Расчет мощности саморегулирующего греющего кабеля: Расчет и подбор греющего кабеля для системы обогрева труб электрокабелем – Расчет мощности и длины греющего кабеля

Содержание

Калькулятор расчета длины греющего кабеля для водопровода

Некоторые участки автономной системы водопровода на пути от скважины или колодца к дому могут требовать подогрева. Это решается укладкой греющего электрического кабеля на трубу или даже непосредственно внутрь нее. В сочетании с термостатическим управлением создается надежная, и в то же время – в достаточной степени экономичная защита труб от замерзания.

Калькулятор расчета длины греющего кабеля для водопроводаКалькулятор расчета длины греющего кабеля для водопровода

Но вот какой греющий кабель (по удельной мощности) и когда нужен? И какой длины?

Если кабель располагается внутри трубы – то с ним относительно понятно, так как его необходимая длина примерно равна длине участка, требующего обогрева.

С наружным – сложнее. Пустить ли его одной «ниткой» вдоль оси трубы, или обернуть спирально? И сколько кабеля должно тогда прийтись на погонный метр водопровода?

Вопросы серьезные, так как ошибка в сторону уменьшения может привести к замерзанию воды в трубе, в другую — к совершенно неоправданным расходам и к увеличению сложности монтажных работ. Найти «золотую середину» поможет калькулятор расчета длины греющего кабеля для водопровода.

Необходимые табличные данные и краткие пояснения по проведению расчетов приведены ниже.

Калькулятор расчета длины греющего кабеля для водопровода

Перейти к расчётам

Пояснения и необходимые вспомогательные данные для проведения вычислений

Итак, откуда берутся данные для подстановки в поля калькулятора?

  • Длину участка, на котором требуется организовать подогрев, необходимо определить самостоятельно, тщательно анализируя создаваемый проект водопровода. Обычно это та зона, которая начинается после подъема проложенной трубы с глубины (а она по правилам должна располагаться ниже уровня промерзания грунта), то есть непосредственно перед входом в дом. Особого внимания требуют участки прохождения через массивные конструкции (например, ленточный фундамент или плиту), так как они всегда зимой «вытягивают» тепло за счет своей огромной теплоемкости. Если фундамент свайный, то наверняка есть участок прохождения трубы от грунта до перекрытия 1 этажа. Не забываем про отрезки трубопровода в холодных, неотапливаемых подвальных и цокольных помещениях.

Общая длина складывается из длин вертикальных и горизонтальных отрезков на проблемных участках.

  • Со вторым пунктом, то есть с теплопотерями нужно разобраться чуть подробней.

Задача греющего кабеля как раз и заключается в том, чтобы полностью компенсировать теоретически возможные теплопотери и поддерживать температуру воды в трубе на минимально необходимом уровне, исключающем замерзание (обычно от +6 до +10 ℃ — больше не имеет смысла).

Тепловые потери через стенки труб и слой утепления рассчитываются по довольно громоздкой формуле. Но можно воспользоваться уже готовыми результатами, сведенными в таблицу.

Толщина утепления трубыΔT°Сø 15 ммø20 ммø25 ммø32 ммø40 ммø50 ммø80 ммø100 ммø150 мм
10 мм207.28.4101213.416.2232941
3010.712.6151820.224.4344361
4014.316.8202426.832.5455781
6021.525.2303640.248.76886122
20 мм204.65.3
6.1
7.27.99.4131622
306.87.99.110.811.914.2192433
409.110.612.214.415.818.8253244
6013.615.718.221.623.928.2384867
30 мм203.64.14.75.56791116
305.46.17.18.2910.6141724
407.38.39.510.91214192331
6010.912.414.216.41821283447
40 мм203.13.544.64.95.88912
304.75.366.87.48.6111419
406.27.17.99.11011.5151825
609.410.61213.714.917.3222737
50 мм202.83.13.544.357810
304.24.75.366.57.4101216
405.66.27.188.610131621
608.49.410.61213.815192331
75 мм202.42.62.93.23.53.9678
303.53.84.34.85.25.97911
404.75.25.86.577.8101215
607.17.88.69.710.411.8151723
100 мм2022.32.52.833.4567
303.1
3.5
3.74.24.44.8679
404.24.655.666.781012
606.26.87.68.4910.1121519

А для работы с таблицей понадобятся следующие данные:

— Верхняя строка – это стандартные диаметры (условного прохода, то есть внутренние) водопроводных труб, для которых ведется расчёт.

— Левый крайний столбец – толщина термоизоляции, в которую будет заключаться труба. В таблице приведены результаты расчетов для утеплителей с коэффициентом теплопроводности порядка 0,04 Вт/м×℃. Под эту «планку» можно спокойно отнести утеплители для труб изготовленные их пенополистирола, пенополиэтилена, минеральной ваты, то есть наиболее популярные. Ну а если используется, скажем, пенополиуретан, то так показатели термоизоляции еще выше, теплопотери, стало быть, меньше, и обогрев кабеля получается даже с весьма солидным эксплуатационным запасом.

Кстати, при выборе толщины утепления можно руководствоваться негласным «эмпирическим правилом», что слой термоизоляции трубы обычно делается не меньше ее диаметра (имеется в виду «нижний диапазон», то есть с диаметрами от 15÷20 и до 50 ÷ 60 мм).

— Второй слева столбец — это разница температур Δt: между температурой самой холодной декады зимы, свойственной данному региону, и требуемой температурой воды в трубе (условно + 10 ℃). Например, если для местности, где планируется прокладка водопровода, тридцатиградусные морозы являются обычным делом, то Δt принимается равной 40 градусов.

— Пересечение выбранных строки и столбца покажет расчетную величину удельных тепловых потерь, ватт на погонный метр. Именно эта величина и указывается в калькуляторе.

  • В общей формуле длины нагревателя, по которой составлен калькулятор, есть различные коэффициенты для обычного резистивного кабеля и для саморегулирующегося. То есть пользователю требуется указать, какой будет использоваться для подогрева водопровода.
  • Если на участке водопровода, подлежащем подогреву, имеется задвижка, кран, фланец, металлическая опора, то эти места потребуют дополнительного расхода тепла. Пользователь указывает данные, а программа сама внесет коррективы в расчёт.
  • Последним пунктом указывается удельная мощность нагревательного кабеля, выбранного для подогрева водопровода.

Это паспортная величина, обязательно указываемая в маркировке кабеля. Если выбирается саморегулирующийся вариант, где показатель изменяется с температурой нагрева,  мощность обычно соответствует температуре окружающей среды в 10 ℃.

Обычно руководствуются такими рекомендациями:

— удельная мощность кабеля обычно берется так, чтобы она не была меньше удельных теплопотерь.

— для труб с ДУ до 25 мм обычно бывает достаточно удельной мощности 10 Вт/м;

— от 25 до 40 мм – 16 Вт/м;

— от 40 до 60 мм – 24 Вт/м;

— от 60 до 80 – 30 Вт/м

— свыше 80 мм – 40 Вт/м.

(С более значительными диаметрами при создании водопровода в частном доме вряд ли придётся сталкиваться).

— Если водопроводная труба – полимерная, то, независимо от ее диаметра, не стоит использовать нагревательный кабель мощнее 17 Вт/м.

Результат расчёта будет показан с округлением до одного метра ( в большую сторону).

Калькулятор расчета длины греющего кабеля для водопровода

Обезопасьте свой домашний водопровод от промерзания!

Надеяться только на утепление проблемных участков трубы – безрассудство! Без подогрева обвести спокойствие за неуязвимость своей системы не получится! По каким принципам осуществляется подогрев водопровода – читайте в специальной публикации нашего портала.

Расчет греющего кабеля — как высчитать нужное количество саморегулирующегося прогревочного кабеля

Прогревочный саморегулирующийся кабель имеет способность регулировать температуру и удобен в монтаже, что позволяет применять его, отрезав куски нужной длины. Греющий кабель применяют, чтобы защитить систему трубопровода от замерзаний в холодное время года.

Разновидности обогревающих кабелей

Повышение греющей температуры кабеля для обогрева получается за счёт медных сердечников разного диаметра. Для изоляции применяют огнеупорный полиэтилен и фторэтилен. В соответствии с разными свойствами, есть несколько основных типов терморегулируемого нагревательного кабеля с различной маркировкой.

Для определения обогрева труб снаружи нужно выполнить  расчёт  мощности нагревательного кабеля и площадок. Верно сделанный расчёт площадок электрокабеля и монтаж смогут предотвратить замерзание трубы в зимний период.

Греющий саморегулирующий кабель после проведения расчёта устанавливают:

  • На уличные трубы для обогрева
  • На трубы в помещениях, где нет отопления

Характеристики кабеля для прогрева трубы

Устройство нагревательного кабеля не особо сложное. Чтобы получить тепло, есть внутренняя жила, имеющая высокое сопротивление.

Кабель для обогрева труб имеет:

  • Внутреннюю жилу
  • Нагревательный элемент
  • Изоляционные слои
  • Экранирующую оболочку
  • Наружный  слой

Резистивный кабель для трубопроводов

Резистивный кабель для обогрева бывает нескольких типов. Линейный кабель бывает одножильным и двужильным, имеет нагревательную жилу различной формы и разную толщину теплоизоляции. Произвольно нарезать данный кабель на требуемую длину нельзя. Зональный греющий кабель для обогрева, состоящий из площадок, можно поделить.

Саморегулирующий прогревающий кабель

Саморегулирующий кабель обычно двухжильный. Жилы заключены в полимерную матрицу, либо соединяются при помощи электрических нитей, проводящих ток. Тепловыделение этого вида кабеля может меняться. Данный тип кабеля для обогрева можно разрезать на площадки. При понижении температуры воздуха саморегулирующий кабель самостоятельно может регулировать тепло, что позволит сэкономить энергию или совсем отказаться от температурных датчиков, подключив кабель прямо к электросети. Стоимость данного вида нагревательного кабеля обычно несколько дороже резистивного.

Использование греющего кабеля для нагревания

Греющий саморегулирующий кабель применяют часто для обогрева водопроводной трубы. Обогреваются они  изнутри и снаружи.

  • Греющий саморегулирующий кабель применяют внутри, когда невозможно обогреть трубы снаружи
  • Нагревательный кабель снаружи используют для защиты от замерзаний в холодное время

При спиральном способе  размещения саморегулирующегося нагревательного кабеля производят обматывание труб по спирали. Также можно прикрепить кабель скотчем на обоих концах трубы, а центр посередине клейкой лентой.

Преимущества прогревающего кабеля для труб

Раньше нагревающие кабели применяли только для подогрева трубопровода промышленного значения, сейчас систему обогрева труб применяют и в домашних условиях.

Греющий саморегулирующий кабель:

  • Надёжный
  • Универсальный
  • Безопасный
  • Экономичный
  • Легкомонтируемый

Метод выбора и расчёт кабеля

Для надежной работы системы прогрева нужно выбрать подходящее оборудование, учесть все особенности объекта и сделать расчёт. Также следует обеспечить верный монтаж системы прогрева. Но нужно помнить, что эффективная работа может снизиться при неправильной эксплуатации и несоблюдении простых правил монтажа.

При выборе необходимо помнить, что:

  • Кабель имеет разное строение и комплектацию
  • Следует устанавливать полный комплект и выполнить правильно расчёт
  • Нужен автоматический контроль и поддержание температурного режима

При выборе количества и качества греющего кабеля необходимо знать назначение трубы, диаметр, участок обогрева, материал и толщину теплоизоляционного слоя. Зная эти параметры, можно выполнить расчёт теплопотерь, а также определить подходящий вид нагревательного кабеля.

Расчёт тепловых потерь производят по следующей формуле:

Q=(2*3,14*W*L*(t_вн-t_нар))/(Ln*(D/d_тр ))*1,3

Главные факторы, которые  нужно учитывать при расчёте:

  • Температуру и погодные условия
  • Место монтажа трубопровода
  • Диаметр трубы и толщину стенок
  • Вид труб и протяжённость трубопроводной системы

По типу нагревательного кабеля и уровню теплопотери определяется точное количество комплектации. Чтобы система прогрева исполняла свои задачи, мощность должна компенсировать теплопотери воды в трубе. Главные места, в которых устанавливают нагревательный кабель – это пути стока воды и зоны образования наледи. Расчёт количества нагревательного кабеля нужно производить с учётом особенностей зон обогрева и мощности, которая позволит эффективно обогреть нужные элементы.

Точный расчёт сможет сделать опытный специалист, услуги которого можно заказать на YouDo.

Пусковой ток греющего кабеля: расчет и особенности

Пусковой (стартовый) ток – это максимальный ток, возникающий в момент подачи питания на систему. Этот параметр необходимо учитывать при проектировании, а точнее — при расчете максимальной длины отрезков кабеля.

От чего зависит стартовый ток

  • Температуры включения. Чем ниже температура окружающей среды, при которой происходит включение системы обогрева, тем выше пусковой ток и тем больше стартовая мощность.
  • Длины нагревательного кабеля. Чем больше длина секции, тем больше СТ системы. Для резистивного кабеля он определяется внутренним удельным сопротивлением Ом/м нагревательной жилы и рассчитывается, и контролируется при изготовлении секции на заводе. Саморегулируемый нагревательный кабель можно условно представить как множество параллельных резистеров (сопротивлений), подключенных к одному источнику питания. Сопротивление будет уменьшаться при увеличении длины линии, и, соответственно, увеличится пусковой ток.

От чего зависит величина стартового тока

  1. Мощности греющего кабеля. Чем больше удельная мощность кабеля (Вт/м), тем больше СТ.

  2. Особенности конструкции нагревательного кабеля. Резистивный греющий кабель из-за особенности конструкции имеет небольшой СТ, который на несколько процентов превышает рабочее значение тока.

    Саморегулируемый кабель имеет достаточно большой СТ, который может увеличиваться в 1.5 -5 и более раз от своего рабочего значения. Причина — использование в конструкции проводящей матрицы с PTC-коэффициентом, меняющей свое электрическое сопротивление в зависимости от температуры окружающей среды.

    В «холодном» состоянии кабель имеет небольшое сопротивление, которое к тому же зависит от температуры окружающей среды. При подаче питания на кабель, он начинает разогреваться, его сопротивление начинает расти, ток в цепи питания уменьшается. Коэффициент стартового тока зависит от компонентного состава и применяемых технологий при производстве матрицы кабеля.

    У каждой марки нагревательного кабеля своя величина стартового тока. Производители редко указывают эту информацию в технических характеристиках. Этот параметр является условной величиной и при различных условиях один и тот же кабель может иметь разное значение СТ. Аналогично производители саморегулирующегося кабеля не нормируют его удельное сопротивление Ом/м.

График зависимости СТ кабеля Samreg-40-2CR* от температуры окружающей среды

*график построен на основе испытаний

Пиковая нагрузка приходится на первые 3-30 секунд после включения, в этот момент СТ может превышать номинальное значение в 2-5 раз. Примерно через 5-10 минут происходит полная стабилизация и выход греющего кабеля на номинальную мощность.

Расчет пускового тока греющего кабеля

Грубо рассчитать максимальный пусковой ток нагревательной секции можно исходя из общей длины греющего кабеля в системе и его удельной мощности.

Пример расчета максимального стартового тока греющего кабеля

Имеется секция саморегулирующегося кабеля удельной мощностью 30 Вт/м и длиной 50 м. Номинальная мощность секции при температуре +10°С составляет Pном=30Вт/м*50м=1500Вт. Это мощность уже разогретой секции. Если на кабель в «холодном» состоянии подать питание, то его мощность будет в несколько раз выше номинального значения. Для расчетов мы принимаем коэффициент стартового тока равный 2.5-3 для кабелей марки Samreg и Alphatrace. Коэффициент определен в ходе экспериментов с кабелем данных марок, а также изучения их физических и электротехнических свойств. У греющих кабелей иных производителей данный коэффициент может отличаться как в большую, так и меньшую сторону.

Тогда, стартовая (пусковая) мощность в нашем примере равна Pпуск=3хPном=4500Вт, пусковой ток Iпуск=4500/220=20,45 А.

По найденному значению СТ осуществляется выбор автоматических и дифференциальных выключателей для защиты нагревательной секции, а также тип и сечение силового питающего кабеля. Для секции, приведенной в примере, необходим дифференциальный автомат на номинальный ток Iном=25А с дифференциальным током Iут=30мА

Способы уменьшения стартового тока

Большая величина СТ является нежелательной для питающей сети, так как приходится использовать автоматы с большим номинальным током. Кроме того, подбирается силовой кабель увеличенного сечения.

Существует несколько способов снижения СТ системы:

Последовательное подключение

Последовательное подключение к питающей сети нагревательных секций, которое обеспечивается с помощью установки реле выдержки времени. Это устройство применимо в системе, состоящей из нескольких линий (нагревательных секций). Оно позволяет включать каждую линию с определенным временным интервалом (обычно около 5 минут). При данном способе подключения ток в нагревательной секции уменьшится до рабочего (номинального значения) через 5 минут после подачи питания. После этого можно осуществлять включение следующей линии. Таким образом, суммарный СТ всей системы обогрева равен:

Iсумм.пуск=Iном1+Iном2+…+Iпуск.n,

где Iном1, Iном2… — номинальные токи нагревательных секций соответственно 1ой, 2ой и т.д.

Iпуск.n – СТ секции, которая включается в сеть последней.

Чем больше секций включается по такой схеме (т.е. чем больше ступеней включения), тем больше пусковой ток будет стремиться к номинальному току для данной системы. Так, если по такой схеме включить хотя бы 3 группы (одна группа включается напрямую, 2 другие через реле времени через 5 и 10 минут соответственно) при условии равномерного распределения мощностей по группам, то пусковой ток можно снизить почти на 50%.

Пример принципиальной схемы шкафа управления с реле времени
Видео применения реле времени для последовательного включения линий обогрева

Устройство плавного пуска

Устройство в течение всего времени холодного запуска системы (порядка 10-12 минут) поддерживает значение тока на уровне не выше номинального. В этом случае можно использовать силовые и дифавтоматы, рассчитанные на номинальный ток секции. Кроме того, не придется применять питающий кабель с увеличенным сечением. Принцип работы устройства подробно описан в паспорте.

Паспорт устройства плавного спуска ICEFREE-PP.pdf

Согласно максимальной стартовой мощности подбирается также силовой кабель подходящего сечения.

Подбор сечения силового кабеля для системы обогрева

Таблица выбора сечения кабеля по току и мощности с медными жилами

Таблица выбора сечения кабеля по току и мощности с алюминиевыми жилами

Неправильный расчет СТ приводит к выходу из строя системы защиты и управления, что может стать причиной аварийных ситуаций на обогреваемом объекте.

Проблемы из-за неправильного расчета пускового тока

Наиболее частые проблемы, возникающие по причине неправильного расчета пускового тока и в соответствии с этим неправильного выбора оборудования:

Срабатывания автоматов защиты и иных защитных устройств

Срабатывания автоматов защиты и иных защитных устройств при включении системы обогрева из «холодного» состояния. Фактически автоматы защиты нагревательных секций выключатся в первые 10-100 секунд после подачи на них питания. Автомат отключается по перегрузке, срабатывает его тепловой расцепитель. Автомат может работать некоторое время в режиме перегрузки, но ввиду затяжного характера процесса снижения СТ, его запаса не хватает. Для устранения этой проблемы приходится выбирать автомат на большее значение номинального тока.

Данная проблема может быть не выявлена на этапе тестирования или запуска системы, так как максимальный пусковой ток увеличивается при понижении температуры окружающей среды. Если систему тестировали до наступления минимальных температур ошибка возникнет только при включении системы в холодное время года (например, в мороз).

Перегрев силового кабеля

Перегрев силового кабеля возникает по причине неправильного подбора его сечения. Из-за большой длительности пускового процесса греющего кабеля высокое значение СТ нагревает жилы силового кабеля. При этом кабель может расплавиться, возникнуть короткое замыкание и даже пожар на объекте обогрева.

Максимальная длина греющего кабеля

Максимальная длина греющего кабеля

Подробнее

Внимание!

При расчетах системы обогрева необходимо помнить, что в первую очередь максимальный стартовый ток зависит от длины секции кабеля.

Превышение допустимой длины приводит не только к увеличению СТ, но и к преждевременному износу системы.

Примеры электрообогрева

Греющий кабель Samreg

Саморегулирующийся кабель SAMREG 16-2 Саморегулирующийся кабель SAMREG 16-2
  • Мощность: 16 Вт
  • Назначение: трубопровод
  • Тип: саморегулирующийся
  • Вид: низкотемпературный
  • Применение: без взрывозащиты
  • Maкс. температура (рабочая): 65 °C

Оптовый прайс

Саморегулирующийся кабель SAMREG 24-2CR Саморегулирующийся кабель SAMREG 24-2CR
  • Мощность: 24 Вт
  • Назначение: трубопровод / резервуар
  • Тип: саморегулирующийся
  • Вид: низкотемпературный
  • Применение: без взрывозащиты
  • Maкс. температура (рабочая): 65 °C

Оптовый прайс

Саморегулирующийся кабель SAMREG 40-2CR Саморегулирующийся кабель SAMREG 40-2CR
  • Мощность: 40 Вт
  • Назначение: трубопровод / резервуар / кровля
  • Тип: саморегулирующийся
  • Вид: низкотемпературный
  • Применение: без взрывозащиты
  • Maкс. температура (рабочая): 65 °C

Оптовый прайс

В раздел

Другие статьи на тему

Видео про шкафы управления

Расчет и подбор греющего кабеля для системы обогрева труб

Для того, чтобы трубогрей выполнял требуемую задачу по защите труб от замерзания, его мощности должно быть достаточно для компенсации теплопотерь. Основные факторы, которые учитываются при расчете теплопотерь:

  • Минимальная температура окружающей среды
  • Место установки трубы
  • Диаметр трубы
  • Тип трубы и её протяженность, на которой требуется установить подогрев
  • Толщина и коэффициент теплопроводности теплоизоляции

Чем больше труба или чем тоньше теплоизоляция, тем больше необходима удельная мощность кабеля [Вт/м]. Однако для защиты от замерзания полиэтиленовых и пластиковых труб установленная мощность не должна превышать 30 Вт/м. Иначе возможно, что температура кабеля превысит максимально допустимые значения для материала трубы, что приведет к ее повреждению.
Величина тепловых потерь рассчитывается по формуле:
Q =(2 * 3,14 * W * L * ( t вн. — t нар. )/ Ln ( D / d тр. нар )) *1,3

    где:
  • W – коэффициент теплопроводности тепло изоляции, обычно равен 0,04 [Bt / m *° C]
  • L – длина трубы, [ m ]
  • t вн. – температура жидкости внутри трубы, [° C ]
  • t нар. – температура окружающей среды, [° C ]
  • D тр.изол. – наружный диаметр трубы с теплоизоляцией, [м]
  • d тр.нар – наружный диаметр трубы, [м]
  • 1,3 – коэффициент запаса

Требуемая длина кабеля:
L кабеля = Q/ Руд. каб., где: Руд. каб.– удельная мощность кабеля
Необходимо при расчете длины кабеля добавлять количество кабеля на задвижки, опоры, и д.р. арматуру, используемую на трубопроводе.
Данные для расчета этих длин приведены в следующей таблице:
Дополнительная длина нагревательного кабеля на каждый фитинг, в зависимости от проходного сечения трубы Dу. Минимальный шаг укладки – 50 мм.

Пример расчета мощности обогрев труб

Требуется рассчитать систему обогрев труб водоснабжения с исходными данными:

  • диаметр трубы: d тр.нар = 32 мм , длина трубопровода: L = 45 м
  • температура окружающей среды: – 350C ;
  • толщина теплоизоляции = 25 мм

Подставляя все значения в формулу, получим расчетные теплопотери:
Q = 2 * 3,14 * 0,04 * 45 * ( + 5 – ( –35 )) /( Ln ( 82 / 32 )) * 1,3 = 625 Вт
Требуемая мощность на 1 м трубы равна, согласно исходных данных:
625 Вт / 45 м = 14 Вт/м.
Можно выбрать саморегулирующий нагревательный кабель удельной погонной мощностью 15 Вт/м.

Расчет системы обогрева резервуаров греющим кабелем

Расчет состоит из следующих этапов:

  1. Получение исходных данных для расчета
  2. Определение тепловых потерь резервуара
  3. Подбор нагревательного кабеля и сопутствующего оборудования

Получение исходных данных

Для расчета системы обогрева резервуаров потребуются следующие основные данные:

  • Требуемая температура поддержания
  • Минимальная температура окружающей среды
  • Габаритные размеры емкости (диаметр, длина, высота)
  • Тип и толщина теплоизоляции
  • Зона размещения резервуара (обычная или взрывоопасная)
  • Предполагается ли обработка паром резервуара? Если да, то указать температуру пара.

Чтобы точно определить необходимые параметры для расчета системы обогрева – воспользуйтесь опросным листом, в котором указаны все исходные данные.

Определение тепловых потерь резервуара

Определение тепловых потерь резервуара осуществляется по формуле:

P = Кзап * (Ттр-Тос)/Rt * Sпов, где

Кзап – коэффициент запаса (для саморегулирующегося кабеля Кзап = 1.2, для резистивного Кзап = 1.36),
Ттр – требуемая температура резервуара,
Тос – Минимальная температура окружающей среды,
Rt = δ/λ – суммарное термическое сопротивление для стенки резервуара (на самом деле формула сложней, но для оценки тепловых потерь остальными слагаемыми можно пренебречь),
δ – толщина теплоизоляции,
λ – коэффициент теплопроводности материала, из которого выполнена теплоизоляция,
Sпов – общая площадь поверхности емкости с теплоизоляцией.

Например, требуется обогреть цилиндрическую емкость с диаметром 2000мм и длиной L= 10000мм. Требуемая температура Ттр=+10С, минимальная температура окружающей среды Тос= -40С, теплоизоляция – минеральная вата толщиной 100мм (коэффициент теплопроводности λ=0.05 Вт/м*С), зона обычная, пропарки нет.
Тогда диаметр емкости с учетом теплоизоляции D = 2000+100*2 = 2200мм.

В этом случае расчетные тепловые потери:

Pп = Кзап * (Ттр-Тос)/Rt * Sпов = 1.2 * (10+40)/(1.6) * 72.88 = 2733Вт, где

Rt = δ/λ = 0.08м/0.05Вт/м * С = 1.6м2 * С/Вт,
Sпов = Sцил+2Sосн = 3.14хD*L+2*3.14*D*D/4 = 3.14*2.2*10+2*3.14*2.2*2.2/4 = 69,08+3,8 = 72,88 м2.

Помощь инженера

Бесплатный расчет обогрева резервуара за 2 часа

  • Рассчитаем требуемую мощность
  • Подберем кабель и крепления, подходящий для Вашего объекта
  • Порекомендуем удобную систему управления

Спасибо, наш менеджер свяжется с вами в ближайшее время

Заполните обязательные поля

Расчеты будут отправлены на Ваш e-mail, внимательно проверьте данные при отправке.

Подбор нагревательного кабеля

На этом этапе подбирается мощность нагревательного кабеля, а также соответствующий техническому заданию температурный класс. Если предполагается обработка емкости паром, то температурный класс греющего кабеля должен обеспечить его работоспособность в данных условиях.

Мощность греющего кабеля подбирается на основании 2х критериев:

  • мощность кабеля не должна быть очень маленькой, т.к. в этом случае потребуется большое количество кабеля;
  • мощность кабеля не должна быть очень большой, т.к. при установке кабеля на емкости шаг его укладки будет очень большим и возникнет эффект «зебры», когда будут присутствовать зоны с повышенной и пониженной температурой.

Оптимальным считается шаг укладки нагревательного кабеля от 100 до 300мм.

Обычно обогревается не вся емкость, а только ее нижняя часть, т.к. верхние слои продукта в емкости будут прогреваться за счет тепловых потоков идущих снизу вверх. Кабель укладывается змейкой в нижней части на необходимую высоту обогрева.

В нашем случае зададим высоту обогрева 1м (половина длины окружности емкости) и шаг укладки w=300мм, тогда необходимое количество кабеля:

N = 3.14*D/2*L/w = 3.14*2/2*10/0.3 = 105м

Определяем мощность нагревательного кабеля:

Pуд = Pп/N = 2733/105 = 26.02Вт/м

Выбираем кабель ближайший по мощности в большую сторону, например 30Вт/м.

Тогда мощность обогрева будет равно Pобогр = 30*105 = 3150Вт > Pп = 2733Вт

Таким образом, применение нагревательного кабеля мощностью 30Вт/м и длиной 105м для нашего примера полностью компенсирует тепловые потери емкости в самый холодный период при минимальной температуре Тос=-40С

Греющий кабель для резервуара

Смотреть больше вариантов кабеля

Обогрев резервуаров (t воздействия до 135 °С) Мощность (Вт) Темп. применения (°С) Темп. класс Оболочка Взрывозащита
Саморегулирующийся кабель Alphatrace 17ATM2-CP 17 110 Т5 полиолефин да
Саморегулирующийся кабель Lavita VMS-24-2CX 24 110 Т5 полиолефин да
Саморегулирующийся кабель HeatTrace 17FSP2-CT 17 110 Т5 полиолефин да
Саморегулирующийся кабель Alphatrace 31ATM2-CP 31 110 Т5 полиолефин да
Саморегулирующийся кабель Lavita VMS-30-2CX 30 110 Т5 полиолефин да
Саморегулирующийся кабель HeatTrace 31FSP2-CT 31 110 Т5 полиолефин да
Саморегулирующийся кабель Alphatrace 45ATM2-CP 45 110 Т5 полиолефин да
Саморегулирующийся кабель Lavita VMS-40-2CX 40 110 Т5 полиолефин да
Саморегулирующийся кабель HeatTrace 45FSPw2-CT 45 110 Т5 полиолефин да
Саморегулирующийся кабель Alphatrace 60ATM2-CP 60 110 Т5 полиолефин да
Саморегулирующийся кабель Lavita VMS-50-2CX 50 110 Т5 полиолефин да
Саморегулирующийся кабель HeatTrace 60FSPw2-CT 60 110 Т5 полиолефин да
Саморегулирующийся кабель Alphatrace 17ATM2-CF 17 110 Т5 фторополимер да
Саморегулирующийся кабель Lavita VMS-24-2CT 24 110 Т5 фторополимер да
Саморегулирующийся кабель HeatTrace 17FSP2-CF 17 110 Т5 фторополимер да
Саморегулирующийся кабель Alphatrace 31ATM2-CF 31 110 Т5 фторополимер да
Саморегулирующийся кабель Lavita VMS-30-2CT 30 110 Т5 фторополимер да
Саморегулирующийся кабель Raychem 10QTVR2-CT 30 110 Т5 фторополимер да
Саморегулирующийся кабель HeatTrace 31FSP2-CF 30 110 Т5 фторополимер да
Саморегулирующийся кабель Alphatrace 45ATM2-CF 45 110 Т5 фторополимер да
Саморегулирующийся кабель Lavita VMS-40-2CT 40 110 Т5 фторополимер да
Саморегулирующийся кабель Raychem 15QTVR2-CT 40 110 Т5 фторополимер да
Саморегулирующийся кабель HeatTrace 45FSPw2-CF 45 110 Т5 фторополимер да
Саморегулирующийся кабель Alphatrace 60ATM2-CF 60 110 Т5 фторополимер да
Саморегулирующийся кабель Lavita VMS-50-2CT 50 110 Т5 фторополимер да
Саморегулирующийся кабель Raychem 20QTVR2-CT 50 110 Т5 фторополимер да
Саморегулирующийся кабель HeatTrace 60FSPw2-CF 60 110 Т5 фторополимер да

Смотреть больше вариантов кабеля

Обогрев резервуаров (t воздействия до 190 °С) Мощность (Вт) Темп. применения (°С) Темп. класс Оболочка Взрывозащита
Саморегулирующийся кабель Alphatrace 15ATM+2-CF 15 120 Т4 фторополимер да
Саморегулирующийся кабель Lavita 15ISR2-CT 15 120 Т4 фторополимер да
Саморегулирующийся кабель Raychem 4XTV2-CT 15 120 Т4 фторополимер да
Саморегулирующийся кабель HeatTrace 15FSS2-CF 15 120 Т4 фторополимер да
Саморегулирующийся кабель Alphatrace 30ATM+2-CF 30 120 Т4 фторополимер да
Саморегулирующийся кабель Lavita 30ISR2-CT 30 120 Т4 фторополимер да
Саморегулирующийся кабель Raychem 8XTV2-CT 30 120 Т4 фторополимер да
Саморегулирующийся кабель HeatTrace 30FSS2-CF 30 120 Т4 фторополимер да
Саморегулирующийся кабель Alphatrace 45ATM+2-CF 45 120 Т4 фторополимер да
Саморегулирующийся кабель Lavita 45ISR2-CT 45 120 Т4 фторополимер да
Саморегулирующийся кабель Raychem 12XTV2-CT 45 120 Т4 фторополимер да
Саморегулирующийся кабель HeatTrace 45FSS2-CF 45 120 Т4 фторополимер да
Саморегулирующийся кабель Alphatrace 55ATM+2-CF 55 120 Т4 фторополимер да
Саморегулирующийся кабель Raychem 15XTV2-CT 55 120 Т4 фторополимер да
Саморегулирующийся кабель Alphatrace 60ATM+2-CF 60 120 Т4 фторополимер да
Саморегулирующийся кабель Lavita 60ISR2-CT 60 120 Т4 фторополимер да
Саморегулирующийся кабель Raychem 20XTV2-CT 60 120 Т4 фторополимер да
Саморегулирующийся кабель HeatTrace 60FSS2-CF 60 120 Т4 фторополимер да

Смотреть больше вариантов кабеля

Смотреть больше вариантов кабеля

Примеры обогрева резервуара кабелем

Примеры проектов обогрева резервуара кабелем

Другие статьи на тему

Максимальная длина греющего кабеля в секции

Если длина отрезка саморегулирующегося кабеля больше максимальной, матрица греющего кабеля испытывает воздействие повышенной температуры, которая возникает от усиленного нагрева токопроводящей жилы, вызванного протеканием недопустимого тока. В результате этого процесса происходит ускоренное старение матрицы, она перестает выделять заявленную мощность, и греющий кабель приходит в негодность. Этот процесс усугубляет частый запуск кабеля из «холодного» состояния, при котором протекающий ток возрастает в несколько раз.

Минимальная длина секции нигде не прописана, она не ограничена и может составлять даже 10-20 см.

Каковы же максимальные и минимальные длины греющего кабеля?

Таблица 1. – Максимальная длина секции для кабеля Samreg

Мин. t° запуска Ток, А 10 Вт с экраном 16 Вт с экраном 24 Вт с экраном 30 Вт с экраном 40 Вт с экраном
10 ° 16 200 м 135 м 95 м 65 м 50 м
20 200 м 135 м 95 м 75 м 55 м
25 200 м 135 м 95 м 75 м 55 м
32 200 м 135 м 95 м 75 м 55 м
40 200 м 135 м 95 м 75 м 55 м
-10 ° 16 180 м 135 м 90 м 58 м 45 м
20 195 м 135 м 95 м 75 м 55 м
25 200 м 135 м 95 м 75 м 55 м
32 200 м 135 м 95 м 75 м 55 м
40 200 м 135 м 95 м 75 м 55 м
-20 ° 16 150 м 105 м 70 м 45 м 35 м
20 190 м 135 м 90 м 70 м 55 м
25 200 м 135 м 95 м 70 м 55 м
32 200 м 135 м 95 м 75 м 55 м
40 200 м 135 м 95 м 75 м 55 м
-20 ° 16 95 м 67 м 48 м 30 м 25 м
20 125 м 90 м 64 м 55 м 40 м
25 175 м 125 м 85 м 64 м 50 м
32 190 м 135 м 95 м 75 м 55 м
40 200 м 135 м 95 м 75 м 55 м

По этой таблице, зная погонную мощность кабеля (верхняя строка) и минимальную температуру, при которой возможно включение обогрева, можно определить максимальную длину секции для данного кабеля, а также номинальный ток расцепителя автоматического выключателя. Такие таблицы для каждого вида кабеля вы найдёте на нашем сайте в разделе «Греющий кабель».

Внимание! Максимальный пусковой ток

Саморегулирующийся нагревательный кабель в силу своей конструкции имеет значительный стартовый (пусковой) ток. Неправильный расчет пусковых токов может привести к аварии или отказу работы системы обогрева. Чтобы правильно подобрать автоматику, силовой кабель и комплектующие — ознакомьтесь с информацией. приведенной в следующей статье.

Подробнее

Чаще всего для обогрева используют два вида кабеля: резистивный и саморегулирующийся.

Резистивный греющий кабель

Резистивный греющий кабель

Резистивный кабель прост в конструкции – это проводник с большим сопротивлением, который нагревается при прохождении по нему электрического тока. Конструкция секции резистивного кабеля предполагает полное падение напряжения на всей длине секции, при этом сопротивление проводника подбирается таким образом, чтобы протекающий ток не перегрел проводник. Мощность нагревательной секции определяется по закону Джоуля-Ленца I² * R = U²/R,

где I – ток, протекающий в секции, А,
R – электрическое сопротивление секции, Ом,
U – напряжение питания секции, В.

Как видно из формулы при неизменном напряжении питания мощность секции определяется ее сопротивлением. Изменить сопротивление секции возможно путем применения в качестве проводника материалов с разным удельным сопротивлением и/или диаметром проводника или изменения длины секции. Поэтому каждый вид резистивного кабеля имеет строго определённую длину секции, которая указана в технических характеристиках. Такие секции запрещается резать, укорачивать, удлинять, т.к. при этом происходит изменение сопротивления секции, которое влияет на ее мощность.

Если Вы всё-таки разрезали или повредили резистивный кабель, то его можно восстановить, используя ремонтный набор с термоусадочными трубками. Но это возможно только в том случае, если длина секции не изменилась.

Саморегулирующийся греющий кабель

Саморегулирующийся греющий кабель

Саморегулирующийся кабель, в отличие от резистивного, резать можно. Длина секции саморегулирующегося кабеля зависит от:

  • Удельной мощности кабеля Вт/м;
  • сечения токопроводящих жил;
  • диапазон температур эксплуатации;
  • применяемой пускозащитной аппаратуры.

Медные жилы саморегулирующегося кабеля имеют определённое сечение и не могут пропустить ток больший, чем тот, на который они рассчитаны.

Так, например, для сечения токоведущих жил 16AWG соответствующего значению 1.31мм2 допустимая токовая нагрузка составляет 15А при 60С.

Таким образом, суммарный ток, протекающий в отрезке греющего кабеля не должен превышать этого значения. Чем больше длина отрезка кабеля, тем больше протекающий ток, и при определенной длине отрезка протекающий ток станет равным максимально допустимому. Эта длина отрезка кабеля и есть максимальная длина для данного вида греющего кабеля.

Температура эксплуатации имеет косвенное влияние на определение максимальной длины греющего кабеля. Так, при низких температурах окружающей среды или объекта выделяемая мощность кабеля будет выше, чем при стандартных условиях (при +10С). Поэтому в таких случаях необходимо уменьшить длину отрезка греющего кабеля, чтобы не превысить максимально допустимый ток в кабеле. Кроме того, при низких температурах возрастает и стартовый ток при подаче питания на греющий кабель, что также требует корректировки длины в сторону уменьшения.

Применяемая пуско-защитная аппаратура также оказывает влияние на выбор длины греющего кабеля. Так, автомат защиты с малым номиналом рабочего тока существенно ограничит длину отрезка греющего кабеля. Дело в том, что греющий кабель в «холодном» состоянии имеет низкое сопротивление. В момент подачи питания на кабель через него проходит значительный ток, который может в несколько раз отличаться от рабочего. Этот ток называют стартовым, его величина и длительность определяются свойствами нагревательной матрицы кабеля. Этот ток необходимо учитывать при выборе защитного автомата для греющего кабеля. Поэтому многие производители греющего кабеля в технических характеристиках кабеля приводят таблицу для определения длины секции. Пример такой таблицы приведён ниже для кабеля Samreg (табл.1)

Таким образом, выбор максимальной длины секции саморегулирующегося греющего кабеля ответственный момент при проектировании системы электрообогрева, учитывающий множество факторов и требующий определенных знаний в области электротехники и свойств нагревательного кабеля.

Неправильный выбор длины секции кабеля может привести к неработоспособности системы обогрева, аварийным режимам ее работы и ускоренному выходу греющего кабеля из строя.


Комплект для муфтирования греющего кабеля

Комплект для муфтирования греющего кабеля

Муфтирование греющего кабеля термоусадочными трубками

Муфтирование греющего кабеля термоусадочными трубками

Примеры электрообогрева

Греющий кабель Samreg

Саморегулирующийся кабель SAMREG 16-2 Саморегулирующийся кабель SAMREG 16-2
  • Мощность: 16 Вт
  • Назначение: трубопровод
  • Тип: саморегулирующийся
  • Вид: низкотемпературный
  • Применение: без взрывозащиты
  • Maкс. температура (рабочая): 65 °C

Оптовый прайс

Саморегулирующийся кабель SAMREG 24-2CR Саморегулирующийся кабель SAMREG 24-2CR
  • Мощность: 24 Вт
  • Назначение: трубопровод / резервуар
  • Тип: саморегулирующийся
  • Вид: низкотемпературный
  • Применение: без взрывозащиты
  • Maкс. температура (рабочая): 65 °C

Оптовый прайс

Саморегулирующийся кабель SAMREG 40-2CR Саморегулирующийся кабель SAMREG 40-2CR
  • Мощность: 40 Вт
  • Назначение: трубопровод / резервуар / кровля
  • Тип: саморегулирующийся
  • Вид: низкотемпературный
  • Применение: без взрывозащиты
  • Maкс. температура (рабочая): 65 °C

Оптовый прайс

В раздел

Другие статьи на тему

Помощь инженера

Бесплатный расчет электрообогрева

  • Рассчитаем требуемую мощность
  • Подберем кабель и крепления, подходящий для Вашего объекта
  • Порекомендуем удобную систему управления

Спасибо, наш менеджер свяжется с вами в ближайшее время

Заполните обязательные поля

Расчеты будут отправлены на Ваш e-mail, внимательно проверьте данные при отправке.

Расчет мощности нагревательного шнура (нагревательный кабель из углерода)

Комментарии (377)2018.12.18

Таблица и калькулятор с расчетом мощности нагревательного шнура (кабеля) из углерода:

    17 Ом 17 Ом 33 Ом 33 Ом 66 Ом 66 Ом 70 Ом 70 Ом 133 Ом 133 Ом 165 Ом 165 Ом
t  P на метр L P общая L P общая L P общая L P общая L P общая L P общая
26 1 55 51 40 37 27 27 25 28 19 19 20 15
29 1,7 40 71 31 47 21 35 20 34 15 24 13 22
30 3 30 91 22 66 15,5 48 15 46 11 33 10 30
33 4,28 26 109 18 81 13 56 12 57 9 40 8,4 36
38 6,9 20 142 14,6 100 10 73 10 69 7,2 50 6,5 45
                           
53 14 14   10 146 7,2 101 7 98 5,1 71 4,5 65
57 14,96         7 104            
59 15,85         6,8 107,8            
63,5 16,8 13 219 9,4 158 6,6 112 6,4 108 4,7 77 4,2 70
65 17,9         6,4 115            
66,5 19         6,2 118            

Подобные углеродистые нагревательные кабели широко используются для нагрева воздуха в инкубаторах для яиц.
А так же в теплых полах, мы даже теплую грядку в зимней теплице сделали. Кроме этого можно подогревать трубы от промерзания, системы ниппельного поения (ниппельные поилки). Очень удобно можно сделать контейнер для зимнего хранения овощей с защитой от промерзания.

например греющий кабель можно проложить в дно с песком и поставить термореле на +5С, тем самым защитить от промерзания в морозы.

При создании теплых грядок и подогрева земли (почвы) подобными шнурами — надо помнить что большинство из них работают на напряжении 220В и надо быть аккуратными и соблюдать все меры безопасности. Теплые грядки с подобными шнурами копать лопатами и тяпками надо особенно осторожно дабы не повредить оплетку шнура!


Отправить ответ

avatar
  Подписаться  
Уведомление о