемость материалов | Строительный справочник | материалы — конструкции

Паропроницаемостью по СП 23-101-2000 называется свойство материала пропускать влагу воздуха под действием перепада (разницы) парциальных давлений водяного пара в воздухе на внутренней и наружной поверхности слоя материала. Давления воздуха с обеих сторон слоя материала при этом одинаковые. Плотность стационарного потока водяного пара Gп (мг/м² час), проходящего в изотермических условиях через слой материала толщиной 5(м) в направлении уменьшения абсолютной влажности воздуха равна

Gп = μ∆рп/δ, где μ (мг/м час Па) — коэффициент паропроницаемости, ∆рп (Па) — разность парциальных давлений водяного пара в воздухе у противоположных поверхностей слоя материала. Величина, обратная μ, называется сопротивлением паропроницанию Rп =δ/μ и относится не к материалу, а слою материала толщиной δ. В отличие от воздухопроницаемости, термин «паропроницаемость» — это абстрактное свойство, а не конкретная величина потока водяного пара, что является терминологическим недочётом СП 23-101-2000. Правильней было бы называть паропроницаемостью величину плотности стационарного потока водяного пара Gп через слой материала.

Если при наличии перепадов давления воздуха пространственный перенос водяных паров осуществляется массовыми движениями всего воздуха целиком вместе с парами воды (ветром) и оценивается с помощью понятия воздухопроницания, то при отсутствии перепадов давления воздуха массовых перемещений воздуха нет, и пространственный перенос водяных паров происходит путем хаотического движения молекул воды в неподвижном воздухе в сквозных каналах в пористом материале, то есть не конвективно, а диффузионно. Воздух представляет собой смесь молекул азота, кислорода, углекислого газа, аргона, воды и других компонентов с примерно одинаковыми средними скоростями, равными скорости звука. Поэтому все молекулы воздуха диффундируют (хаотически перемещаются из одной зоны газа в другую, непрерывно соударяясь с другими молекулами) примерно с одинаковыми скоростями. Так что скорость перемещения молекул воды сопоставима со скоростью перемещения молекул и азота, и кислорода. Вследствие этого европейский стандарт EN12086 использует вместо понятия коэффициента паропроницаемости μ более точный термин коэффициента диффузии (который численно равен 1,39μ) или коэффициента сопротивления диффузии 0,72/μ.

Сущность понятия паропроницаемости поясняет метод определения численных значений коэффициента паропроницаемости ГОСТ 25898-83. Стеклянную чашку с дистиллированной водой герметично накрывают испытуемым листовым материалом, взвешивают и устанавливают в герметичный шкаф, расположенный в термостатированном помещении (рис. 20). В шкаф закладывают осушитель воздуха (концентрированный раствор азотнокислого магния, обеспечивающий относительную влажность воздуха 54%) и приборы для контроля температуры и относительной влажности воздуха (желательны ведущие непрерывную запись термограф и гигрограф). После недельной выдержки чашку с водой взвешивают, и по количеству испарившейся (прошедшей через испытуемый материал) воды рассчитывают коэффициент паропроницаемости. При расчетах учитывается, что паропроницаемость самого воздуха (между поверхностью воды и образцом) равна 1 мг/м час Па. Парциальные давления водяных паров принимают равными

рп = ϕр0, где р0 — давление насыщенного пара при заданной температуре, ϕ — относительная влажность воздуха, равная единице (100%) внутри чашки над водой и 0,54 (54%) в шкафу над материалом.

Рис. 20. Принцип измерения паропроницаемости строительных материалов. 1 — стеклянная чашка с дистиллированной водой, 2 — стеклянная чашка с осушающим составом (концентрированным раствором азотнокислого магния), 3 — изучаемый материал, 4 — герметик (пластилин или смель парафина с канифолью), 5 — герметичный термостатированный шкаф, 6 — термометр, 7 — гигрометр

Данные по паропроницаемости приведены в таблицах 4 и 5. Напомним, что парциальное давление паров воды является отношением числа молекул воды в воздухе к общему числу молекул (азота, кислорода, углекислого газа, воды и т. п.) в воздухе, т. е. относительным счётным количеством молекул воды в воздухе. Приведённые значения коэффициента теплоусвоения (при периоде 24 часа) материала в конструкции вычислены по формуле

s=0,27(λp0C0)0,5, где λ, р0 и С0 — табличные значения коэффициента теплопроводности, плотности и удельной теплоёмкости.

Таблица 5: Сопротивление паропроницанию листовых материалов и тонких слоев пароизоляции (приложение 11 к СНиП II-3-79*)

Материал Толщина слоя, мм Сопротивление паропроницанию, м² час Па/мг
Картон обыкновенный 1,3 0,016
Листы асбестоцементные 6 0,3
Листы гипсовые обшивочные (сухая штукатурка) 10 0,12
Листы древесно-волокнистые жесткие 10 0,11
Листы древесно-волокнистые мягкие 12,5 0,05
Пергамин кровельный 0,4 0,33
Рубероид 1,5 1,1
Толь кровельный 1,9 0,4
Полиэтиленовая пленка 0,16 7,3
Фанера клееная трехслойная 3 0,15
Окраска горячим битумом за один раз 2 0,3
Окраска горячим битумом за два раза 4 0,48
Окраска масляная за два раза с предварительной шпатлевкой и грунтовкой 0,64
Окраска эмалевой краской 0,48
Покрытие изольной мастикой за один раз 2 0,60
Покрытие бутумно-кукерсольной мастикой за один раз 1 0,64
Покрытие бутумно-кукерсольной мастикой за два раза 2 1,1

