Схема плунжерный насос – Плунжерный насос – надежный высоконапорный насос для промышленного использования

Содержание

Насос радиально плунжерный схема и принцип работы — Оборудование

Автор Admin На чтение 2 мин. Просмотров 15 Опубликовано

В настоящее время широко применяют роторные, радиально-плунжерные и аксиально-плунжерные насосы. Важной особенностью этих машин является их обратимость, т. е. возможность применения их в качестве гидромоторов, а также возможность их регулирования в процессе работы и реверсивность.

Рис. 59. Радиально-плунжерный насос

1 – полость нагнетания; 2 – ротор; 3 – цапфа-распределитель; 4 – плунжер; 5 – полость всасывания; 6 – статорное кольцо; 7 – букса; 8 – направляющие корпуса

В радиально-плунжерном насосе (рис. 59) плунжеры, являющиеся вытеснителями жидкости, двигаются в радиальном направлении во вращающемся роторе. Плунжеры сферическими головками опираются на вращающееся статорное кольцо. Статорное кольцо может смещаться с буксой для регулирования производительности в направляющих. При вращении ротора плунжера совершают возвратно-поступательное движение. Ход плунжеров зависит от величины смещения статора е. Масло по проточкам ротора подводится по неподвижному валу к цапфе-распределителю, к полости и отводится от полости, если вращение происходит по стрелке.

Если к полости 5 подвести давление, а из полости обеспечить слив, ротор начнет вращаться в направлении стрелки. Если поменять местами нагнетание и слив, ротор начнет вращаться в противоположном направлении. Аналогичный результат можно получить, сместив эксцентриситет с статора в противоположную сторону от указанной на рисунке.

Аксиально-плунжерный насос

Аксиально-плунжерный насос (рис. 60) состоит из вращающегося на валу ротора и движущихся в нем плунжеров, которые прижимаются пружиной к упорному подшипнику плунжера. Число плунжеров в роторных машинах принимается нечетным для уменьшения пульсаций и обычно равно 7, 9 или 11. Ротор прижимается к распределительному диску, имеющему два серповидных канала для подвода и отвода жидкости. Изменяя угол наклона а люльки 7, изменяют ход поршней, а следовательно, производительность машины.

Рис. 60. Аксиально-плунжерный насос

1, 2 – клапаны соответственно подвода и отвода жидкости; 3 – золотник; 4 – ротор; 5 – пружины; 6 – плунжер; 7 – люлька; 8 – вал

НОУ ИНТУИТ | Лекция | Объемные насосы для перекачивания загрязненных жидкостей

Аннотация: Рассмотрены конструктивные особенности, теоретические процессы, области применения наиболее часто встречающихся объемных насосов.

7.1 Общая характеристика объемных насосов

В отличие от центробежных насосов, которые являются гидродинамическими машинами, в насосах объемного типа перекачки жидкости происходит за счет принудительного изменения объема полости, которая заполняется жидкостью. Объемный насос, независимо от конструкции, имеет три основных элемента:

  1. Рабочая камера — полость в проточной части насоса, которая заполняется жидкостью и объем которой меняется.
  2. Вытеснитель — элемент, движение которого изменяет объем рабочей камеры.
  3. Распределитель — устройство, служащее для направления потока жидкости из всасывающего патрубка в рабочую камеру или из рабочей камеры к нагнетательному патрубку.

7.2 Конструкция поршневого насоса

Поршневой насос одностороннего действия имеет следующие основные элементы, рис. 7.1: цилиндр 4, поршень 8, шток поршня 9, рабочую камеру 5, всасывающий патрубок 7, нагнетательный патрубок 2, всасывающий клапан 6, нагнетательный клапан 1, пневмокомпенсатор 3 и кривошипно-шатунный механизм 10 соединен с двигателем.

При движении поршня 8 насоса слева направо в рабочей камере 5 образуется разряжение, благодаря которому жидкость поднимается по всасывающем патрубке 7, открывает всасывающий клапан 6 и поступает в рабочую камеру, заполняя пространство. При обратном движении поршня давление в рабочей камере возрастает, вследствие чего всасывающий клапан закрывается, а нагнетательный клапан 1 открывается и жидкость вытесняется в нагнетательний патрубок 2. Таким образом, за один оборот вала двигателя, что соответствует двойному ходу поршня, в насосе происходит один раз всасывание и один раз нагнетание.

Недостаток однопоршневого насоса одностороннего действия — его неравномерная работа — максимальная подача в 3,14 раза превышает среднюю. При всасывании жидкости в сеть не поступает и двигатель работает почти без нагрузки. В начале цикла нагнетания происходит резкий рост скорости потока жидкости в нагнетательном трубопроводе, через низкую сжимаемость приводит к явлению гидравлического удара — давление за насосом становится значительно больше среднего.


Рис. 7.1 . Поршневой насос одностороннего действия
Рис. 7.2. Схема поршневого насоса двухстороннего действия (1 – нагнетательный клапан; 2 –нагнетательный патрубок; 3 – пневмокомпенсатор; 4 – цилиндр; 5 – рабочая камера; 6 – всасывающий клапан; 7 – всасывающий патрубок; 8 – поршень; 9 – шток; 10 – кривошипно-шатунный механизм; 11 – сальник)

Такая неравномерность в работе насоса приводит к его преждевременному износу. Для уменьшения колебаний давления и подачи поршневых насосов используется пневматический компенсатор 3 — камера, разделенная гибкой мембранной на две полости. Нижнюю соединим с напорным патрубком, а верхнюю заполнено сжатым газом, который амортизирует колебания давления и подачи.

Поршневой насос двухстороннего действия имеет две рабочие камеры A и B, два всасывающих и два нагнетательных клапана, рис. 7.2. При движении поршня 8 слева направо жидкость под действием разряжения, которое создается поступает из всасывающего патрубка 7 в камеру А, одновременно из камеры В жидкость выталкивается в нагнетательный патрубок.

Трехпоршневий насос представляет собой соединение трех насосов одностороннего действия, приводимые в движение от общего коленчатого вала, кривошипы которого смещены друг от друга на 120°. Такие насосы имеют значительно большую равномерность работы, чем насосы однопоршневые одно и двустороннего действия — максимальная подача превышает среднюю лишь в 1,047 раза. Мощность двигателя в них используется более эффективно, а подача жидкости осуществляется почти непрерывным потоком.

Недостаток трехпоршвых насосов — их громоздкость и малая надежность при работе на абразивных гидросмесей.

По сравнению с центробежными, поршневые насосы имеют следующие преимущества: возможность создания значительного давления при небольшой подаче; жесткая характеристика — с ростом давления подача насоса остается практически неизменной; способность самовсасывания — насосы не требуют заливки перед пуском.

Недостаток таких насосов

— значительная сложность конструкции, особенно много поршневых насосов, наличие понижающей передачи и кривошипно-шатунного механизма, клапанов, из условий ет низкую надежность насосов, значительные габариты и массу, затрудняет обслуживание и защиту от абразивного износа при транспортировке гидросмесей. Кроме того, недостатком является неравномерность и ограниченность подачи при этом насосы имеют очень большие габариты 20-45 тонн.

7.3 Конструкция плунжерных насосов

Плунжерные насосы относятся к объемным машин одностороннего действия. Схема работы их такая же, как в трехцилиндровых поршневых насосах одностороннего действия. Основные достоинства плунжерных насосов — возможность работы на высоких давлениях (10 МПа и больше), простота конструкции, относительно низкая стоимость, удобство эксплуатации, а также простота защиты от абразивного износа. Конструктивно плунжерные насосы выполняются с приводом от кривошипно-шатунного механизма. Расположение цилиндров горизонтальное или вертикальное. Гидравлические коробки выполняются обычно с клапанным распределением.

Гидро транспортирование твердых материалов не является основной областью применения плунжерных насосов, но, учитывая низкую стоимость (по сравнению с мембранно-поршневыми), они применяются при гидро транспортирования высокоабразивных материалов, например полиметаллических шламов. В плунжерных насосах интенсивному износу подвергаются уплотнения и в меньшей степени — корпус плунжера. Кроме того, в плунжерных насосах, которые применяются для гидротранспорта существует возможность промывки плунжера.


Рис. 7.3. Схема плунжерного насоса (1 — плунжер; 2 — крышка сальника; 3 — уплотнение; 4 — гидрозатвор; 5 — корпус; 6 — напорный патрубок; 7 — пневмокомпенсатор; 8 — нагнетательный клапан; 9 — рабочая камера; 10 — всасывающий клапан; 11 — всасывающий патрубок; 12 — отверстие подачи промывочной воды)

Плунжерный насос, рис 7.3, в отличие от поршневого, в качестве подвижного элемента имеет плунжер 1 — гладкий металлический стержень. Он, двигаясь вперед или назад, меняет объем рабочей камеры 9. Благодаря этому, жидкость поступает в рабочую камеру с всасывающего патрубка 11 через клапан 10 или вытесняется в напорный патрубок 6 через клапан 8.

Главное преимущество плунжера перед поршнем — простота уплотнения, которое осуществляется аналогично уплотнению штоков поршневых насосов — с помощью сальника 3. Для защиты уплотнения и плунжера от абразивных частиц в полость 4 через отверстие 12 подается чистая вода под давлением, что превышает давление жидкости в рабочей камере. Чистая вода через зазор между втулкой и плунжером в небольшом количестве поступает в рабочую камеру и промывает этот зазор, предотвращая попадание в него твердых частиц.

Плунжерные насосы для транспортировки твердых материалов работают в зависимости от транспортируемой среды, с частотой ходов 80 … 120 мин-1. Для повышения подачи плунжерных насосов увеличивают количество плунжеров в одном агрегате (до семи). Однако из-за многоцилиндрового выполнения увеличивается количество быстроизнашивающихся деталей.

7.4 Винтовые насосы

Винтовые насосы предназначены для перекачки чистой и загрязненной песком, илом, частицами угля и породы, воды и используется на местном водоотливе при проходке горизонтальных выработок и уклонов, а также для очистки водосборников и отстойников от шлама.

На шахтах применяются винтовые насосы трех типоразмеров: 1В6/5, 1В20/5 и 1В20/10 (1В — одновинтовой, числитель — подача в л за 100 оборотов вала, знаменатель — давление в МПа.) При частоте вращения вала насоса 1450 об/мин указанные насосы обеспечивают соответственно: подачу — 6; 17 и 17 м3/ч; напор — 50, 50 и 100 м, к. п. д. — 0,48; 0,60 и 0,64. Вакууметрическая высота всасывания 6м.

Винтовые насосы относятся к классу объемных машин. Основными частями винтового насоса типа 1В, рис. 7.4 является стальная обойма 3, резиновый статор 4, стальной ротор 5 и карданный вал 6. В статоре, что представляет собой резиновый цилиндро с полостью в виде двух заходной спирали, планетарно вращается ротор в виде однозаходного винта с шагом, вдвое меньше шага спирали статора. Между ротором и статором есть полости, которые поступательно перемещаются от одного конца статора к другому. Благодаря этому с одной стороны статора образуется разрежение и происходит всасывание воды по патрубку 1, а через патрубок 9 — нагнетание воды в трубопровод.

Карданный вал 6 соединяется с помощью приводного вала 11 и упругой муфты с валом двигателя. Вал 6, снабженный шарнирами 2 и 8, позволяет ротору 5 выполнять планетарное вращение в статоре. Шарнир 8 защищен от песка и грязи резиновым сильфоном 7. Уплотнение вала обеспечивается сальником 10. Вал 7 расположен в двух радиально-упорных шарикоподшипниках 13 находящихся в гнездах станины 12.

Благодаря резиновому статору насос может перекачивать загрязненную воду. Вода в пространстве, перемещается, служит смазкой между ротором и статором. Без воды в этом пространстве нельзя пускать насос, так как статор выйдет из строя.

Регулирования подачи насоса выполняется с помощью пропускной трубки с вентилем, соединяющий полости всасывания и нагнетания (на рис.7.4 не показаны). Если при работе насоса открыть вентиль, то часть воды, вернется из полости нагнетания в полость всасывания и подача уменьшится.


Рис. 7.4. Винтовой насос (1 — всасывающий патрубок; 2, 8 — шаровые шарниры; 3 — обойма; 4 — резиновый статор; 5 — винтовой ротор; 6 — карданный вал; 7 — резиновый сильфон; 8 -; 9 — нагнетательный патрубок; 10 — сальник; 11 — приводной вал; 12 — станина; 13 — радиально -упорные шарикоподшипники)

Ключевые термины:

Поршневой насос (плунжерный насос) — один из видов объёмных гидромашин, в котором вытеснителями являются один или несколько поршней (плунжеров), совершающих возвратно-поступательное движение.

Поршень — деталь цилиндрической формы, совершающая возвратно-поступательное движение внутри цилиндра и служащая для превращения изменения давления газа, пара или жидкости в механическую работу, или наоборот — возвратно-поступательного движения в изменение давления. В поршневом механизме, в отличие от плунжерного, уплотнение располагается на цилиндрической поверхности поршня, обычно в виде одного или нескольких поршневых колец.

Винтовой или шнековый насос — насос, в котором создание напора нагнетаемой жидкости осуществляется за счёт вытеснения жидкости одним или несколькими винтовыми металлическими роторами, вращающимися внутри статора соответствующей формы..

Контрольные вопросы

  1. Перечислите основные насосы для перекачивания загрязненных жидкостей.
  2. Из каких частей состоит объемный насос?
  3. Какие недостатки поршневого насоса?
  4. Какие преимущества плунжерного насоса?
  5. Почему плунжерные насосы применяют для перекачивания загрязненных жидкостей?
  6. Какие преимущества винтовых насосов?
  7. Какие недостатки винтовых насосов?

Краткие итоги

  • Рассмотрели насосы для перекачки загрязненных шидкостей
  • Ознакомились с конструктивным исполнением, преимуществом и недостатками плунжерных, винтовых и поршневых насосов.

Радиально поршневой насос: устройство, принцип работы, достоинства

Радиально поршневой насос – это объемный насос, в конструкции которого, ось ведущего вала перпендикулярна осям движения рабочих поршней или угол между ними составляет величину не меньше 45°. Механизмы, угол которых меньше 45° относят к аксиальному типу.

Примеры радиально поршневого насоса

Радиально поршневые насосы

Радиально поршневой насос часто называют радиально-плунжерным.

Такие насосы применяю в гидравлических системах с большим давлением. Наиболее часто они применяются в установках с давлением до 32 МПа, бывают и агрегат работающие на большем давлении и достигают значений в 100 МПа. Агрегаты радиально поршневого типа ограничены в частоте вращения вала до 1500 об/мин. Это обусловлено большой инерционностью вращающихся частей.

Устройство

Можно выделить два вида конструкции, таких гидравлических систем:

Схема радиально поршневых насосов

Схема радиально поршневых насосов

  • Гидронасос с эксцентричным ротором. На схеме под буквой А
  • Гидронасос с эксцентричным валом. На схеме под буквой Б

Устройство с эксцентричным ротором

Главной частью является ротор со встроенными в него поршнями. Поршней может быть много и располагаться они могут в несколько рядов. Ротор вращается в корпусе(Статоре). Ось ротора установлена со смещением центра относительно оси статора на величину «е» как показано на рисунке. Системы забора и нагнетания расположены в центре и отделяются друг от друга специальной перемычкой.

Устройство с эксцентричным валом

В данном устройстве гидравлической системы, поршни располагаются в статоре насоса. Ось статора и вала совпадают, но на вале есть специального рода кулачек, смещенный по отношению к статору на расстояние «е». Такие гидравлические установки имеют клапанное распределение. При сжимании рабочей камеры клапан всасывания закрывается и открывается клапан нагнетания. При расширении рабочей камеры происходит обратная ситуация.

Принцип работы

Схема радиально поршневых насосов

Принцип работы радиально поршневого насоса

Ротор вращается в статоре (корпусе) вместе с поршнями, поршни скользят по корпусу, плотно прижимаясь к нему за счет пружин. В результате вращения ротора, поршни совершают возвратно-поступательные движения. Поршни двигаясь по кругу переключаются между двумя фазами:

  • Фаза всасывания. Поршень совершает выдвижение, рабочая камера увеличивается,клапан нагнетания закрывается и открывается клапан всасывания,  он соединён с отверстием забора жидкости. Поршень движется по кругу до максимальной точки его выдвижения.
  • Фаза нагнетания. Поршень переключается на отверстие нагнетания, и начинает вдвигаться, клапан всасывания закрывается и открывается клапан нагнетания, рабочая камера уменьшается в результате чего создается давление и жидкость вытесняется из насоса. Поршень находится в данной фазе до максимальной точки сжатия рабочей камеры, а затем переключается на фазу всасывания.

Радиально поршневой насос может быть двух и более кратного действия. Это означает что один плунжер совершает несколько рабочих ходов за одно вращение ротора. Такой эффект достигается за счет специального изменения поверхности статора.

Вычисление производительности

 

Q = hSna = 2eSna

 

Вычисление производительности радиально поршневого насоса

Q – производительность насоса;

e – эксцентриситет, смещение относительно оси вращения вала на рисунках выше также обозначался как «е»;

L – ход плунжера в цилиндре, в стандартной ситуации L=2*e;

S – площадь плунжера;

a – число плунжеров в блоке;

n – частота вращения блока;

Производительность в регулируемых насосах, регулируется изменение величины отклонения оси «e».

Достоинства и недостатки радиально поршневых насосов

Положительные стороны:

  1. Производят высокое давление в гидравлической системе;
  2. Есть модели с опцией регулирования рабочего объема подачи;
  3. КПД находится на достаточно высоком уровне при большом давлении;
  4. Высокая энергоемкость на единицу массы;

Отрицательные стороны:

  1. Сложное устройство, небольшая надежность;
  2. Необходимость специфичной обработки деталей, а также сложное строение самого насоса приводит к высокой цене на данные агрегаты;
  3. Нужна тонкая фильтрация рабочей жидкости;
  4. Высокая пульсация подачи и расхода;
  5. Занимают много места;
  6. Низкий вращающий момент основного вала;

Видео радиально поршневого насоса с клапанным распределением

Плунжерные насосы

Трёхцилиндровый плунжерный насос    

Технические данные

  • Указанный расход основывается на объёмном КПД 100% и температуре окружающей среды 20 °С.
  • Мин. давление на входе зависит от среды.
  • Мин. скорость зависит от нагруженности штока.
  • Редуктор смазывается разбрызгиванием.
  • Клиноремённый привод.
  • Также в наличии по стандартам API 674.

Особая среда (напр., морская вода, гликоль, метанол, масло и т.п.) по запросу.

Варианты головок насоса. Чертежи и схемы

А – головка высокого давления
М – компактная головка
С – головка низкого давления

Трёхцилиндровый плунжерный насос  

Технические данные

  • Указанный расход основывается на объёмном КПД 100% и температуре окружающей среды 20 °С.
  • Мин. давление на входе зависит от среды.
  • Мин. скорость зависит от нагруженности штока.
  • Редуктор смазывается разбрызгиванием.
  • Стандартные передаточные числа i = 2,75 – 3,22 – 3,68
  • Также в наличии по стандартам API 674.

Особая среда (напр., морская вода, гликоль, метанол, масло и т.п.) по запросу.

Чертежи и схемы

Трёхцилиндровый плунжерный насос  

Плунжерные насосы Kamat

Технические данные

  • Указанный расход основывается на объёмном КПД 100% и температуре окружающей среды 20 °С.
  • Мин. давление на входе зависит от среды.
  • Мин. скорость зависит от нагруженности штока.
  • Редуктор смазывается под высоким давлением.
  • Стандартные передаточные числа i = 2,75 – 3,22 – 3,68
  • Также в наличии по стандартам API 674.

Особая среда (напр., морская вода, гликоль, метанол, масло и т.п.) по запросу.

Чертежи и схемы

Трёхцилиндровый плунжерный насос  

Технические данные

  • Указанный расход основывается на объёмном КПД 100% и температуре окружающей среды 20 °С.
  • Мин. давление на входе зависит от среды.
  • Мин. скорость зависит от нагруженности штока.
  • Редуктор смазывается под высоким давлением.
  • Стандартные передаточные числа  i = 3,76 – 4,13 – 4,50 – 4,93
  • Также в наличии по стандартам API 674.

Особая среда (напр., морская вода, гликоль, метанол, масло и т.п.) по запросу.

Чертежи и схемы

Трёхцилиндровый плунжерный насос  

Технические данные

  • Указанный расход основывается на объёмном КПД 100% и температуре окружающей среды 20 °С.
  • Мин. давление на входе зависит от среды.
  • Мин. скорость зависит от нагруженности штока.
  • Редуктор смазывается впрыскиванием.
  • Стандартные передаточные числа i = 3,14 — 3,39 – 4,13 – 4,50 – 4,93
  • Также в наличии по стандартам API 674.

Особая среда (напр., морская вода, гликоль, метанол, масло и т.п.) по запросу.

Чертежи и схемы

Трёхцилиндровый плунжерный насос  

Технические данные

  • Указанный расход основывается на объёмном КПД 100% и температуре окружающей среды 20 °С.
  • Мин. давление на входе зависит от среды.
  • Мин. скорость зависит от нагруженности штока.
  • Редуктор смазывается под высоким давлением.
  • Стандартные передаточные числа  i = 3,14 — 3,39 – 4,13 – 4,50 – 4,93
  • Также в наличии по стандартам API 674.

Особая среда (напр., морская вода, гликоль, метанол, масло и т.п.) по запросу.

Чертежи и схемы

Трёхцилиндровый плунжерный насос  

Технические данные

  • Указанный расход основывается на объёмном КПД 100% и температуре окружающей среды 20 °С.
  • Мин. давление на входе зависит от среды.
  • Мин. скорость зависит от нагруженности штока.
  • Редуктор смазывается под высоким давлением.
  • Стандартные передаточные числа i = 3,00 — 3,14 — 3,39 – 4,13 – 4,50 – 4,93
  • Также в наличии по стандартам API 674.

Особая среда (напр., морская вода, гликоль, метанол, масло и т.п.) по запросу.

Чертежи и схемы

Трёхцилиндровый плунжерный насос  

Технические данные

  • Указанный расход основывается на объёмном КПД 100% и температуре окружающей среды 20 °С.
  • Мин. давление на входе зависит от среды.
  • Мин. скорость зависит от нагруженности штока.
  • Редуктор смазывается впрыскиванием.
  • Стандартные передаточные числа  i = 3,50 – 4,04 – 4,62 – 5,44
  • Также в наличии по стандартам API 674.

Особая среда (напр., морская вода, гликоль, метанол, масло и т.п.) по запросу.

Чертежи и схемы

Трёхцилиндровый плунжерный насос  

Технические данные

  • Указанный расход основывается на объёмном КПД 100% и температуре окружающей среды 20 °С.
  • Мин. давление на входе зависит от среды.
  • Мин. скорость зависит от нагруженности штока.
  • Редуктор смазывается разбрызгиванием.
  • Клиноремённый привод.
  • Также в наличии по стандартам API 674.

Особая среда (напр., морская вода, гликоль, метанол, масло и т.п.) по запросу.

Чертежи и схемы

Трёхцилиндровый плунжерный насос  

Технические данные

  • Указанный расход основывается на объёмном КПД 100% и температуре окружающей среды 20 °С.
  • Мин. давление на входе зависит от среды.
  • Мин. скорость зависит от нагруженности штока.
  • Редуктор смазывается разбрызгиванием.
  • Стандартные передаточные числа i = 3,39 — 4,05 — 4,76 — 5,25.
  • Также в наличии по стандартам API 674.

Особая среда (напр., морская вода, гликоль, метанол, масло и т.п.) по запросу.

Чертежи и схемы

Плунжерный насос высокого давления: схема, устройство | 

Сейчас все чаще устаревшие агрегаты в виде поршневых насосов подвергаются замене на более современные плунжерные аналоги.

К тому же их повсеместное применение позволяет во время осуществления рабочего цикла производить смешение компонентов растворов в нужном для пользователя соотношении, что достаточно удобно при использовании данных агрегатов.

Особенности и виды устройства

В быту устройства подобного типа практически не применяются — ввиду того, что они создают слишком большое давление. Их использование актуально в промышленности, в первую очередь — химической и нефтеперерабатывающей.

Плунжерный водяной насос высокого давления находятся в категории гидравлических агрегатов дозирующего типа. Конструкция этого устройства способствует точному дозированию компонентов с применением определенного соотношения.

Ввиду различия в конструктивных особенностях насосы подразделяются на необъемные и объемные.

Схема плунжерного насоса схожа со схемой поршневого устройства, однако существенное различие заключено в устройстве поршня или плунжера. Он представляет собой металлический стержень, который совершает движения возвратно-поступательного характера.

Источником движущей силы служит электропривод.

При этом контакт со стенками рабочей камеры исключается. Плунжер представлен в виде основного рабочего инструмента в насосе, а потому он отличается высокой степенью прочности, герметичности и устойчивости к интенсивному износу.

Устройство плунжерного насоса высокого давления базируется на колебательных движениях плунжера: во время движения агрегата вправо давление внутри рабочего отсека снижается, при этом всасывающие показатели рабочего трубопровода остаются достаточно высоки.

Во время возникновения такого перепада задействуется рабочий клапан, и раствор благодаря ему перемещается в пределы рабочей камеры.

Ну а когда движение происходит в левую сторону, имеет место процесс обратного вытеснения, и раствор покидает рабочую камеру.

Погружной плунжерный насос устроен таким образом, что во время его интенсивной работы происходит возникновение различных вибраций и пульсация.

Данное явление негативно сказывается на работе устройства, и это негативное воздействие устраняется путем включения в рабочий процесс сразу нескольких дополнительных плунжеров.

Водяные плунжерные насосы высокого давления устроены таким образом, что благодаря наличию массивного вала плунжеры способны осуществлять движение в цикличной последовательности.

Кроме того агрегат способен осуществлять рабочие циклы в дифференциальном режиме, в таком случае перекачка жидкости производится в любом направлении.

Плунжерные водяные насосы осуществляют свою работу, руководствуясь теми же принципами, что и все прочие насосы.

Поршневой плунжерный насос сконструирован таким образом, что перекачка необходимых объемов вещества производится с ориентировкой на силу внутреннего давления.

Таким образом, чем выше его показатели — тем выше и планка эффективности устройства.

Классификация по параметрам конструктивных особенностей подразумевает наличие нескольких видов агрегатов:

  • Горизонтальный;
  • Вертикальный;
  • Вакуумный плунжерный насос;
  • Многоплунжерного типа;
  • Автоматический и ручной;
  • Многоцилиндровый;
  • С герметизированными цилиндрами.

Все представленные на современном рынке категории плунжерных насосов осуществляют работу с жидкостями различных типов, и в связи с этим устройства разрабатываются с ориентировкой на параметры перекачиваемой среды.

Нюансы выбора

Перед тем, как купить плунжерный насос высокого давления, следует ориентироваться на несколько советов, которые помогут рационально подойти к процессу покупки:

  1. Выбирайте установки, работающие на принципе прямого действия.
  2. Приводные насосы более продуктивны и способны к перекачке больших объемов, однако быстро выходят из строя.
  3. Поршень цилиндрической формы стоит гораздо дороже, чем дискообразный, но он более долговечен и неприхотлив.
  4. Высокими показателями КПД обладают те агрегаты, в которых подача жидкости не зависит от силы ее напора.

Цена плунжерных насосов высокого давления ощутимо выше, чем центробежные или поршневые устройства. Приведем несколько конкретных примеров:

  • Плунжерный насос высокого давления Cat Uraca – 200 – 230$;
  • Плунжерный насос Calpeda NM4 25/160BE – 250 — 300$, а столько же стоят насосы Марина;
  • Насос трёхплунжерный 3ПН-70 (аналог 4Р-700) – 150 — 200$.

Перед тем, как выбрать гидравлический плунжерный насос, следует должное внимание сосредоточить и на отзывах пользователей.

Александр, 37 лет, Саратов:

Поршневые и плунжерные насосы в огромном количестве стояли на химическом предприятии, где я работал — с их помощью дозировали реагенты в воду.

Когда в первый раз увидел — удивился: небольшое устройство (речь о плунжерном насосе), а нагнетать может до огромного давления.

За 2 года ни 1 агрегат (всего работали 14) не вышел из строя, хотя работали каждые сутки по 12 часов.

Сергей, 45 лет, Ростов-на-Дону:

В цеху стояло 2 плунжерных насоса небольшого размера — качали химикаты в систему водоснабжения.

Проблемы на моей памяти были только раз, когда в воду попала какая-то грязь (как впоследствии выяснили — кусок полиэтиленовой упаковки), из-за которой насос забился.

Неисправности и ремонт

Как и любое другое насосное устройство, плунжерные модели могут столкнуться со следующими проблемами:

  • снижение работоспособности — падение давления и/или производительности;
  • появление нехарактерного шума (стука) и/или вибрации;
  • скачки давления.

Ремонт плунжерных насосов включает в себя обязательный комплекс мер, описанных ниже (выполняются только специалистами, поскольку требуют определенных знаний и оборудования):

  • Притирка (после замены) поршней с применение абразивных паст;
  • Корректировка овальности рабочих цилиндров;
  • Расточка торцевых поверхностей поршня;
  • Регулировка посадочных мест для манжет посредством напрессовки.

Кроме того, устройства должны работать только с идеально чистой жидкостью. Из-за особенностей конструкции малейшая грязь легко набивается в зазоры, тем самым приводя устройство в негодность или резко снижая его работоспособность.

Устройство и демонстрация работы (видео)

Кривошипно-шатунный плунжерный насос схема и принцип работы — Оборудование

Автор Admin На чтение 1 мин. Просмотров 11 Опубликовано

Кривошипно-шатунные плунжерные насосы (рис. 58) изготавливают для наиболее крупных насосно-аккумуляторных станций. Число плунжеров в насосе, как правило, три, что обеспечивает простоту конструкции и равномерную подачу.

Рис. 58. Кривошипно-шатунный плунжерный насос

1 – корпус; 2 – колончатый пал; 3 – шатун; 4 – крейцкопфа; 5 – плунжер; 6 – нажимная втулка; 7 – уплотнительные манжеты; 8 – нагнетательным клапан; 9 – воздухоспускная пробка; 10 – всасывающий клапан

Усилия от шатуна передаются на плунжер через крейцкопф. Коленчатый вал для снижения числа оборотов приводится во вращение от двигателя через редуктор. Плунжер и крейцкопф скользят в бронзовых или баббитовых направляющих. Уплотнение плунжера осуществляется набором манжет, регулируемых нажимной втулкой. Масло к плунжеру поступает при движении плунжера назад через всасывающий клапан н вытесняется при движении плунжера вперед через нагнетательный клапан. Воздух из полости плунжера перед запуском удаляется через пробку. Смазка коленвала, шатуна и крейцкопфа осуществляется от самостоятельной системы смазки, смазка плунжера – рабочей жидкостью. Часто для смазки уплотнений подводится дополнительная смазка от лубликатора под большим давлением.

На станциях меньшей мощности применяют быстроходные эксцентриковые многоплунжерные клапанные насосы.

ПЛУНЖЕРНЫЙ НАСОС • Большая российская энциклопедия

  • рубрика
  • родственные статьи
  • image description

    В книжной версии

    Том 26. Москва, 2014, стр. 454

  • image description

    Скопировать библиографическую ссылку:


Авторы: В. В. Волшаник

image description

Схема плунжерного насоса: 1 – впускной клапан; 2 – выпускной клапан; 3 – уплотнение; 4 – плунжер; 5 – цилиндрический корпус (гильза).

ПЛУ́НЖЕРНЫЙ НАСО́С, объ­ём­ный на­сос вы­со­ко­го дав­ле­ния, в ко­то­ром в ка­че­ст­ве ра­бо­че­го ор­га­на ис­поль­зу­ет­ся плун­жер. В П. н. уп­лот­ни­тель рас­по­ла­га­ет­ся на ци­лин­д­рич. кор­пу­се и дви­жет­ся по его по­верх­но­сти при со­вер­ше­нии плун­же­ром воз­врат­но-по­сту­пат. дви­же­ния (рис.). В мас­ля­ных на­со­сах плун­жер обыч­но не­по­сред­ст­вен­но свя­зан (без ша­ту­на) с кри­во­ши­пом или экс­цен­три­ком.

В ди­зель­ных то­п­лив­ных на­со­сах вы­со­ко­го дав­ле­ния по­лу­чи­ли рас­про­стра­не­ние т. н. плун­жер­ные па́ры (гиль­за и плун­жер) – зо­лот­ни­ко­вое уст­рой­ст­во, ре­гу­ли­рую­щее ко­ли­че­ст­во впры­ски­вае­мо­го то­п­ли­ва и рас­пре­де­ляю­щее его по ци­лин­д­рам ди­зе­ля в со­от­вет­ст­вии с по­ряд­ком их ра­бо­ты. Точ­ность об­ра­бот­ки де­та­лей совр. плун­жер­ных и ро­тор­но-плун­жер­ных гид­ро­ма­шин ха­рак­те­ри­зу­ет­ся зна­че­ния­ми за­зо­ра ме­ж­ду внутр. и внеш­ней ци­лин­д­рич. по­верх­но­стя­ми и в плун­жер­ных па­рах дос­ти­га­ет 1–3 мкм. Плун­жер­ные па­ры спо­соб­ны вы­дер­жи­вать очень вы­со­кие дав­ле­ния; напр., в мо­мент впры­ска то­п­ли­ва в ди­зель­ных дви­га­те­лях дав­ле­ние в плун­жер­ной па­ре дос­ти­га­ет 200 МПа. П. н. мо­гут при­ме­нять­ся так­же для пе­ре­ка­чи­ва­ния за­гряз­нён­ных и вяз­ких жид­ко­стей.

Leave Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *