Тепловой расчет теплообменника
Содержание статьи
Введение
Теплообменный аппарат – это устройство, обеспечивающее передачу тепла между средами, разнящимися по температуре. Для обеспечения тепловых потоков различного количества конструируются разные теплообменные устройства. Они могут иметь разные формы и размеры в зависимости от требуемой производительности, но основным критерием выбора агрегата является площадь его рабочей поверхности. Она определяется с помощью теплового расчета теплообменника при его создании или эксплуатации.
Расчет может нести в себе проектный (конструкторский) или проверочный характер.
Конечным результатом конструкторского расчета является определение площади поверхности теплообмена, необходимой для обеспечения заданных тепловых потоков.
Проверочный расчет, напротив, служит для установления конечных температур рабочих теплоносителей, то есть тепловых потоков при имеющейся площади поверхности теплообмена.
Соответственно, при создании устройства проводится конструкторский расчет, а при эксплуатации – проверочный. Оба расчета идентичны и, по сути, являются взаимообратными.
Основы теплового расчета теплообменных аппаратов
Основой для расчета теплообменников являются уравнения теплопередачи и теплового баланса.
Уравнение теплопередачи имеет следующий вид:
Q = F‧k‧Δt, где:
- Q – размер теплового потока, Вт;
- F – площадь рабочей поверхности, м2;
- k – коэффициент передачи тепла;
- Δt – разница между температурами носителей на выходе в аппарат и на выходе из него. Также величина называется температурным напором.
Как можно заметить, величина F, являющаяся целью расчета, определяется именно через уравнение теплопередачи. Выведем формулу определения F:
F = Q/ k‧Δt
Уравнение теплового баланса учитывает конструкцию самого аппарата. Рассматривая его можно определить значения t1 и t2 для дальнейшего вычисления F. Уравнение выглядит следующим образом:
Q = G1cp1(t1вх-t1вых) = G2cp2(t2вых-t2вх), где:
- G1 и G2 – расходы масс греющего и нагреваемого носителей соответственно, кг/ч;
- cp1 и cp2
В процессе обмена тепловой энергией носители изменяют свои температуры, то есть в устройство каждый из них входит с одной температурой, а выходит – с другой. Эти величины (t1вх;t1вых и t2вх;t2вых) являются результатом проверочного расчета, с которым сравниваются фактические температурные показатели теплоносителей.
Вместе с тем большое значение имеют коэффициенты теплоотдачи несущих сред, а также особенности конструкции агрегата. При детальных конструкторских расчетах составляются схемы теплообменных аппаратов, отдельным элементом которых являются схемы движения теплоносителей. Сложность расчета зависит от изменения коэффициентов теплопередачи
Для учета этих изменений уравнение теплопередачи принимает дифференциальный вид:
Такие данные, как коэффициенты теплоотдачи носителей, а также типовые размеры элементов при конструировании аппарата или при проверочном расчете, учитываются в соответствующих нормативных документах (ГОСТ 27590).
Пример расчета
Для большей наглядности представим пример конструкторского расчета теплообмена. Этот расчет имеет упрощенный вид, и не учитывает потерь теплоты и особенностей конструкции теплообменного аппарата.
Исходные данные:
- Температура греющего носителя при входе t1вх = 14 ºС;
- Температура греющего носителя при выходе t1вых = 9 ºС;
- Температура нагреваемого носителя при входе t2вх = 8 ºС;
- Температура нагреваемого носителя при выходе t2вых = 12 ºС;
- Расход массы греющего носителя G1 = 14000 кг/ч;
- Расход массы нагреваемого носителя G2 = 17500 кг/ч;
- Коэффициент теплопередачи k = 6,3 кВт/м2.
1) Определим мощность теплообменного аппарата с помощью уравнения теплового баланса:
Qвх = 14000‧4,2‧(14 – 9) = 294000 кДж/ч
Qвых = 17500‧4,2‧(12 – 8) = 294000 кДж/ч
Qвх = Qвых. Условия теплового баланса выполняются. Переведем полученную величину в единицу измерения Вт. При условии, что 1 Вт = 3,6 кДж/ч, Q = Qвх = Qвых = 294000/3,6 = 81666,7 Вт = 81,7 кВт.
2) Определим значение напора t. Он определяется по формуле:
3) Определим площадь поверхности теплообмена с помощью уравнения теплопередачи:
F = 81,7/6,3‧1,4 = 9,26 м2.
Как правило, при проведении расчета не все идет гладко, ведь необходимо учитывать всевозможные внешние и внутренние факторы, влияющие на процесс обмена теплом:
- особенности конструкции и работы аппарата;
- потери энергии при работе устройства;
- коэффициенты теплоотдачи тепловых носителей;
- различия в работе на разных участках поверхности (дифференциальный характер) и т.д.
Вы можете самостоятельно провести тепловой расчет на основе уравнений выше и получить результат в pdf-формате (в полях «Допустимые потери», «Давление расч.» и «Tmax» можно указать произвольные данные, единственное ограничение: Tmax > t1).
Гкал/чккал/чкВтМВт
Давление расч., кгс/см2
1016
Введите мощность или один из расходов
t1 должна быть больше t2, а t4 должна быть больше t3
Разность температур t1 и t4 не должна быть равна разности температур t2 и t3
Допустимые потери должны быть в пределах: мвс: от 0 до 10, бар: от 0 до 1, кПа: от 0 до 100
Максимальная температура должна быть от 1 до 200
Максимальная температура должна быть больше или равна t1
Мощность должна быть больше 0
ВАЖНО: Для наиболее точного и достоверного расчета инженер должен понимать сущность процесса передачи тепла от одного тела к другому. Также он должен быть максимально обеспечен необходимой нормативной и научной литературой, поскольку в расчете на множество величин составлены соответствующие нормы, которых специалист обязан придерживаться.
Выводы
Что мы получаем в результате расчета и в чем его конкретное применение?
Допустим, что на предприятие поступил заказ. Необходимо изготовить тепловой аппарат с заданной поверхностью теплообмена и производительностью. То есть перед предприятием не стоит вопрос размеров аппарата, но стоит вопрос материалов, которые обеспечат нужную производительность с заданной рабочей площадью.
Для решения данного вопроса производится тепловой расчет, то есть определяются температуры теплоносителей на входе и выходе из аппарата. Исходя из этих данных выбираются материалы для изготовления элементов устройства.
В конечном итоге, можно сказать, что рабочая площадь и температура носителей на входе и выходе из аппарата – основные взаимосвязанные показатели качества работы теплообменника. Определив их путем теплового расчета инженер сможет разработать основные решения для конструирования, ремонта, контроля и поддержания работы теплообменников.
В следующей статье мы рассмотрим назначение и особенности механического расчета теплообменника, поэтому подписывайтесь на нашу e-mail рассылку и новости в соц сетях, чтобы не пропустить анонс.
Расчет теплообменника пластинчатого – методичка и примеры
Данные теплоносителей при техническом расчете оборудования должны быть обязательно известны. Среди этих данных должны быть: физико-химические свойства, расход и температуры (начальная и конечная). Если данные одного из параметров не известны, то его определяют с помощью теплового расчета.
Тепловой расчет предназначен для определения основных характеристик устройства, среди которых: расход теплоносителя, коэффициент теплоотдачи, тепловая нагрузка, средняя разница температур. Находят все эти параметры с помощью теплового баланса.
Давайте рассмотрим пример общего расчета.
В аппарате теплообменника тепловая энергия циркулирует от одного потока к другому. Это происходит в процессе нагрева или охлаждения.
Q = Qг= Qх
Q – количество теплоты передаваемое или принимаемое теплоносителем [Вт],
Откуда:
Qг = Gгcг·(tгн – tгк) и Qх = Gхcх·(tхк – tхн)
где:
Gг,х – расход горячего и холодного теплоносителей [кг/ч];
сг,х – теплоемкости горячего и холодного теплоносителей [Дж/кг·град];
tг,х н – начальная температура горячего и холодного теплоносителей [°C];
tг,х к – конечная температура горячего и холодного теплоносителей [°C];
При этом, учитывайте, что количество входящей и выходящей теплоты во много зависит от состояния теплоносителя. Если в процессе работы состояние стабильно, то расчет производим по формуле выше. Если хоть один теплоноситель меняет свое агрегатное состояние, то расчет входящего и выходящего тепла стоит производить по формуле ниже:
Q = Gcп·(tп – tнас)+ Gr + Gcк·(tнас – tк)
где:
r – теплота конденсации [Дж/кг];
сп,к – удельные теплоемкости пара и конденсата [Дж/кг·град];
tк– температура конденсата на выходе из аппарата [°C].
Первый и третий члены стоит исключать из правой части формулы, если конденсат не охлаждается. Исключив эти параметры, формула будет иметь следующее выражение:
Qгор = Qконд = Gr
Благодаря данной формуле определяем расход теплоносителя:
Gгор = Q/cгор(tгн – tгк) или Gхол = Q/cхол(tхк – tхн)
Формула для расхода, если нагрев идет паром:
Gпара = Q/ Gr
где:
G – расход соответствующего теплоносителя [кг/ч];
Q – количество теплоты [Вт];
с – удельная теплоемкость теплоносителей [Дж/кг·град];
r – теплота конденсации [Дж/кг];
tг,х н – начальная температура горячего и холодного теплоносителей [°C];
tг,х к – конечная температура горячего и холодного теплоносителей [°C].
Основная сила теплообмена – разница между его составляющими. Это связано с тем, что проходя теплоносители, температура потока меняется, в связи с этим меняются и показатели разницы температур, поэтому для подсчетов стоит использовать среднестатистическое значение. Разницу температур в обоих направлениях движения можно высчитать с помощью среднелогарифмического:
∆tср = (∆tб — ∆tм) / ln (∆tб/∆tм) где ∆tб, ∆tм– большая и меньшая средняя разность температур теплоносителей на входе и выходе из аппарата. Определение при перекрестном и смешанном токе теплоносителей происходит по той же формуле с добавлением поправочного коэффициента
∆tср = ∆tср ·fпопр . Коэффициент теплопередачи может быть определен следующим образом:
1/k = 1/α1 + δст/λст + 1/α2 + Rзаг
в уравнении:
δст– толщина стенки [мм];
λст– коэффициент теплопроводности материала стенки [Вт/м·град];
α1,2 – коэффициенты теплоотдачи внутренней и внешней стороны стенки [Вт/м2·град];
Rзаг – коэффициент загрязнения стенки.
пример. Расчет площади, мощности теплообменника
Расчет теплообменника в настоящее время занимает не более пяти минут. Любая организация, производящая и продающая такое оборудование, как правило, предоставляет всем желающим свою собственную программу подбора. Ее можно бесплатно скачать с сайта компании, либо их технический специалист приедет к вам в офис и бесплатно её установит. Однако насколько корректен результат таких расчетов, можно ли ему доверять и не лукавит ли производитель, сражаясь в тендере со своими конкурентами? Проверка электронного калькулятора требует наличия знаний или как минимум понимания методики расчета современных теплообменников. Попробуем разобраться в деталях.
Что такое теплообменник
Прежде чем выполнять расчет теплообменника, давайте вспомним, а что же это за устройство такое? Тепломассообменный аппарат (он же теплообменник, он же теплообменный аппарат, или ТОА) — это устройство для передачи теплоты от одного теплоносителя другому. В процессе изменения температур теплоносителей меняются также их плотности и, соответственно, массовые показатели веществ. Именно поэтому такие процессы называют тепломассообменными.
Виды теплообмена
Теперь поговорим о видах теплообмена — их всего три. Радиационный — передача теплоты за счет излучения. Как пример, можно вспомнить принятие солнечных ванн на пляже в теплый летний день. И такие теплообменники даже можно встретить на рынке (ламповые нагреватели воздуха). Однако чаще всего для обогрева жилых помещений, комнат в квартире мы покупаем масляные или электрические радиаторы. Это пример другого типа теплообмена — конвекционного. Конвекция бывает естественной, вынужденной (вытяжка, а в коробе стоит рекуператор) или с механическим побуждением (с вентилятором, например). Последний тип намного эффективнее.
Однако самый эффективный способ передачи теплоты — это теплопроводность, или, как её ещё называют, кондукция (от англ. conduction — «проводимость»). Любой инженер, собирающийся провести тепловой расчет теплообменника, прежде всего задумывается о том, чтобы выбрать эффективное оборудование в минимальных габаритах. И достичь этого удаётся именно за счет теплопроводности. Примером тому служат самые эффективные на сегодняшний день ТОА — пластинчатые теплообменники. Пластинчатый ТОА, согласно определению, — это теплообменный аппарат, передающий теплоту от одного теплоносителя другому через разделяющую их стенку. Максимально возможная площадь контакта между двумя средами в совокупности с верно подобранными материалами, профилем пластин и их толщиной позволяет минимизировать размеры выбираемого оборудования при сохранении исходных технических характеристик, необходимых в технологическом процессе.
Типы теплообменников
Прежде чем проводить расчет теплообменника, определяются с его типом. Все ТОА можно разделить на две большие группы: рекуперативные и регенеративные теплообменники. Основное отличие между ними заключается в следующем: в рекуперативных ТОА теплообмен происходит через разделяющую два теплоносителя стенку, а в регенеративных две среды имеют непосредственный контакт между собой, часто смешиваясь и требуя последующего разделения в специальных сепараторах. Регенеративные теплообменники подразделяются на смесительные и на теплообменники с насадкой (стационарной, падающей или промежуточной). Грубо говоря, ведро с горячей водой, выставленное на мороз, или стакан с горячим чаем, поставленный остужаться в холодильник (никогда так не делайте!) — это и есть пример такого смесительного ТОА. А наливая чай в блюдце и остужая его таким образом, мы получаем пример регенеративного теплообменника с насадкой (блюдце в этом примере играет роль насадки), которая сначала контактирует с окружающим воздухом и принимает его температуру, а потом отбирает часть теплоты от налитого в него горячего чая, стремясь привести обе среды в режим теплового равновесия. Однако, как мы уже выяснили ранее, эффективнее использовать теплопроводность для передачи теплоты от одной среды к другой, поэтому более полезные в плане теплопередачи (и широко используемые) ТОА на сегодняшний день – конечно же, рекуперативные.
Тепловой и конструктивный расчет
Любой расчет рекуперативного теплообменника можно провести на основе результатов теплового, гидравлического и прочностного вычислений. Они являются основополагающими, обязательны при проектировании нового оборудования и ложатся в основу методики расчета последующих моделей линейки однотипных аппаратов. Главной задачей теплового расчета ТОА является определение необходимой площади теплообменной поверхности для устойчивой работы теплообменника и поддержания необходимых параметров сред на выходе. Довольно часто при таких расчетах инженеры задаются произвольными значениями массогабаритных характеристик будущего оборудования (материал, диаметр труб, размеры пластин, геометрия пучка, тип и материал оребрения и др.), поэтому после теплового обычно проводят конструктивный расчет теплообменника. Ведь если на первой стадии инженер посчитал необходимую площадь поверхности при заданном диаметре трубы, например, 60 мм, и длина теплообменника при этом получилась порядка шестидесяти метров, то логичнее предположить переход к многоходовому теплообменнику, либо к кожухотрубному типу, либо увеличить диаметр трубок.
Гидравлический расчет
Гидравлические или гидромеханические, а также аэродинамические расчеты проводят с целью определить и оптимизировать гидравлические (аэродинамические) потери давления в теплообменнике, а также подсчитать энергетические затраты на их преодоление. Расчет любого тракта, канала или трубы для прохода теплоносителя ставит перед человеком первостепенную задачу — интенсифицировать процесс теплообмена на данном участке. То есть одна среда должна передать, а другая получить как можно больше тепла на минимальном промежутке его течения. Для этого часто применяют дополнительную поверхность теплообмена, в виде развитого оребрения поверхности (для отрыва пограничного ламинарного подслоя и усиления турбулизации потока). Оптимальное балансовое соотношение гидравлических потерь, площади теплообменной поверхности, массогабаритных характеристик и снимаемой тепловой мощности является результатом совокупности теплового, гидравлического и конструктивного расчета ТОА.
Поверочный расчет
Поверочный расчет теплообменника проводят в случае, когда надо заложить запас по мощности либо по площади теплообменной поверхности. Поверхность резервируют по разным причинам и в разных ситуациях: если так требуется по техзаданию, если производитель решает внести дополнительный запас для того, чтобы быть точно уверенным в том, что такой теплообменник выйдет на режим, и минимизировать ошибки, допущенные при расчетах. В каких-то случаях резервирование требуется для округления результатов конструктивных размеров, в других же (испарители, экономайзеры) в расчет мощности теплообменника специально вводят запас по поверхности, на загрязнение компрессорным маслом, присутствующим в холодильном контуре. Да и низкое качество воды необходимо принимать во внимание. Через некоторое время бесперебойной работы теплообменников, особенно при высоких температурах, накипь оседает на теплообменной поверхности аппарата, снижая коэффициент теплопередачи и неминуемо приводя к паразитному снижению теплосъёма. Поэтому грамотный инженер, проводя расчет теплообменника «вода-вода», уделяет особое внимание дополнительному резервированию поверхности теплообмена. Поверочный расчет также проводят для того, чтобы посмотреть, как выбранное оборудование будет работать на иных, вторичных режимах. Например, в центральных кондиционерах (приточных установках) калориферы первого и второго подогрева, использующиеся в холодный период года, нередко задействуют и летом для охлаждения поступающего воздуха, подавая в трубки воздушного теплообменника холодную воду. Как они будут функционировать и какие будут выдавать параметры, позволяет оценить поверочный расчет.
Исследовательские расчеты
Исследовательские расчеты ТОА проводят на основе полученных результатов теплового и поверочного расчетов. Они необходимы, как правило, для внесения последних поправок в конструкцию проектируемого аппарата. Их также проводят с целью корректировки каких-либо уравнений, закладываемых в реализуемой расчетной модели ТОА, полученной эмпирическим путём (по экспериментальным данным). Выполнение исследовательских расчетов предполагает проведение десятков, а иногда и сотен вычислений по специальному плану, разработанному и внедрённому на производстве согласно математической теории планирования экспериментов. По результатам выявляют влияние различных условий и физических величин на показатели эффективности ТОА.
Другие расчеты
Выполняя расчет площади теплообменника, не стоит забывать и о сопротивлении материалов. Прочностные расчеты ТОА включают проверку проектируемого агрегата на напряжение, на кручение, на прикладывание максимально допустимых рабочих моментов к деталям и узлам будущего теплообменника. При минимальных габаритах изделие должно быть прочным, устойчивым и гарантировать безопасную работу в различных, даже самых напряженных условиях эксплуатации.
Динамический расчет проводится с целью определения различных характеристик теплообменного аппарата на переменных режимах его работы.
Типы конструкции теплообменников
Рекуперативные ТОА по конструкции можно разделить на достаточно большое количество групп. Самые известные и широко применяемые – это пластинчатые теплообменники, воздушные (трубчатые оребрённые), кожухотрубные, теплообменники «труба в трубе», кожухо-пластинчатые и другие. Существуют и более экзотические и узкоспециализированные типы, например, спиральные (теплообменник-улитка) или скребковые, которые работают с вязкими или неньютоновскими жидкостями, а также многие другие типы.
Теплообменники «труба в трубе»
Рассмотрим самый простой расчет теплообменника «труба в трубе». Конструктивно данный тип ТОА максимально упрощен. Во внутреннюю трубу аппарата пускают, как правило, горячий теплоноситель, для минимизации потерь, а в кожух, или в наружную трубу, запускают охлаждающий теплоноситель. Задача инженера в этом случае сводится к определению длины такого теплообменника исходя из рассчитанной площади теплообменной поверхности и заданных диаметров.
Здесь стоит добавить, что в термодинамике вводится понятие идеального теплообменника, то есть аппарата бесконечной длины, где теплоносители работают в противотоке, и между ними полностью срабатывается температурный напор. Конструкция «труба в трубе» ближе всего удовлетворяет этим требованиям. И если запустить теплоносители в противотоке, то это будет так называемый «реальный противоток» (а не перекрёстный, как в пластинчатых ТОА). Температурный напор максимально эффективно срабатывается при такой организации движения. Однако выполняя расчет теплообменника «труба в трубе», следует быть реалистами и не забывать о логистической составляющей, а также об удобстве монтажа. Длина еврофуры — 13,5 метров, да и не все технические помещения приспособлены к заносу и монтажу оборудования такой длины.
Кожухотрубные теплообменники
Поэтому очень часто расчет такого аппарата плавно перетекает в расчет кожухотрубного теплообменника. Это аппарат, в котором пучок труб находится в едином корпусе (кожухе), омываемым различными теплоносителями, в зависимости от назначения оборудования. В конденсаторах, например, хладагент запускают в кожух, а воду – в трубки. При таком способе движения сред удобнее и эффективнее контролировать работу аппарата. В испарителях, наоборот, хладагент кипит в трубках, а они при этом омываются охлаждаемой жидкостью (водой, рассолами, гликолями и др.). Поэтому расчет кожухотрубного теплообменника сводится к минимизации габаритов оборудования. Играя при этом диаметром кожуха, диаметром и количеством внутренних труб и длиной аппарата, инженер выходит на расчетное значение площади теплообменной поверхности.
Воздушные теплообменники
Один из самых распространённых на сегодняшний день теплообменных аппаратов – это трубчатые оребрённые теплообменники. Их ещё называют змеевиками. Где их только не устанавливают, начиная от фанкойлов (от англ. fan + coil, т.е. «вентилятор» + «змеевик») во внутренних блоках сплит-систем и заканчивая гигантскими рекуператорами дымовых газов (отбор теплоты от горячего дымового газа и передача его на нужды отопления) в котельных установках на ТЭЦ. Вот почему расчет змеевикового теплообменника зависит от того применения, куда этот теплообменник пойдёт в эксплуатацию. Промышленные воздухоохладители (ВОПы), устанавливаемые в камерах шоковой заморозки мяса, в морозильных камерах низких температур и на других объектах пищевого холодоснабжения, требуют определённых конструктивных особенностей в своём исполнении. Расстояния между ламелями (оребрением) должно быть максимальным, для увеличения времени непрерывной работы между циклами оттайки. Испарители для ЦОДов (центров обработки данных), наоборот, делают как можно более компактными, зажимая межламельные расстояния до минимума. Такие теплообменники работают в «чистых зонах», окруженные фильтрами тонкой очистки (вплоть до класса HEPA), поэтому такой расчет трубчатого теплообменника проводят с упором на минимизацию габаритов.
Пластинчатые теплообменники
В настоящее время стабильным спросом пользуются пластинчатые теплообменники. По своему конструктивному исполнению они бывают полностью разборными и полусварными, меднопаяными и никельпаяными, сварными и спаянными диффузионным методом (без припоя). Тепловой расчет пластинчатого теплообменника достаточно гибок и не представляет особой сложности для инженера. В процессе подбора можно играть типом пластин, глубиной штамповки каналов, типом оребрения, толщиной стали, разными материалами, а самое главное – многочисленными типоразмерными моделями аппаратов разных габаритов. Такие теплообменники бывают низкими и широкими (для парового нагрева воды) или высокими и узкими (разделительные теплообменники для систем кондиционирования). Их часто используют и под среды с фазовым переходом, то есть в качестве конденсаторов, испарителей, пароохладителей, предконденсаторов и т. д. Выполнить тепловой расчет теплообменника, работающего по двухфазной схеме, немного сложнее, чем теплообменника типа «жидкость-жидкость», однако для опытного инженера эта задача разрешима и не представляет особой сложности. Для облегчения таких расчетов современные проектировщики используют инженерные компьютерные базы, где можно найти много нужной информации, в том числе диаграммы состояния любого хладагента в любой развёртке, например, программу CoolPack.
Пример расчета теплообменника
Основной целью проведения расчета является вычисление необходимой площади теплообменной поверхности. Тепловая (холодильная) мощность обычно задается в техзадании, однако в нашем примере мы рассчитаем и её, для, скажем так, проверки самого техзадания. Иногда бывает и так, что в исходные данные может закрасться ошибка. Одна из задач грамотного инженера — эту ошибку найти и исправить. В качестве примера выполним расчет пластинчатого теплообменника типа «жидкость — жидкость». Пусть это будет разделитель контуров (pressure breaker) в высотном здании. Для того чтобы разгрузить оборудование по давлению, при строительстве небоскрёбов очень часто применяется такой подход. С одной стороны теплообменника имеем воду с температурой входа Твх1 = 14 ᵒС и выхода Твых1 = 9 ᵒС, и с расходом G1 = 14 500 кг/ч, а с другой — тоже воду, но только вот с такими параметрами: Твх2 = 8 ᵒС, Твых2 = 12 ᵒС, G2 = 18 125 кг/ч.
Необходимую мощность (Q0) рассчитаем по формуле теплового баланса (см. рис. выше, формула 7.1), где Ср – удельная теплоёмкость (табличное значение). Для простоты расчетов возьмём приведённое значение теплоёмкости Срв = 4,187 [кДж/кг*ᵒС]. Считаем:
Q1 = 14 500 * (14 — 9) * 4,187 = 303557,5 [кДж/ч] = 84321,53 Вт = 84,3 кВт – по первой стороне и
Q2 = 18 125 * (12 — 8) * 4,187 = 303557,5 [кДж/ч] = 84321,53 Вт = 84,3 кВт – по второй стороне.
Обратите внимание, что, согласно формуле (7.1), Q0 = Q1 = Q2, независимо от того, по какой стороне проведён расчет.
Далее по основному уравнению теплопередачи (7.2) находим необходимую площадь поверхности (7.2.1), где k – коэффициент теплопередачи (принимаем равным 6350 [Вт/м2]), а ΔТср.лог. – среднелогарифмический температурный напор, считаемый по формуле (7.3):
ΔТ ср.лог. = (2 — 1) / ln (2 / 1) = 1 / ln2 = 1 / 0,6931 = 1,4428;
F то = 84321 / 6350 * 1,4428 = 9,2 м2.
В случае когда коэффициент теплопередачи неизвестен, расчет пластинчатого теплообменника немного усложняется. По формуле (7.4) считаем критерий Рейнольдса, где ρ – плотность, [кг/м3], η – динамическая вязкость, [Н*с/м2], v – скорость среды в канале, [м/с], d см – смачиваемый диаметр канала [м].
По таблице ищем необходимое нам значение критерия Прандтля [Pr] и по формуле (7.5) получаем критерий Нуссельта, где n = 0,4 – в условиях нагрева жидкости, и n = 0,3 – в условиях охлаждения жидкости.
Далее по формуле (7.6) вычисляется коэффициент теплоотдачи от каждого теплоносителя к стенке, а по формуле (7.7) считаем коэффициент теплопередачи, который и подставляем в формулу (7.2.1) для вычисления площади теплообменной поверхности.
В указанных формулах λ – коэффициент теплопроводности, ϭ – толщина стенки канала, α1 и α2 – коэффициенты теплоотдачи от каждого из теплоносителей стенке.
Расчет и подбор теплообменника – онлайн калькулятор
Подбор теплообменника профессионалами
Есть готовый расчет, заполненный опросный лист или спецификация? Прикрепите файл:
Подбор теплообменного аппарата квалифицированными инженерами имеет очень сильное преимущество — опыт специалиста, который невозможно заменить ничем.
Например, после всех вычислений на выходе получаем несколько вариантов типомоделей теплообменников разных производителей, тогда можно ориентироваться на цену и подобрать более выгодный вариант, но не только.
Теплообменные аппараты, решающие одну и туже задачу, будут отличаться габаритами, весом, что в конечном счете влияет на стоимость доставки рекуператора до объекта, а в случае с размерами, агрегат вообще может не поместиться в месте монтажа, если не учесть данный момент во время подбора.
Чтобы получить решение «под ключ», которое избавит вас от подобных проблем — заполните простую форму и укажите контакты для связи.
Инженеры «ПроТепло» произведут все необходимые расчеты, подберут подходящие типомодели теплообменников, количество и материалы пластин и уплотнений для них, предложат вам несколько альтернативных вариантов на выбор.
Это быстро, точно и бесплатно!
Расчет онлайн калькулятором
Гкал/чккал/чкВтМВт
Давление расч., кгс/см2
1016
Введите мощность или один из расходов
Температура должна быть от 1 до 200, при этом t1 должна быть больше t4, а t2 должна быть больше t3
t1 должна быть больше t2, а t4 должна быть больше t3
Разность температур t1 и t4 не должна быть равна разности температур t2 и t3
Допустимые потери должны быть в пределах: мвс: от 0 до 10, бар: от 0 до 1, кПа: от 0 до 100
Максимальная температура должна быть от 1 до 200
Максимальная температура должна быть больше или равна t1
Мощность должна быть больше 0
Расход должен быть больше 0
Специалисты компании «ПроТепло» разработали свой онлайн калькулятор расчета параметров теплообменного аппарата на основе уравнения теплового баланса, формул теплодинамики, таблиц характеристик сред. Достаточно ввести известные данные и расчет сформируется в формате pdf.
Если вы не знаете, что означают параметры в формах, прочтите справку здесь: Справочная информация.
Если необходимо получить решение «под ключ», то оптимальный вариант — воспользоваться Помощью профессионалов.
Преимущества
- Быстро
- Онлайн
- Без регистрации
Недостатки
- Невозможно подобрать типомодель теплообменника, количество и материалы комплектующих для него (пластины и уплотнения), соответственно нельзя получить сроки поставки и цены.
Это обусловлено тем, что у каждого производителя своя продуктовая линейка и многие детали, являясь коммерческой тайной, не разглашаются
Подбор по каталогу
Самый быстрый способ подбора — это использование фильтров в разделе каталога: Пластинчатые теплообменники.
Этот способ позволяет быстро сузить количество вариантов типомоделей пластинчатых теплообменных аппаратов, если известны некоторые из параметров.
Параметры, по которым можно произвести фильтрацию
Подходит проектировщикам для предварительной оценки, например, когда в проекте известны диаметры условного прохода присоединений трубопровода к системе или для подсчета сметы, когда выделен определенный бюджет на приобретение теплообменника и за его рамки выходить нельзя.
Если нужно точно рассчитать и подобрать модель теплообменного аппарата со всеми характеристиками, в том числе ценой, то лучше воспользоваться другим способом.
Преимущества
- Скорость подбора
- Не нужно регистрироваться или отправлять контактные данные
Недостатки
- Способ очень неточный. Цена пластинчатого теплообменника, его конечные габариты и другие характеристики очень сильно зависят от типа решаемой задачи
- Без технологических параметров (тип среды, допустимое давление и других) невозможно точно определить количество пластин, тип их рифления и материалы, которые понадобятся в конечном итоге, поэтому цена будет очень примерной
Справочная информация
Что такое t1, t2, t3, t4t1, t2, t3, t4 — это температуры на входе и выходе греющей и нагреваемой сторон пластинчатого теплообменника.
К примеру, теплоноситель (t1) с подающего трубопровода поступает с температурой 95 °C в аппарат, а в сеть возвращается с температурой 70 °C (t2).
Потребитель заходит при 5 °C (t3) и нагревается до 60 °C (t4).
Обратите внимание на то, что чем больше разница между входом и выходом теплоносителя, тем устройство выйдет меньшим по габаритам.
Соответственно, этот показатель будет влиять и на стоимость теплообменника, поскольку будет затрачено меньшее количество материала.
Что такое Tmax и Давление расчетноеTmax — максимальная рабочая температура. Определяются условиями системы, в которой будет встроен теплообменный аппарат. От нее зависит выбор материала уплотнений.
Расчетное давление влияет на выбор толщины пластин и прижимных плит.
Расход сред в рабочих контурахРавен пропускной способности разборного пластинчатого теплообменника. Измеряется в л/с, л/ч, м3/ч, кг/ч.
Определяется техническими условиями, предоставляемыми сетевыми компаниями (если объект связан с коммунальным хозяйством) или условиями работы оборудования, которое будет напрямую взаимодействовать с аппаратом (например, котел, парогенератор, компрессор и другие).
Этот показатель не требуется для расчетов при наличии нагрузки (мощности).
Тепловая мощность теплообменникаДает понимание какую тепловую энергию будет передавать теплообменник.
Величина измеряется в кВт, Гкал/ч. Высчитывается путем умножения следующих параметров: расход, удельная теплоемкость, температурная дельта по одной из сторон.
На что влияют допустимые потери напораДопустимые потери по напору на каждую из сторон влияют на габаритные размеры теплообменника (чем больше показатель, тем меньше получится оборудование, как и цена за него благодаря пластинам, которые будут максимизировать турбулизацию потоков).
Почему в онлайн калькуляторе используются только среды «Вода-Вода»Каждое вещество уникально и по-разному взаимодействует с рабочими материалами теплообменника. Все это влияет на конечный расчет и, как следствие, подбор конкретной типомодели теплообменного аппарата.
Если в качестве одной из рабочих сред используется не Вода, то расчеты очень затрудняются, так как появляется много дополнительных факторов (вязкость, плотность, теплопроводность).
Для расчета и подбора при таких специфичных условиях лучше сразу обратиться к профессионалам — инженерам «ПроТепло».
Какие еще параметры учитываются при расчете теплообменникаПри расчете теплообменника также важно учитывать загрязненность сред, размер и характер механических включений — дабы обеспечить оптимальный подбор пластин по ширине каналов, чтобы агрегат не засорялся и соответственно не выходил из строя.
В ходе процесса теплообмена неизбежно на рабочих поверхностях образуются различного рода отложения: кальцевидные, железистые, органические и прочие, которые влекут за собой снижение передаваемой энергии.
Чтобы этого избежать — закладывайте запас площади на загрязнение. Иначе придется проводить сервисное обслуживание (чистку) несколько чаще, чем раз в год, что приведет к дополнительным издержкам.
Расчет теплообменника: методика, пример + ВИДЕО
В этой статье мы рассмотрим теорию расчета теплообменника пластинчатого типа:
- Базовые понятия
- Методы составления теплового баланса
- Механизмы теплопередачи
- Конвекционный механизм передачи тепла
- Коэффициент теплоотдачи
- Расчет средней разности температур
- Пример расчета оборудования
- Видео «Как рассчитать теплообменник?»
- Онлайн калькулятор
Базовые понятия теплообмена для расчета
Расчет теплообменников производится при использовании базовой информации о теплообменных законах.
В этой статье рассмотрим некоторые понятия, применяемые при таких расчетах.
- Удельная теплоемкость является количеством теплоэнергии, требуемой для того чтобы нагреть 1 килограмм вещества на 1 градус Цельсия. На основании сведений о теплоемкости показывается то, насколько сильно аккумулируется тепло. Для расчетов теплоэнергии берется среднее значение теплоемкости в определенном интервале температурных показателей.
- Количество теплоэнергии, нужное для того чтобы нагреть 1 кг вещества от нулевой до требуемой температуры, называется удельной энтальпией.
- Удельная теплота химических превращений является количеством теплоэнергии, выделяемой в процессе химической трансформации какой-либо единицы веса вещества.
- Удельная теплота фазовых превращений определяет количество тепловой энергии, поглощаемое или выделяемое при превращении какой-либо единицы массы вещества из твердого в жидкое, из жидкого в газообразное агрегатное состояние и т.д.
Онлайн калькулятор расчета теплообменнника от компании ООО «Тепло Профи» поможет получить решение через 15 минут. Или вы можете воспользоваться теорией для теплообменника пластинчатого типа, которая изложена ниже в этой статье, и произвести необходимые расчеты самостоятельно.
Методы составления теплового баланса
Тепловой баланс может быть составлен внешним или внутренним методом. Первый связан с использованием величин удельных энтальпий, второй – с использованием величин теплоемкостей.
Для расчета тепловой нагрузки при внутреннем методе применяются различные формулы, что зависит от того, каким образом происходит протекание теплообменных процессов.
Если при теплообменном процессе не используются никакие превращения, а соответственно тепловые выделения или поглощения, рассчитать тепловую нагрузку можно за следующей формулой
Если при теплообменном процессе конденсируется пара или испаряется жидкость, протекают определенные химические реакции, тепловой баланс вычисляется по следующей формуле
Основанием для расчета теплового баланса в случае применения внешнего метода выступает факт поступления или выхода равного количества энергии в теплообменное устройство за определенную единицу времени. Внутренний метод отличается от внешнего тем, что при первом используются данные о процессах теплообмена, а при втором – данные внешних показателей.
Тепловой баланс по внешнему методу вычисляется таким образом:
Величина Q1 определяет количество энергии, поступающей в устройство и выходящей из него за единицу времени.
Для установления количества тепловой энергии, передающегося между различными средами, необходимо вычислить разницу энтальпий с использованием формулы
Теплообменный процесс может происходить и с использованием определенных химических или фазовых превращений. При этом количество тепловой энергии вычисляется за формулой
Механизмы теплопередачи в расчете теплообменников
Тремя основными видами для осуществления теплообмена являются конвекция, теплопроводность и излучение.
При теплообменных процессах, протекающих в соответствии с принципами механизма теплопроводности, теплоэнергия передается в виде переноса энергии упругих атомных и молекулярных колебаний. Переход данной энергии между разными атомами производится в направлении к снижению.
Расчет характеристик передачи тепловой энергии по принципу теплопроводности осуществляется по закону Фурье
Данные поверхностной площади, коэффициенте теплопроводности, температурном градиенте, периоде прохождения потока применяются для вычисления количества теплоэнергии. Понятием температурного градиента определяется изменение температуры в направлении теплопередачи на ту или иную единицу длины.
Коэффициент теплопроводности является скоростью теплообменного процесса, т.е. количеством тепловой энергии, проходящей через какую-либо единицу поверхности в единицу времени.
Как известно, металлы характеризуются наибольшим коэффициентом теплопроводности относительно других материалов, что обязательно должно учитываться при каких-либо расчетах теплообменных процессов. Что касается жидкостей, то они, как правило, имеют относительно меньший коэффициент теплопроводности по сравнению с телами в твердом агрегатном состоянии.
Вычислить количество передаваемой тепловой энергии для расчета теплообменников, при которых теплоэнергия передается между различными средами через стенку, можно с использованием уравнения Фурье. Она определяется как количество теплоэнергии, проходящей через плоскость, которая характеризуется очень малой толщиной:
После выполнения некоторых математических операций получаем следующую формулу
Можно сделать вывод, что падение температуры внутри стенки производится в соответствии с законом прямой линии.
Конвекционный механизм передачи тепла
Конвекция является еще одним способом передачи теплоэнергии. Она представляет собой передачу энергии объемами среды посредством их взаимного перемещения. Теплопередачей при этом называется передача теплоэнергии между рабочей средой и стенкой. Определение количества передаваемой тепловой энергии связано с использованием закона Ньютона
,где a является коэффициентом теплоотдачи.
При турбулентном движении среды на изменение данного коэффициента влияют величины:
- физические характеристики теплоемкости, плотности и иной текучей среды;
- условия, при которых теплоотдающая поверхность омывается жидким или газообразным веществом;
- условия, которыми ограничивается поток, такие как длина, поверхностные шероховатости и др.
Итак, коэффициент теплоотдачи является функцией некоторых величин, что можно увидеть по следующей формуле
Благодаря методу анализа размерностей может быть выведена взаимосвязь критериев подобия, которыми характеризуется теплоотдача при турбулентном движении потока в различной по форме трубах.
Для вычисления этой связи используется такая формула
Коэффициент теплоотдачи в расчете теплообменников
В химической технологии часто можно встретить случаи обмена теплом между 2-мя текучими средами через разделяющую стенку. Процесс теплообмена проходит в три этапа. Поток теплоэнергии для установившегося процесса характеризуется неизменностью.
Сначала рассчитывается тепловой поток, проходящий от одной среды к стенке, затем через стенку поверхности, передающей тепло, а после этого от стенки к другой рабочей среде.
Таким образом, расчеты проводятся с помощью трех формул
Результатом решения уравнений является формула
Расчет средней разности температур
Поверхность теплообмена рассчитывается при определении требуемого количества теплоэнергии посредством теплового баланса.
Расчет требуемой теплообменной поверхности осуществляется с использованием той же формулы, что и при расчетах, осуществляемых раннее:
Температура рабочих сред, как правило, изменяется при протекании процессов, связанных с теплообменом. То есть будет фиксироваться изменение разности температур вдоль теплообменной поверхности. Следовательно, рассчитывается средняя разница температур. Вследствие нелинейности изменения температур осуществляется расчет логарифмической разности
Противоточное движение рабочих сред отличается от прямоточного тем, что требуемая площадь теплообменной поверхности в данном случае должна быть меньше. Для вычисления разности температурных показателей при использовании в одном и том же ходу теплообменника и противоточного, и прямоточного потоков используется следующая формула
Основная цель проведения расчета заключается в вычислении требуемой площади теплообменной поверхности. Тепловая мощность задается в техническом задании, но в нашем примере мы произведем и ее расчет с той целью, чтобы проверить само техзадание. В некоторых случаях бывает и так, что в исходной информации может оказаться ошибка. Нахождение и исправление такой ошибки является одной из задач грамотного инженера. Использование подобного подхода очень часто связано со строительство небоскрёбов с целью разгрузки оборудования по давлению.
Пример расчета теплообменника
Для расчета требуемой мощности (Q0) используется формула теплового баланса. Здесь Ср выступает в качестве удельной теплоёмкости (табличного значения). Чтобы упростить расчеты, можно взять приведённый уровень теплоемкости
Следует учитывать, что в соответствии с формулой, вне зависимости от стороны, по которой проводится расчет.
Далее необходимо найти требуемую поверхностную площадь, исходя из основного уравнения теплопередачи, где k является коэффициентом теплопередачи, а ΔТср.лог. – среднелогарифмическим температурным напором, вычисляемым по формуле:
При неопределенном коэффициенте теплопередачи теплообменник пластинчатого типа рассчитывается более сложным методом. По формуле можно вычислить критерий Рейнольдса.
Найдя в таблице значение критерия Прандтля, которое нам необходимо, можно вычислить критерий Нуссельта формулы, где n = 0,3 – при охлаждении жидкости, n = 0,4 – при нагреве жидкости.
Далее на основании формулы можно вычислить коэффициент теплоотдачи от любого теплоносителя к стенке, а в соответствии с формулой определить коэффициент теплопередачи, подставляемый в формулу, с помощью которого вычисляется площадь поверхности теплообмена.
Видео «Как рассчитать теплообменник?»
Автор статьи: команда ООО «Тепло Профи»
Базовые понятия теплообмена для расчета теплообменников
Когда проводится расчет теплообменников, используются базовые знания о законах теплообмена, открытые на сегодняшний день.
В частности используются такие понятия как удельная теплоемкость и теплосодержание (энтальпия), а также удельная теплота химических превращений (и фазовых превращений).
Под удельной теплоемкость понимается количество тепла, которое необходимо для нагрева одного килограмма вещества ровно на один градус. На основании данных о теплоемкости можно судить об интенсивности аккумулирования тепла.
При тепловых расчетах используются средняя теплоемкость, исчисляемую в заданном температурном интервале.
Под понятием удельной энтальпии понимается количество тепла, которое потребуется для нагрева одного килограмма от нуля до заданной температуры.
Под удельной теплотой химических превращений понимается то количество тепла, которое будет выделяться при химической трансформации одной единицы массы данного вещества.
Под удельной теплотой фазовых превращений понимается то количество тепла, которое будет поглощаться или выделяться при изменении агрегатного состояния единицы массы данного вещества.
Расчет теплообменников и различные методы составления теплового баланса
При расчете теплообменников могут использоваться внутренний и внешний методы составления теплового баланса. При внутреннем методе используются величины теплоемкостей. При внешнем методе используются величины удельных энтальпий.
При применении внутреннего метода тепловая нагрузка рассчитывается по разным формулам, в зависимости от характера протекания теплообменных процессов.
Если теплообмен происходит без каких-либо химических и фазовых превращений, а соответственно и без выделений или поглощений тепла.
Соответственно тепловая нагрузка рассчитывается по формуле
Если в процессе теплообмена происходит конденсация пара или испарение жидкости, протекают какие-либо химические реакции, то используется другая форму для вычисления теплового баланса.
При использовании внешнего метода расчет теплового баланса ведется на основании того, что в теплообменный аппарат за какую-то единицу времени поступает и выходит равное количество тепла.
Если при внутреннем методе используются данные о теплообменных процессах в самом агрегате, то при внешнем методе используются данные внешних показателей.
Для расчета теплового баланса по внешнему методу используется формула
.
Под Q1 подразумевается то количество тепла, которое поступает в агрегат и ходит из него за единицу времени.
Под подразумевается энтальпия веществ, которые входит в агрегат и выходят из него.
Можно также вычислить разность энтальпий для того, чтобы установить то количество тепла, которое было передано между разными средами. Для этого используется формула .
Если же в процессе теплообмена происходили какие-либо химические или фазовые превращения, используется формула.
Механизмы теплопередачи в расчете теплообменников
Теплообмен осуществляется посредством трех основных видов теплопередачи. Это конвекция, теплопроводность и излучение.
При теплообменных процессах, которые протекают по принципам механизма теплопроводности передача тепла происходит как перенос энергии упругих колебаний молекул и атомов. Данная энергия переходит от одних атомов к другим в направлении уменьшения.
При проведении расчетов параметров передачи тепла по принципу теплопроводности используется закон Фурье:.
Для вычисления количества тепла используются данные о времени прохождения потока, площади поверхности, градиенте температуры, а также о коэффициенте теплопроводности. Под градиентом температуры понимается ее изменение в направлении теплопередачи на одну единицу длины.
Под коэффициентом теплопроводности понимается скорость теплообмена, то есть то количество тепла, которое проходит через одну единицу поверхности в единицу времени.
При любых тепловых расчетах учитывается, что самый большой коэффициент теплопроводности имеют металлы. Различные твердые тела имеют гораздо меньший коэффициент. А у жидкостей этот показатель, как правило, ниже, чем у любого из твердых тел.
При расчете теплообменников, где передача тепла от одной среды к другой идет через стенку, также используется уравнение Фурье для получения данных о количестве передаваемого тепла. Оно вычисляется как количество тепла, которое проходит через плоскость с бесконечно малой толщиной:
.
Если проинтегрировать показатели температурных изменений по толщине стенки, получится
Исход из этого получается, что температура внутри стенки падает по закону прямой линии.
Конвекционный механизм передачи тепла: расчеты
Еще один механизм передачи тепла – конвекция. Это передача тепла объемами среды посредством их взаимного перемещения. При этом передача тепла от среды к стенке и наоборот, от стенке к рабочей среде называется теплоотдачей. Чтобы определить количество тепла, которое передается, используется закон Ньютона
В данной формуле a — это коэффициент теплоотдачи. При турбулентном движении рабочей среды этот коэффициент зависит от многих дополнительных величин:
- физических параметров текучей среды, в частности теплоемкости, теплопроводности, плотности, вязкости;
- условий омывания газом или жидкостью теплоотдающей поверхности, в частности скорости текучей среды, ее направления;
- пространственных условий, которые ограничивают поток (длина, диаметр, форма поверхности, ее шероховатости).
Следовательно, коэффициент теплоотдачи — функция многих величин, что показано в формуле
Метод анализа размерностей позволяет вывести функциональную связь критериев подобия, которые характеризуют теплоотдачу при турбулентном характере движения потока в гладких, прямых и длинных трубах.
Это вычисляется по формуле
.
Коэффициент теплоотдачи в расчете теплообменников
В химической технологии нередко встречаются случаи обмена тепловой энергией между двумя текучими средами через разделяющую стенку. Теплообменный процесс проходит три стадии. Тепловой поток для установившегося процесса остается неизменным.
Проводится расчет теплового потока, проходящего от первой рабочей среды к стенке, затем через стенку теплопередающей поверхности и затем от стенки ко второй рабочей среде.
Соответственно для проведения расчетов используется три формулы:
В результате совместного решения уравнений получаем
Величина
и есть коэффициент теплопередачи.
Расчет средней разности температур
Когда при помощи теплового баланса определено необходимое количество тепла, необходимо провести расчет поверхности теплообмена (F).
При расчете необходимой теплообменной поверхности используется то же уравнение, что и при предыдущих расчетах:
В большинстве случаев температура рабочих сред будет меняться в процессе протекания теплообменных процессов. Значит вдоль теплообменной поверхности будет меняться разность температур. Поэтому проводится расчет средней разности температур. А в связи с тем, что изменение температур не линейно, рассчитывают логарифмическую разность
. В отличие от прямоточного потока, при противоточном движении рабочих сред необходимая площадь теплообменной поверхности должна быть меньше. Если в одном и том же ходу теплообменника используется и прямоточный, и противоточный потоки, разность температур определяется, исходя из соотношения
.
Расчет пластинчатого теплообменника — как правильно определить параметры?
Общие принципы устройства схем теплоснабжения
Система теплоснабжения представляет собой систему транспортировки тепловой энергии (в виде нагретой воды или пара) от источника тепловой энергии к ее потребителю.
Система теплоснабжения в основном состоит из трех частей: источник тепла, потребитель тепла, тепловая сеть — служащая для транспортировки тепла от источника к потребителю.
- Паровой котел на ТЭЦ или котельной.
- Сетевой теплообменник.
- Циркуляционный насос.
- Теплообменник системы горячего водоснабжения.
- Теплообменник системы отопления.
Роль элементов схемы:
- котельный агрегат — источник тепла, передача теплоты сгорания топлива к теплоносителю;
- насосное оборудование — создание циркуляции теплоносителя;
- подающий трубопровод — подача нагретого теплоносителя от источника к потребителю;
- обратный трубопровод — возврат охлажденного теплоносителя на источник от потребителя;
- теплообменное оборудование — преобразование тепловой энергии.
Температурные графики
В нашей стране принято качественное регулирование отпуска теплоты потребителям. Т. е. не изменяя расход теплоносителя через теплопотребляющую систему, изменяется разность температур на входе и на выходе системы.
Это достигается изменением температуры в подающем трубопроводе в зависимости от температуры наружного воздуха. Чем ниже температура наружного воздуха, тем выше температура в подающем трубопроводе. Соответственно температура обратного трубопровода также изменяется по этой зависимости. И все системы потребляющие тепло проектируются с учетом этих требований.
Графики зависимости температур теплоносителя в подающем и обратном трубопроводе называются температурным графиком системы теплоснабжения.
Температурный график устанавливается источником теплоснабжения в зависимости от его мощности, требований тепловых сетей, требований потребителей. Температурные графики называются по максимальным температурам в подающем и обратном трубопроводах: 150/70, 95/70 …
Срезка графика в верхней части — когда у котельной не хватает мощности.
Срезка графика в нижней части — для обеспечения работоспособности систем ГВС.
Работа систем отопления идет в основном по графику 95/70 для обеспечения средней температуры в отопительном приборе 82,5°С при -30° С.
Если требуемую температуру в подающем трубопроводе обеспечивает источник тепла, то требуемую температуру в обратном трубопроводе обеспечивает потребитель тепла своей теплопотребляющей системой. Если происходит завышение температуры обратной воды от потребителя, то это означает неудовлетворительную работу его системы и влечет за собой штрафы т. к. приводит к ухудшению работы источника тепла. При этом снижается его КПД. Поэтому существуют специальные контролирующие организации, которые отслеживают, чтобы теплопотребляющие системы потребителей выдавали температуру обратной воды по температурному графику или ниже. Однако в некоторых случаях подобное завышение допускается, напр. при установке отопительных теплообменников.
График 150/70 позволят передавать тепло от источника тепла с меньшими расходами теплоносителя, однако в домовые системы отопления нельзя подавать теплоноситель с температурой выше 105°С. Поэтому производят понижение графика, например на 95/70. Понижение производится установкой теплообменника либо подмесом обратной воды в подающий трубопровод.
Гидравлика тепловых сетей
Циркуляция воды в системах теплоснабжения производится сетевыми насосами на котельных и тепловых пунктах. Так как протяженность трасс достаточно велика то разность давления в подающем и обратном трубопроводах, которую создает насос, уменьшается с удалением от насоса.
Из рисунка видно, что для наиболее удаленного потребителя самый малый располагаемый перепад давления. Т. е. для нормальной работы его теплопотребляющих систем необходимо чтобы они имели самое малое гидравлическое сопротивление для обеспечения требуемого расхода воды через них.
Расчет пластинчатых теплообменников для систем отопления
Приготовление отопительной воды может происходить путем нагрева в теплообменнике.
При расчете пластинчатого теплообменника для получения отопительной воды, исходные данные берутся для самого холодного периода , т. е. когда необходимы самые высокие температуры и соответственно самое большое теплопотребление. Это наихудший режим для теплообменника, рассчитанного на отопление.
Особенностью расчета теплообменника для системы отопления является завышенная температура обратной воды по греющей стороне. Это допускается специально т. к. любой поверхностный теплообменник принципиально не может охладить обратную воду до температуры графика, если по нагреваемой стороне на вход в теплообменник поступает вода с температурой графика. Обычно допускается разница 5—15°С.
Расчет пластинчатых теплообменников для систем ГВС
При расчете пластинчатых теплообменников для систем горячего водоснабжения исходные данные берутся для переходного периода , т. е. когда температура подающего теплоносителя низка (обычно 70°С), холодная вода имеет самую низкую температуру (2—5°С) и при этом еще работает система отопления — это май-сентябрь месяцы. Это наихудший режим для теплообменника ГВС.
Расчетная нагрузка для систем ГВС определяется исходя из наличия на объекте, где устанавливаются теплообменники аккумуляторных баков.
При отсутствии баков расчет пластинчатых теплообменников производится на максимальную нагрузку. Т. е. теплообменники должны обеспечивать нагрев воды и при максимальном водоразборе.
При наличии аккумуляторных баков пластинчатые теплообменники рассчитываются на среднечасовую нагрузку. Аккумуляторные баки пополняются постоянно и компенсируют пиковый водоразбор. Теплообменники должны обеспечивать только подпитку баков.
Соотношение максимальной и среднечасовой нагрузок достигает в некоторых случаях 4—5 раз.
Обращаем Ваше внимание, что расчет пластинчатых теплообменников удобно производить в собственной расчетной программе «Ридан».