Пересчёт давлений из атмосфер (атм) в паскали (Па) и килопаскали (1кПа = 1000 Па) ведётся с учётом соотношения 1 атм = 100 000 Па. В банной практике значительно более удобно характеризовать содержание водяного пара в воздухе понятием абсолютной влажности воздуха (равной массе влаги в 1 м³ воздуха), поскольку оно наглядно показывает, сколько воды надо поддать в каменку (или испарить в парогенераторе). Абсолютная влажность воздуха равна произведению значений относительной влажности и плотности насыщенного пара:

Температура °С 0 20 30 40 50 60 70 80 90 100
Плотность насыщенного пара d0, кг/м³ 0,005 0,017 0,03 0,05 0,08 0,13 0,20 0,29 0,41 0,58
Давление насыщенного пара р0, атм 0,006 0,023 0,042 0,073 0,12 0,20 0,31  0,47 0,69  1,00
Давление насыщенного пара р0, кПа 0,6 2,3 4,2 7,3 12 20 31 47 69 100

Поскольку характерный уровень абсолютной влажности воздуха в банях 0,05 кг/м³ соответствует парциальному давлению водяных паров 7300 Па, а характерные значения парциальных давлений водяных паров в атмосфере (на улице) составляют при 50%-ной относительной влажности воздуха 1200 Па летом (20°С) и 130 Па зимой (-10°С), то характерные перепады парциальных давлений водяных паров на стенах бань достигают значений 6000-7000 Па. Отсюда следует, что типичные уровни потоков водяных паров через брусовые стены бань толщиной 10 см составляют в условиях полного штиля (3-4) г/м²час, а в расчёте на 20 м² стен — (60-80) г/час. Это не столь уж и много, если учесть, что в бане объёмом 10 м³ содержится около 500 г водяных паров. Во всяком случае при воздухопроницаемости стен во время сильных (10 м/сек) порывов ветра (1-5-10) кг/м² час перенос водяных паров ветром через брусовые стены может достигать (50-500) г/м² час. Всё это означает, что паропроницаемость брусовых стен и потолков бань не снижает существенно влажность древесины, намоченной горячей росой при поддачах, так что потолок в паровой бане и в самом деле может намокать и работать как парогенератор, преимущественно увлажняющий только воздух в бане, но лишь при тщательной защите потолка от порывов ветра.

Если же баня холодная, то перепады давлений водяных паров на стенах бани не могут превышать летом 1000 Па (при 100%-ной влажности внутри стены и 60%-ной влажности воздуха на улице при 20°С). Поэтому характерная скорость высушивания брусовых стен летом за счёт паропроницания находится на уровне 0,5 г/м² час, а за счёт воздухопроницаемости при легком ветре 1 м/сек — (0,2-2) г/м² час и при порывах ветра 10 м/сек — (20- 200) г/м² час (хотя внутри стен движения масс воздуха происходят со скоростями менее 1 мм/сек). Ясно, что процессы паропроницания становятся существенными в балансе влаги лишь при хорошей ветрозащите стен здания. Таким образом, для быстрых просушиваний стен здания (например, после аварийных протечек кровли) лучше предусматривать внутри стен продухи (каналы вентилируемого фасада). Так, если в закрытой бане намочить внутреннюю поверхность брусовой стены водой в количестве 1 кг/м², то такая стена, пропуская через себя водяные пары наружу, просохнет на ветру за несколько суток, но если брусовая стена оштукатурена снаружи (то есть ветроизолирована), то она просохнет без протопки лишь за несколько месяцев. К счастью, древесина очень медленно пропитывается водой, поэтому капли воды на стене не успевают проникнуть глубоко в древесину, и столь долгие просушки стен не характерны. Но если венец сруба лежит в луже на цоколе или на мокрой (и даже влажной) земле неделями, то последующая просушка возможна только ветром через щели.

В быту (и даже в профессиональном строительстве) именно в области пароизоляции имеется наибольшее количество недоразумений, порой самых неожиданных. Так, например, часто считают, что горячий банный воздух якобы «сушит» холодный пол, а холодный промозглый воздух из подполья «впитывается» и якобы«увлажняет» пол, хотя все происходит как раз наоборот. Или, например, всерьёз полагают, что теплоизоляция (стекловата, керамзит и т. п.) «всасывает» влагу и тем самым «высушивает» стены, не задаваясь вопросом о дальнейшей судьбе этой якобы бесконечно «всасываемой» влаги. Подобные житейские соображения и образы опровергать в быту бесполезно, хотя бы потому, что в общенародной среде никто всерьёз (а тем более во время «банного трёпа») природой явления паропроницаемости не интересуется. Но если дачник, имея соответствующее техническое образование, на самом деле хочет разобраться, как и откуда проникают водяные пары в стены и как оттуда выходят, то ему придётся, прежде всего, оценить реальное содержание влаги в воздухе во всех зонах интереса (внутри и вне бани), причём объективно выраженное в массовых единицах или парциальном давлении, а затем, пользуясь приведёнными данными по воздухопроницаемости и паропроницаемости определить, как и куда перемещаются потоки водяного пара и могут ли они конденсироваться в тех или иных зонах с учётом реальных температур. С этими вопросами мы и будем знакомиться в следующих разделах. Подчеркнём при этом, что для ориентировочных оценок можно пользоваться следующими характерными величинами перепадов давления:

— перепады давлений воздуха (для оценки переноса паров воды вместе с массами воздуха — ветром) составляют от (1-10) Па (для одноэтажных бань или слабых ветров 1 м/сек), (10-100) Па (для многоэтажных зданий или умеренных ветров 10 м/сек), более 700 Па при ураганах;
— перепады парциальных давлений водяных паров в воздухе от 1000Па (в жилых помещениях) до 10000Па (в банях).

В заключение отметим, что в народе часто путают понятия гигроскопичности и паропроницаемости, хотя они имеют совершенно разный физический смысл. Гигроскопические («дышащие») стены впитывают водяные пары из воздуха, превращая пары воды в компактную воду в очень мелких капиллярах (порах), несмотря на то, что парциальное давление паров воды может быть ниже давления насыщенных паров. Паропроницаемые же стены просто пропускают через себя пары воды без конденсации, но если в какой-то части стены имеется холодная зона, в которой парциальное давление водяных паров становится выше давления насыщенных паров, то конденсация, конечно же, возможна точно также, как и на любой поверхности. При этом паропроницаемые гигроскопические стены увлажняются сильнее, чем паропроницаемые негигроскопические.

Источник: health.totalarch.comДачные бани и печи. Принципы конструирования. Хошев Ю.М. 2008

Паропроницаемость материалов — СамСтрой — строительство, дизайн, архитектура.

Чтобы создать благоприятную атмосферу для жизни в доме, необходимо учитывать свойства используемых материалов. Особое внимание следует уделить паропроницаемости, этот термин относится к способности материалов испаряться. Благодаря знанию паропроницаемости, вы можете выбрать подходящие материалы для строительства дома.

Определить уровень проницаемости оборудования

Профессиональные строители имеют специальное оборудование для точного определения паропроницаемости определенных строительных материалов. Для расчета описанного параметра используется следующее оборудование:

  • весы с минимальной погрешностью;
  • посуда, необходимая для проведения экспериментов;

инструменты для точного определения толщины строительных материалов.Благодаря таким инструментам описанный атрибут точно определен. Но данные по экспериментальным результатам приведены в таблицах, поэтому нет необходимости определять паропроницаемость материала при строительстве объекта строительства.

Что нужно знать

 Следующие материалы имеют высокую паропроницаемость:

  • дерево;
  • глины;
  • ячеистый бетон.

Следует отметить, что стены из кирпича или бетона также имеют паропроницаемость, но этот показатель меньше. При перегрузке в парилке он сбрасывается не только через капюшон и окна, но и через стены. Поэтому многие считают, что в зданиях из бетона и кирпича трудно дышать.

Но стоит отметить, что в современном доме большая часть пара проходит через окна и капот. В то же время 5% пара проходит через стены. Важно знать, что в ветреную погоду из-за жары здание из воздухопроницаемых строительных материалов быстрее. Поэтому при строительстве дома следует учитывать и другие факторы, влияющие на сохранение микроклимата в помещении.

Стоит помнить, что чем выше коэффициент паропроницаемости, тем больше влажность стен. Высокая теплопроводность строительных материалов низкая. При увлажнении различных строительных материалов индекс паропроницаемости может возрасти до 5 раз. Поэтому необходимо определить пароизоляцию.

Влияние паропроницаемости на других

Стоит отметить, что в случае отсутствия установки отопления во время строительства, в случае сильного образования в ветреных условиях, тепло в помещении будет достаточно быстро уменьшаться. Поэтому необходимо утеплить стены.

Стена с большей прочностью имеет более высокую проницаемость. Это связано с тем, что когда пар входит в строительный материал, влага начинает замерзать при низких температурах, что приводит к постепенному разрушению стен. Поэтому при выборе строительного материала с высокой проницаемостью необходимо правильно установить паровой барьер и теплоизоляционный слой. Чтобы найти паропроницаемость материала, стоит использовать таблицу, которая показывает все значения.

Паропроницаемость и утепление стен

Во время отопления дома необходимо соблюдать правило, согласно которому паровой слой слоев должен подниматься наружу. Благодаря  зиме он не будет накапливаться в слоях воды, если в точке росы будет скапливаться конденсат.

Изоляция внутри, хотя многие строители рекомендуют создавать тепло и пароизоляцию снаружи. Это связано с тем, что пар поступает в помещение, и когда стены изолированы изнутри, влага не попадает в строительный материал. Часто для изоляции дома используется экструдированный полистирол. Коэффициент паропроницаемости этих строительных материалов низкий.

Другим методом изоляции является разделение слоев с помощью пароизоляции. Вы также можете применить материал без паров. Пример – изоляция стен пеностеклом. Несмотря на то, что кирпич способен впитывать влагу, пеностекло предотвращает проникновение паров, в этом случае кирпичная стена служит аккумулятором влаги, а когда уровень влажности прыгает, она становится помещением для климат-контроля в помещении.

Стоит помнить, что, если вы утепляете стены неправильно, строительные материалы могут потерять свои свойства через короткое время. Поэтому важно знать не только свойства используемых компонентов, но и как их закрепить на стенах дома.

Что определяет выбор изоляции

Нередко утеплители для домовладельцев используют минеральную вату, которая обладает высоким уровнем проницаемости. Согласно международным стандартам, сопротивление паропроницаемости равно 1. Это означает, что минеральная вата в этом отношении практически такая же, как воздух.

Это то, что многие производители минеральной ваты упоминали довольно часто. Часто можно найти ссылку на тот факт, что благодаря установке кирпичной стены с минеральной ватой ее проницаемость не будет уменьшена. Это действительно так. Но стоит отметить, что ни один из стеновых материалов не может производить столько пара, чтобы в помещениях сохранялся нормальный уровень влажности. Также важно отметить, что многие отделочные материалы, используемые для украшения помещений, могут полностью изолировать пространство без потери пара. Следовательно, паропроницаемость стенки значительно снижается. Поэтому минеральная вата оказывает небольшое влияние на парообмен.

Принимая решение о выборе изоляции и различных отделок, стоит помнить, что внешний слой должен быть более паропроницаемым. Если это положение не может быть выполнено, стоит разделить слои с паровым барьером. Это останавливает движение пара структуры и восстанавливает баланс слоев с состоянием окружающей среды. При отделке дома необходимо учитывать паропроницаемость используемых строительных материалов.

Что такое паропроницаемость

Что такое паропроницаемость

10-02-2013

Главная » Статьи » Что такое паропроницаемость

Паропроницаемость материалов

Все знают что «дышащие» стены — стены с хорошей паропроницаемостью – это как бы хорошо. А почему хорошо, и что это вообще такое, знают далеко не все. Так вот – «дышащим» называют материал, пропускающий не только воздух, но и пар, то есть имеющий паропроницаемость. Дерево, пенобетон, керамзит обладают хорошей паропроницаемостью. Кирпич и бетон тоже обладают меньшей паропроницаемостью, чем те же дерево и керамзит. Пар, выдыхаемый человеком, а также выделяемый при приготовлении пищи, принятии ванной и пр., если нет вытяжки, создаёт повышенную влажность в доме, что визуально можно увидеть в виде конденсата на окнах в холодную погоду или допустим на железных трубах с холодной водой. Считается, что если стена имеет высокую паропроницаемость, то в доме хороший микроклимат и легко дышится.

На самом деле это не совсем так. Даже если стены в доме из «дышащего» материала, 97% пара, удаляется из помещений через вытяжку, и только 3% через стены. К тому же стены, как правило, заклеены виниловыми или флизиленовыми обоями и соответственно не пропускают и этого. А если стены действительно «дышащие», то есть без обоев и прочей пароизоляции, в ветреную погоду из дома выдувает тепло. А ещё они менее долговечны. Чем выше паропроницаемость материала, тем больше он может набрать влаги, и как следствие, у него более низкая морозостойкость. Пар, выходя из дома через стену, в «точке росы»  превращается в воду.

При падении ночью температуры, точка росы соответственно смещается внутрь стены, а конденсат, находящийся в стене замерзает. Вода при замерзании расширяется и частично разрушает структуру материала. Несколько сотен таких циклов приводят к полному разрушению материала. Поэтому паропроницаемость строительных материалов при несовершенных конструкциях зданий вещь не только бесполезная, но и вредная.

В идеале конструкцию ограждающей конструкции в доме (стену) нужно проектировать таким образом, чтобы точка выпадения росы приходилась на такой утеплитель, который защищен от проникновения влаги, т.е. имеет определенную замкнутую структуру пузырьков по всему объему, в качестве примера такого материала можно привести утеплитель Пеноплекс, либо можно паропроницаемый материал защитить от проникновения влаги паронепроницаемой пленкой. В таком случае разрушительного действия проникновения воды в утеплитель можно будет избежать.

Паропроницаемостью по своду правил по проектированию и строительству 23-101-2000 называется свойство материала пропускать влагу воздуха под действием перепада (разницы) парциальных давлений водяного пара в воздухе на внутренней и наружной поверхности слоя материала. Давления воздуха с обеих сторон слоя материала при этом одинаковые. Плотность стационарного потока водяного пара Gn (мг/м2 час), проходящего в изотермических условиях через слой материала толщиной 5(м) в направлении уменьшения абсолютной влажности воздуха равна Gn = цЛрп/5, где ц (мг/м час Па) — коэффициент паропроницаемости, Арп (Па) - разность парциальных давлений водяного пара в воздухе у противоположных поверхностей слоя материала. Величина, обратная ц, называется сопротивлением паропроницанию Rn= 5/ц и относится не к материалу, а слою материала толщиной 5.

В отличие от воздухопроницаемости, термин «паропроницаемость» — это абстрактное свойство, а не конкретная величина потока водяного пара, что является терминологическим недочётом СП 23-101-2000. Правильней было бы называть паропроницаемостью величину плотности стационарного потока водяного пара Gn через слой материала.

Если при наличии перепадов давления воздуха пространственный перенос водяных паров осуществляется массовыми движениями всего воздуха целиком вместе с парами воды (ветром) и оценивается с помощью понятия воздухопроницания, то при отсутствии перепадов давления воздуха массовых перемещений воздуха нет, и пространственный перенос водяных паров происходит путем хаотического движения молекул воды в неподвижном воздухе в сквозных каналах в пористом материале, то есть не конвективно, а диффузионно.

Воздух представляет собой смесь молекул азота, кислорода, углекислого газа, аргона, воды и других компонентов с примерно одинаковыми средними скоростями, равными скорости звука. Поэтому все молекулы воздуха диффундируют (хаотически перемещаются из одной зоны газа в другую, непрерывно соударяясь с другими молекулами) примерно с одинаковыми скоростями. Так что скорость перемещения молекул воды сопоставима со скоростью перемещения молекул и азота, и кислорода. Вследствие этого европейский стандарт EN12086 использует вместо понятия коэффициента паропроницаемости ц более точный термин коэффициента диффузии (который численно равен 1,39ц) или коэффициента сопротивления диффузии 0,72/ц.

 

Рис. 20. Принцип измерения паропроницаемости строительных материалов. 1 - стеклянная чашка с дистиллированной водой, 2 — стеклянная чашка с осушающим составом (концентрированным раствором азотнокислого магния), 3 — изучаемый материал, 4 — герметик (пластилин или смель парафина с канифолью), 5- герметичный термостатированный шкаф, 6 — термометр, 7 — гигрометр.

Сущность понятия паропроницаемости поясняет метод определения численных значений коэффициента паропроницаемости ГОСТ 25898-83. Стеклянную чашку с дистиллированной водой герметично накрывают испытуемым листовым материалом, взвешивают и устанавливают в герметичный шкаф, расположенный в термостатированном помещении (рис. 20). В шкаф закладывают осушитель воздуха (концентрированный раствор азотнокислого магния, обеспечивающий относительную влажность воздуха 54%) и приборы для контроля температуры и относительной влажности воздуха (желательны ведущие непрерывную запись термограф и гигрограф).

После недельной выдержки чашку с водой взвешивают, и по количеству испарившейся (прошедшей через испытуемый материал) воды рассчитывают коэффициент паропроницаемости. При расчетах учитывается, что паропроницаемость самого воздуха (между поверхностью воды и образцом) равна 1 мг/м час Па. Парциальные давления водяных паров принимают равными рп = срро, где ро — давление насыщенного пара при заданной температуре, ср — относительная влажность воздуха, равная единице (100%) внутри чашки над водой и 0,54 (54%) в шкафу над материалом.

Данные по паропроницаемости приведены в таблицах 4 и 5. Напомним, что парциальное давление паров воды является отношением числа молекул воды в воздухе к общему числу молекул (азота, кислорода, углекислого газа, воды и т. п.) в воздухе, т. е. относительным счётным количеством молекул воды в воздухе. Приведённые значения коэффициента теплоусвоения (при периоде 24 часа) материала в конструкции вычислены по формуле s=0,27(A,poCo)05, где А,, ро и Со — табличные значения коэффициента теплопроводности, плотности и удельной теплоёмкости.

Таблица 5 Сопротивление паропроницанию листовых материалов и тонких слоев пароизоляции (приложение 11 к СНиП П-3-79*)

Материал

Толщина слоя

 мм

Сопротивление паропроницанию,

м/час Па/мг



Картон обыкновенный

1,3

0,016

 

Листы асбестоцементные

6

0,3

 

Листы гипсовые обшивочные

(сухая штукатурка)

10

0,12



 

Листы древесноволокнистые

жесткие

 

10

 

0,11



Листы древесноволокнистые

мягкие

 

12,5

 

0,05



Пергамин кровельный

0,4

0,33

 

Рубероид

1,5

1,1

 

Толь кровельный

1,9

0,4

 

Полиэтиленовая пленка

0,16

7,3

 

Фанера клееная трехслойная

3

0,15

 

Окраска горячим битумом

за один раз

 

2

 

0,3



Окраска горячим битумом

за два раза

 

4

 

0,48



Окраска масляная за два раза

с предварительной шпатлевкой

и грунтовкой

 

 

0,64




Окраска эмалевой краской

0,48

 

Покрытие изольной мастикой за

один раз

 

2

 

0,60



Покрытие бутумно-кукерсольной

мастикой за один раз

 

1

 

0,64



Покрытие бутумно-кукерсольной

мастикой за два раза

 

2

 

1,1



Пересчёт давлений из атмосфер (атм) в паскали (Па) и килопаскали (1кПа = 1000 Па) ведётся с учётом соотношения 1 атм =100 000 Па. В банной практике значительно более удобно характеризовать содержание водяного пара в воздухе понятием абсолютной влажности воздуха (равной массе влаги в 1 м3 воздуха), поскольку оно наглядно показывает, сколько воды надо поддать в каменку (или испарить в парогенераторе). Абсолютная влажность воздуха равна произведению значений относительной влажности и плотности насыщенного пара:

Температура °С   0

20

30

40

50

60

70

80

90

100

 

Плотность

насыщенного пара do, кг/м3  0,005

 

0,017

 

0,03

 

0,05

 

0,08

 

0,13

 

0,20

 

0,29

 

0,41

 

0,58



Давление

насыщенного

пара ро, атм      0,006

 

0,023

 

0,042

 

0,073

 

0,12

 

0,20

 

0,31

 

0,47

 

0,69

 

1,00



Давление

насыщенного пара ро, кПа     0,6

 

2,3

 

4,2

 

7,3

 

12

 

20

 

31

 

47

 

69

 

100



Поскольку характерный уровень абсолютной влажности воздуха в банях 0,05 кг/м3 соответствует парциальному давлению водяных паров 7300 Па, а характерные значения парциальных давлений водяных паров в атмосфере (на улице) составляют при 50%-ной относительной влажности воздуха 1200 Па летом (20°С) и 130 Па зимой (-10°С), то характерные перепады парциальных давлений водяных паров на стенах бань достигают значений 6000-7000 Па. Отсюда следует, что типичные уровни потоков водяных паров через брусовые стены бань толщиной 10 см составляют в условиях полного штиля (3-4) г/м2час, а в расчёте на 20 м2 стен -(60-80) г/час.

Это не столь уж и много, если учесть, что в бане объёмом 10 м3 содержится около 500 г водяных паров. Во всяком случае при воздухопроницаемости стен во время сильных (10 м/сек) порывов ветра (1-10) кг/м2 час перенос водяных паров ветром через брусовые стены может достигать (50-500) г/м2 час. Всё это означает, что паропроницаемость брусовых стен и потолков бань не снижает существенно влажность древесины, намоченной горячей росой при поддачах, так что потолок в паровой бане и в самом деле может намокать и работать как парогенератор, преимущественно увлажняющий только воздух в бане, но лишь при тщательной защите потолка от порывов ветра.

Если же баня холодная, то перепады давлений водяных паров на стенах бани не могут превышать летом 1000 Па (при 100%-ной влажности внутри стены и 60%-ной влажности воздуха на улице при 20°С). Поэтому характерная скорость высушивания брусовых стен летом за счёт паропроницания находится на уровне 0,5 г/м2 час, а за счёт воздухопроницаемости при легком ветре 1 м/сек — (0,2-2) г/м2 час и при порывах ветра 10 м/сек — (20- 200) г/м2 час (хотя внутри стен движения масс воздуха происходят со скоростями менее 1 мм/сек). Ясно, что процессы паропроницания становятся существенными в балансе влаги лишь при хорошей ветрозащите стен здания.

Таким образом, для быстрых просушиваний стен здания (например, после аварийных протечек кровли) лучше предусматривать внутри стен продухи (каналы вентилируемого фасада). Так, если в закрытой бане намочить внутреннюю поверхность брусовой стены водой в количестве 1 кг/м2, то такая стена, пропуская через себя водяные пары наружу, просохнет на ветру за несколько суток, но если брусовая стена оштукатурена снаружи (то есть ветроизолирована), то она просохнет без протопки лишь за несколько месяцев. К счастью, древесина очень медленно пропитывается водой, поэтому капли воды на стене не успевают проникнуть глубоко в древесину, и столь долгие просушки стен не характерны.

Но если венец сруба лежит в луже на цоколе или на мокрой (и даже влажной) земле неделями, то последующая просушка возможна только ветром через щели.

В быту (и даже в профессиональном строительстве) именно в области пароизоляции имеется наибольшее количество недоразумений, порой самых неожиданных. Так, например, часто считают, что горячий банный воздух якобы «сушит» холодный пол, а холодный промозглый воздух из подполья «впитывается» и якобы«увлажняет» пол, хотя все происходит как раз наоборот.

Или, например, всерьёз полагают, что теплоизоляция (стекловата, керамзит и т. п.) «всасывает» влагу и тем самым «высушивает» стены, не задаваясь вопросом о дальнейшей судьбе этой якобы бесконечно «всасываемой» влаги. Подобные житейские соображения и образы опровергать в быту бесполезно, хотя бы потому, что в общенародной среде никто всерьёз (а тем более во время «банного трёпа») природой явления паропроницаемости не интересуется.

Но если дачник, имея соответствующее техническое образование, на самом деле хочет разобраться, как и откуда проникают водяные пары в стены и как оттуда выходят, то ему придётся, прежде всего, оценить реальное содержание влаги в воздухе во всех зонах интереса (внутри и вне бани), причём объективно выраженное в массовых единицах или парциальном давлении, а затем, пользуясь приведёнными данными по воздухопроницаемости и паропроницаемости определить, как и куда перемещаются потоки водяного пара и могут ли они конденсироваться в тех или иных зонах с учётом реальных температур.

С этими вопросами мы и будем знакомиться в следующих разделах. Подчеркнём при этом, что для ориентировочных оценок можно пользоваться следующими характерными величинами перепадов давления:

—    перепады давлений воздуха (для оценки переноса паров воды вместе с массами воздуха — ветром) составляют от (1-10) Па (для одноэтажных бань или слабых ветров 1 м/сек), (10-100) Па (для многоэтажных зданий или умеренных ветров 10 м/сек), более 700 Па при ураганах;

—    перепады парциальных давлений водяных паров в воздухе от 1000Па (в жилых помещениях) до 10000Па (в банях).

В заключение отметим, что в народе часто путают понятия гигроскопичности и паропроницаемости, хотя они имеют совершенно разный физический смысл. Гигроскопические («дышащие») стены впитывают водяные пары из воздуха, превращая пары воды в компактную воду в очень мелких капиллярах (порах), несмотря на то, что парциальное давление паров воды может быть ниже давления насыщенных паров.

Паропроницаемые же стены просто пропускают через себя пары воды без конденсации, но если в какой-то части стены имеется холодная зона, в которой парциальное давление водяных паров становится выше давления насыщенных паров, то конденсация, конечно же, возможна точно также, как и на любой поверхности. При этом паропроницаемые гигроскопические стены увлажняются сильнее, чем паропроницаемые негигроскопические.

ЗАО «Гермес» — Паропроницаемость строительных материалов

Паропроницаемость

Паропроницаемость — способность материалов пропускать водяные пары, содержащиеся в воздухе, под действием разности их парциальных давлений на противоположных поверхностях слоя материала. С повышением температуры парциальное давление водяных паров увеличивается и водяной пар стремится попасть в область меньшего давления — на сторону слоя материала с меньшей температурой.
Паропроницаемость характеризуется коэффициентом паропроницаемости, который определяется количеством водяных паров в граммах, проходящим в течение 1 ч через слой материала площадью 1 м2 и толщиной 1 м.
Расположение слоев из различных материалов не влияет на величину общего термического сопротивления строительной конструкции, однако, диффузия водяного пара, возможность и место выпадения конденсата определяют расположение утеплителя на внешней поверхности стены. Если паропроницаемость слоев подобрана ненадлежащим образом, влага, проникая в слой изоляции с теплой стороны жилого помещения, увлажняет изоляцию, а при температуре ниже нуля замерзает. Это вызывает ухудшение свойств тепло изоляции жилого дома и ее разрушение.
Расчет сопротивления паропроницаемости и проверку возможности выпадения конденсата необходимо вести по СНиП II-3-79* «Строительная теплотехника».

Плотность

Плотность — отношение массы тела к занимаемому объему. Выражается в кг/куб. м. Различают истинную и насыпную плотность.
Истинная плотность
— предел отношения массы к объему, т. е. плотность тела или вещества без учета имеющихся в них пустот и пор.
Насыпная плотность
— отношение массы зернистых материалов ко всему занимаемому или объему, включая пространства между частицами.
Древесина учитывается в объемной мере, выражаемой в кубических метрах. При этом различают кубические метры складочной древесины (скл. м3) и плотной древесины (пл. м3). В складочных кубометрах древесины выражают общий объем, занимаемый древесиной и пустотами, образованными неплотностью прилегания балансов (из-за округлости, кривизны, сучков и т. п.) или щепок друг к другу, в плотных кубометрах древесины — объем, занимаемый только древесиной.

Теплопроводность

Теплопроводность — один из видов переноса теплоты (энергии теплового движения микрочастиц) от более нагретых частей тела к менее нагретым, приводящий к выравниванию температуры. При теплопроводности перенос энергии в теле осуществляется в результате непосредственной передачи энергии от частиц (молекул, атомов, электронов), обладающих большей энергией, частицам с меньшей энергией. Если относительное изменение температуры Т на расстоянии средней длины свободного пробега частиц l мало, то выполняется основной закон теплопроводности (закон Фурье): плотность теплового потока q пропорциональна градиенту температуры grad T.
Коэффициент теплопроводности — это значение пропорциональности для конкретного материала.

Паропроницаемость, плотность, теплопроводность некоторых строительных материалов.

 

 

Строительный материал Плотность,
кг/м3
Теплопро-
водность,

Вт/(м*С)
Паропро-
ницаемость
,
Мг/(м*ч*Па)

Железобетон
Бетон
Керамзитобетон
Керамзитобетон
Кирпич красный глиняный
Кирпич, силикатный
Кирпич керамический пустотелый (брутто1400)
Кирпич керамический пустотелый (брутто1000)
Пенобетон
Пенобетон
Гранит
Мрамор
Сосна, ель поперек волокон
Дуб поперек волокон
Сосна, ель вдоль волокон
Дуб вдоль волокон
Фанера клееная
ДСП, ОСП
ПАКЛЯ
Гипсокартон
Картон облицовочный
Минвата
Минвата
Минвата
Пенополистирол экстркдированный
Пенополистирол
Пенополистирол
Пенополистирол
Пенопласт ПВХ
Пенополиуретан
Пенополиуретан
Пенополиуретан
Пенополиуретан
Керамзит
Керамзит
Песок
Пеностекло
Пеностекло
АЦП
Битум
Полиуретановая мастика
Полимочевина
Рубероид, пергамин
Полиэтилен
Асфальтобетон
Линолеум
Сталь
Алюминий
Медь
Стекло

2500
2400
1800
500
1800
1800
1600
1200
1000
300
2800
2800
500
700
500
700
600
1000
150
800
1000
200
100
50
33
150
100
40
125
80
60
40
32
800
200
1600
400
200
1800
1400
1400
1100
600
1500
2100
1600
7850
2600
8500
2500

1.69
1.51
0.66
0.14
0.56
0.70
0.41
0.35
0.29
0.08
3.49
2.91
0.09
0.10
0.18
0.23
0.12
0.15
0.05
0.15
0.18
0.070
0.056
0.048
0.031
0.05
0.041
0.038
0.052
0.041
0.035
0.029
0.023
0.18
0.10
0.35
0.11
0.07
0.35
0.27
0.25
0.21
0.17
0.30
1.05
0.33

0.03
0.03
0.09
0.30
0.11
0.11
0.14
0.17
0.11
0.26
0.008
0.008
0.06
0.05
0.32
0.30
0.02
0.12
0.49
0.075
0.06
0.49
0.56
0.60
0.013
0.05
0.05
0.05
0.23
0.05
0.05
0.05
0.05
0.21
0.26
0.17
0.02
0.03
0.03
0.008
0.00023
0.00023
0.001
0.00002
0.008
0.002

Строительство сруба дома из бруса и бревна в Петербурге мы рекомендуем выполнять из:
Деревянный дом временного проживания, баня, дачные дома — бревно оцилиндрованное — D 160 mm и выше, профилированный брус — любой.
Деревянные дома постоянного проживания — бревно оцилиндрованное, профилированное бревно, брус профилированный с шириной межвенцового паза min 150 mm.
Строительство деревянных домов, бань, коттеджей, срубов мы производим:
Оцилиндрованное бревно D 180-320 mm
Профилированное бревно D 180-320 mm
Профилированный брус 150х150, 200х200, 250х250, 300х300 mm

 

 

Теплоусвоение.

Теплофизические свойства ограждающей конструкции при периодических колебаниях температуры воздушной среды связаны с такими понятиями, как усвоение тепла поверхностью конструкции и толщиной слоя материала, в котором распространяются наиболее значительные колебания температур, так называемый слой резких колебаний температуры.

Усвоение тепла поверхностью ограждающей конструкции определяется коэффициентом теплоусвоения s* и зависит от свойств материала, из которого выполнен внешний слой конструкции, а именно от величины коэффициента теплопроводности X, удельной теплоемкости с и объемной массы р.

Теплоустойчивость.

Свойство ограждающей конструкции сохранять при колебаниях потока тепла относительное постоянство температуры на поверхности, обращенной в помещение, называется теплоустойчивостью.

От постоянства температуры на внутренней поверхности ограждающих конструкций зависит обеспечение условий комфорта для пребывающих в помещении людей.

Теплоустойчивость ограждающей конструкции обеспечивается преимущественно теплоемкостью слоя резких колебаний. В часы действия отопления тепло накапливается в этом слое, а при перерывах в работе отопительной системы поступает в помещение, согревая внутренний воздух и обеспечивая относительное постоянство его температуры.
Такая теплоемкость может быть названа активной. Если указанный слой будет выполнен из материала с большим теплоусвоением, то в значительной мере будет обеспечена теплоустойчивость всей ограждающей конструкции.

 

Паропроницаемость штукатурки — важный параметр при выборе – ООО «Север-М»

Выбор материала для оштукатуривания стен – дело ответственное. Он находится в прямой зависимости от того, из чего возведены стены и как решён или будет решаться вопрос утепления. Штукатурная система (последовательно нанесённые слои штукатурки и основание под них) участвует в парообмене помещение – улица. Паропроницаемость – один из основных показателей качества затвердевшего штукатурного раствора: таково указание ГОСТа для сухих строительных смесей.

Плотные окна и двери, слабая приточно-вытяжная вентиляция в большинстве домов создают условия для повышенной влажности. Молекулы воды проникают через стены в обоих направлениях, и первая преграда для влаги – штукатурка. Толщина этого слоя невелика, но не учитывать его при расчётах паропроницаемости и теплопроводности стен нельзя.

Основой для выбора штукатурки служит такое правило: паропроницаемость стенового материала (внутренней отделки, самой стены, утеплителя и декоративной отделки снаружи) должна быть минимальной внутри и увеличиваться с каждым слоем. Наружный слой всегда самый паропроницаемый.

Стеновой «пирог» будет нормально функционировать, если его наружный слой будет иметь паропроницаемость в 5 раз большую, чем штукатурная система. Понятно, что штукатурка для внутренних стен и стен наружных обладает противоположными паропроницающими характеристиками. Вот некоторые коэффициенты паропроницаемости в мг/(мчПа)

  • Стекло – 0
  • Пенополистирол экструдированный – 0,005-0,013.
  • Штукатурка из цементно-песчаной смеси – 0,09.
  • Штукатурка цементно-известково-песчаная – 0,098.
  • Штукатурка известково-песчаная – 0,12.
  • Кирпич полнотелый глиняный и силикатный в кладке – 0,11.
  • Пенобетон и газобетон блочный, плотностью 1000 кг/м3 – 0,11.
  • Каменная минеральная вата (75-85 кг/м3) – 0,5.

Из перечисленных минеральных штукатурок раствор на основе извести – самый подходящий для внутренних стен. Именно так поштукатурены стены 90% домов страны.

Особое внимание к этому коэффициенту стали проявлять в связи с массовым применением изделий из ячеистых бетонов: газоблоков. Этот материал в готовом сооружении требует ограничения доступа атмосферного воздуха. Иначе влажностная и карбонизационная усадка приведут к появлению трещин, вплоть до разрушения здания.

Легкодоступная защита блоков – оштукатуривание: но купить штукатурку в Санкт-Петербурге у фирмы ООО «Север Снаб Групп» (она называется «плитонит»), половина дела. Неграмотным нанесением штукатурного слоя можно вообще прекратить парообмен. Влага будет скапливаться в блоках, стены отсыреют…

Толщину такого слоя определяет конкретный теплотехнический расчёт. Если расчёт отсутствует, то корректной будет такая рекомендация. Внутренний слой штукатурки должен быть в два раза толще наружного. Кладка из газоблоков обязана быть идеально ровной, поэтому внутри толщина штукатурки обычно не превышает 10-20 мм. 5-10 мм снаружи обеспечат нормальный парообмен.

Грамотным решением будет использование для фасада силикатной или силиконовой штукатурки. Эти виды обладают повышенной паропропускаемостью. К недостаткам силикатных смесей надо отнести (как и ко всем силикатным материалам) слабую устойчивость к продолжительному воздействию сильных дождей.

Силиконовая штукатурка лишена всех недостатков, кроме высокой стоимости. Она отлично колеруется в массе, обладает великолепной адгезией, не впитывает влагу. Поверхность её очищается от пыли дождевыми струями.Следует также учитывать, что при нанесении нескольких слоёв декоративной или защитной штукатурки нижний слой должен иметь наибольшую паропроницаемость, верхний – наименьшую.

Leave Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *