Зачем нужен предохранитель?
Плавкие предохранители имеются в любом автомобиле и во многих моделях электротехники, ведь если возникнет короткое замыкание или перегрузка в электрической сети, то оборудование вполне может выйти из строя.
Главная их функция сводится к размыканию электрической цепи, в тех случаях, если сила тока в ней превышает все допустимые значения.
Значит, предохранители способны предоставить эффективную защиту, как для электрооборудования, так и для проводки.
В случае их использования, риск возгорания и короткого замыкания сводится к нулю.
А главное достоинство предохранителей заключается в том, что стоят они копейки, а оберегают дорогостоящее оборудование.
Если предохранитель выходит из строя, то его замена никак не связана с серьёзными финансовыми вложениями и трудностями установки.
Правда, менять сгоревший предохранитель нужно на его номинальный аналог. Ибо определяющей его характеристикой считается сила тока.
При срабатывании предохранителя, он приходит в негодность, то есть, получается, что он весь электрический удар, возникший в сети, принимает на себя.
Существуют более мощные предохранители, действие которых распространяется не на отдельный электроприбор или малую электросеть.
А на одно или несколько помещений, или даже квартиру.
Сила тока и влияние ее на работу предохранителя
В случаях, когда сила тока имеет действующее значение, превышающее допустимое, то предохранитель срабатывает стопроцентно.
А в цепь каждого отдельно взятого оборудования устанавливается персональный предохранитель, имеющий соответствующий номинал.
Когда в электрическую цепь устанавливается вставка плавкая, рассчитанная на меньшую силу тока, то она способна сработать и при пониженном значении силы тока.
Конечно, такой предохранитель может обеспечить защиту другим устройствам, вот только менять его нужно будет почаще.
А когда устанавливается вставка плавкая, рассчитанная на более высокую силу тока, никто не даст гарантии, что проходящий по цепи ток, может быть выше, чем допускается для устройств.
Значит, эти устройства просто перегорят, а предохранитель не выполнит свою задачу.
Специфика замены предохранителя
Чтобы произвести замену вставки плавкой, нужно сначала выяснить причину её перегорания.
Обычно, столь неприятное явление наблюдается при нарушении целостности проводов или же в результате сбоя работы оборудования.
При неисправностях генератора и электрических сетей перегорание предохранителей также возможно.
Определить, какой именно предохранитель перегорел, очень просто даже без специальных приборов: если есть подозрение, что сгорел какой-то конкретный предохранитель, нужно его просто извлечь из гнезда, а на его место поставить, к примеру, отвёртку.
Как делать не нужно.
Включённое заранее оборудование, нужно отключать в произвольной последовательности.
Если в процессе отключения между гнёздами будет появляться искра, то это укажет, какое именно устройство пришло в негодность.
Но не забудьте, что на отвертке должна быть изоляционная ручка, а на руках у вас должны быть диэлектрические перчатки.
Высоковольтные предохранители, назначение, устройство и принципы гашения дуги.
⇐ ПредыдущаяСтр 3 из 9Следующая ⇒Высоковольтный предохранитель – это защитный однополюсный аппарат, обеспечивающий автоматическое однократное отключение высоковольтной цепи при коротком замыкании. Автоматическое отключение цепи происходит за счет расплавления специально предусмотренной в предохранителе плавкой вставки под действием протекающего тока, превышающего определенное значение. Возникающая при этом электрическая дуга гасится специальным дугогасительным устройством. Перед следующим включением цепи необходимо заменить перегоревшую плавкую вставку в предохранителе на исправную. Эта операция производится вручную. Высоковольтные предохранители характеризуются: номинальным напряжением – Uном; номинальным током — Iном. пред.; номинальным током плавкой вставки – Iном. вст.; номинальным током отключения – Iном. откл.. Изготавливаются они на напряжение до 110 кВ, номинальные токи до 400 А и токи отключения до 40 кА. Плавкие вставки к предохранителям выпускаются на токи от 2 А до 400 А с шагом при- мерно равным 1,6. В нормальном режиме работы цепи, когда по предохранителю протекает ток, не превышающий значения номинального тока плав- кой вставки (Iном. вст.), тепло, выделяемое в ней, передается в окружающую среду и температура всех частей предохранителя не превышает допустимую (100-105ºC). При увеличении тока в цепи выше Iном. вст. температура вставки возрастает. При некотором токе, называемом минимальным током плавления (Iпл.), вставка расплавляется. Возникающая электрическая дуга гасится в дугогасительной среде, и цепь оказывается отключенной. Чем больше ток превышает Iпл., тем быстрее расплавляется плавкая вставка.
В зависимости от способа гашения дуги и конструктивных особенностей предохранители могут быть с наполнителем и автогазовым гашением.
Предохранители с наполнителем.
В установках 3-110 кВ для защиты силовых и измерительных трансформаторов, асинхронных короткозамкнутых двигателей, косинусных конденсаторных батарей широко применяются 63 предохранители с мелкозернистым наполнителем (кварцевым песком). Предохранители серии ПК имеют металлическое основание с изоляторами, контактную систему с зажимами для присоединения токоведущих частей цепи, патрон с плавкой вставкой. Патрон предохранителя ПК представляет собой фарфоровую (стеклянную) трубку, армированную по концам латунными колпачками. Внутри трубки размещается плавкая вставка из меди или серебра. Для обеспечения нормальных условий гашения дуги плавкая вставка должна иметь значительную длину и малое сечение. Это достигается применением нескольких параллельных вставок, намотанных на ребристый керамический сердечник или выполненных спирально. Чтобы уменьшить температуру плавления вставок, на них в нескольких местах напаяны оловянные шарики. Патрон со вставкой засыпается кварцевым песком, закрывается торцевыми крышками и запаивается герметически. На нижней крышке патрона имеется указатель срабатывания. Он состоит из втулки с пружиной, натянутой тонкой стальной проволокой-вставкой. При перегорании медных плавких вставок перегорает и стальная, пружина освобождается и выскакивает из втулки наружу, сигнализируя, что предохранитель сработал. Возникающая при перегорании вставки дуга горит в узком извилистом канале и, соприкасаясь с сыпучим песком, хорошо охлаждается и гаснет за время 0,005-0,007 с. Возникающие при этом перенапряжения могут быть значительными. Чтобы ограничить их величиной 3-4 Uф, плавкие вставки выполняют из проволок, имеющих по длине 2-3 разных сечения. В отдельных конструкциях кварцевых предохранителей для этого могут устанавливаться вспомогательные вставки с искровыми промежутками.
Предохранители с автогазовым гашением.
Предохранители с автогазовым гашением дуги предназначены для наружной установки в РУ10, 35 и 110 кВ. Обычно они применяются для защиты трансформаторов комплектных трансформаторных подстанций. Предохранители с автогазовым гашением дуги марки ПВТ состоят из основания, двух изоляторов, верхней контактной головки, патрона, наружного коммутирующего механизма с контактным подпружиненным ножом. Верхняя контактная головка смонтирована на верхнем опорном изоляторе и представляет собой стальную трубу с устройством для удержания патрона и линейным выводом. Патрон предохранителя состоит из соединенных между собой винипластовой трубки и оголовника. Внутри патрона находится токопровод, состоящий из двух электродов, со- единенных плавкой вставкой; отключающая пружина с гибкой связью. Внутренний токопровод в рабочем состоянии закрепляется в оголовнике при помощи пробки, а с другого конца фиксируется штифтом. Плавкая вставка включает в себя два контакта, натяжной элемент из нихромовой проволоки, плавкий элемент, выполненный из медной спирали. При протекании тока КЗ или тока перегрузки плавкая вставка разрушается, между контактами возникает дуга. Возникающая дуга растягивается, поскольку отключающая пружина перемещает электрод, а пружина контактного механизма – электрод в противоположные стороны. Под действием высокой температуры дуги ма- териал дугогасительного канала разлагается с образованием большого количества газов. Внутри дугогасительного канала возникает давление (до 10-20 МПа), и создается поперечно-продольное дутье через канал патрубка и нижнее отверстие патрона. Дуга быстро гасится. Под действием контактной пружины контактный нож поворачивается, вытягивая электрод II из патрона и обеспечивая тем самым видимый разрыв электрической цепи. Гашение электрической дуги сопровождается выбросом раскаленных газов вниз под углом и резким звуком. В этой связи предохранители ПВТ еще называют стреляющими. Их устанавливают в ОРУ так, чтобы в зоне выхлопа не находились электрические аппараты.
7. При проектировании и эксплуатации электрических сетей промышленных предприятий приходится иметь дело с различными видами их нагрузок: по активной мощности P, по реактивной мощности Q и по току.
Кривая изменения активной, реактивной и токовой нагрузки во времени, называется графиком нагрузкипо активной, реактивной мощностям и току соответственно.
Графики нагрузок дают возможность определить некоторые показатели, необходимые при расчетах нагрузок, и более рационально выполнить систему электроснабжения.
При проектировании и эксплуатации систем электроснабжения промышленных предприятий основными являются три вида нагрузок:
а) активная мощность P;
б) реактивная мощность Q;
в) ток I.
В расчетах систем электроснабжения промышленных предприятий используются следующие значения электрических нагрузок:
а) средняя нагрузка за наиболее загруженную смену – для определения расчетной нагрузки и расхода электроэнергии;
б) расчетный получасовой максимум активной и реактивной мощности – для выбора элементов систем электроснабжения по нагреву, отклонению напряжения и экономическим соображениям;
в) пиковый ток – для определения колебаний напряжения, выбора устройств защиты и их уставок.
Построение годового графика.На основании суточного графика строится годовой график по продолжительности. Тmax и τmax определяются по формулам: Тmax= (ч) , τmax=(0,124+ )2*8760 (ч). Суточный график активной нагрузки перестраивается в годовой график нагрузки по продолжительности:
Площадь годового графика нагрузки по продолжительности – это количество потребленной за год промышленным предприятием электрической энергии(Wгод). Число часов использования максимальной нагрузки (Tmax) – это такое время, в течение которого через электрическую сеть, работающую с максимальной нагрузкой, перердавалось бы такое же количество электроэнергии, которое передается через нее в течение года по действительному графику нагрузки. τmax – время максимальных потерь, т.е. время, в течение которого электрическая сеть, работая с неизменной максимальной нагрузкой, имеет потери электроэнергии, равные действительным годовым потерям.
Основные коэффициенты, применяемые при расчете электрических нагрузок
Коэффициент использования – основной показатель для расчета нагрузки – это отношение средней активной мощности отдельного приемника (или группы их) к её номинальному значению.
(1) |
Коэффициентом включения приемникаkВ–называется отношение продолжительности включения приемника в цикле tВ ко всей продолжительности цикла tц. Время включения приемника за цикл складывается из времени работы tри времени холостого хода tх:
(3) |
Коэффициентом включения группы приемников, или групповым коэффициентом включения KВ, называется средневзвешенное (по номинальной активной мощности) значение коэффициентов включения всех приемников, входящих в группу, определяемое по формуле:
(4) |
Коэффициентом загрузкиkз,априемникапо активной мощности называется отношение фактически потребляемой им средней активной мощности PС,В (за время включения tВ в течение времени цикла tц) к его номинальной мощности:
(5) |
Групповым коэффициентом загрузкипо активной мощности называется отношение группового коэффициента использования к групповому коэффициенту включения:
(6) |
Коэффициентом максимумаактивной мощности называется отношение расчетной активной мощности к средней нагрузке за исследуемый период времени. Исследуемый период времени принимается равным продолжительности наиболее загруженной смены.
(8) |
Коэффициентом спроса по активной мощности называется отношение расчетной (в условиях проектирования) или потребляемой Pn (в условиях эксплуатации) активной мощности к номинальной (установленной) активной мощности группы приемников:
8. Дуговые печи косвенного действия, применяемые преимущественно для плавки меди и ее сплавов, являются весьма простыми в обслуживании.
Дуговые печи косвенного действия применяют почти исключительно для переплавки цветных металлов ( иногда чугуна), поэтому температуры в них значительно меньше. Кроме того, в них производят лишь расплавление и перегрев металла без шлака. Поэтому их футеровку можно выполнять из шамота и лишь при выплавке чугуна футеровка должна быть из динаса. Дуга в этих печах горит только между электродами, поэтому ее режим спокойнее. С другой стороны, футеровка дуговой печи косвенного действия находится по, прямым воздействием излучения дуг, что требует дополнительных мер для ее равномерного нагрева, особенно в конце плавки. Для этого в современных печах применяют качание корпуса печи, благодаря чему нагретые части футеровки периодически омываются ( и тем самым охлаждаются) расплавленным металлом, более холодным, чем футеровка.
Конструктивно дуговая печь косвенного действия представляет собой цилиндрический или бочкообразный футерованный кожух, уложенный горизонтально двумя кольцевыми ободами на четыре роликовые опоры. Через отверстия в торцовых стенках по продольной оси в печь входят два угольных или графитизиро-ванных электрода, между которыми горит электрическая дуга. В боковой стенке печи имеется окно, через которое производятся загрузка шихты и слив расплавленного металла.
В печах косвенного нагрева очаг высокой температуры удален от поверхности металла на некоторое расстояние и на поверхность металла первоначально попадает лишь часть тепла, излучаемого дугой. Значительная его часть достигает поверхности металла после отражения от стен и свода, поэтому футеровка печи испытывает большие тепловые нагрузки. Низкая стойкость футеровки ограничивает возможность проведения в таких дуговых печах процессов, требующих нагрева металла свыше 1300—1400° С, и не позволяет применять их для плавления тугоплавких металлов. В черной металлургии такие дуговые печи иногда используют в небольших литейных цехах для расплавления чугуна.
Плавкий предохранитель
Плавкий предохранитель – это элемент электрической цепи, основное назначение которого – защита её от повреждения.
Принцип действия
Предохранитель устроен таким образом, что сгорает раньше, чем повреждаются другие элементы. Ведь проще вставить новый предохранитель, чем заменить провода, микросхемы и другие элементы которые могут сгореть при скачке тока в цепи.
Плавким предохранитель называется потому, что в его основе лежит плавкая вставка. Эта плавкая вставка состоит из сплава, который имеет низкую температуру плавления и при возникновении тока опасного для цепи, количества теплоты которое выделяется при протекании такого тока через эту вставку достаточно, чтобы её расплавить. Когда вставка расплавляется — “перегорает”, то цепь оказывается разомкнутой.
Причинами перегорания предохранителя могут быть короткое замыкание, перегрузка и резкие скачки тока.
Мало того, что предохранитель предохраняет цепь от повреждений, так он еще и служит защитой от пожаров и возгораний, так как плавкая вставка перегорает в корпусе предохранителя, в отличие от провода, который может соприкасаться в момент сгорания с горючими материалами.
Случается так, что люди изготавливают так называемый жучок. Обычно это обыкновенный кусочек проволоки, который вставляется взамен предохранителя. Делается это потому, что под рукой нету, предохранителя нужного номинала или с целью обхода защиты. Зачастую, такие жучки приводят к пожарам, так как неизвестно при каком токе такой жучек перегорит и перегорит ли вообще.
Устройство предохранителя
Как было сказано выше, простейший плавкий предохранитель состоит из основной своей части – плавкой вставки (проволока) и корпуса, который предназначен для соединения с электрической цепью и служащий крепежом для вставки.
Преимущества и недостатки
К плюсам плавких предохранителей можно отнести относительно невысокую стоимость.
Основным недостатком плавкого предохранителя является относительно долгое срабатывание по сравнению с автоматическими предохранителями. За время перегорания предохранителя в высоковольтных сетях может выйти из строя оборудование. Кроме того, плавкий предохранитель является одноразовым элементом, то есть, однажды сгорев, дальнейшему использованию он не подлежит, в то время как автоматические предохранители могут довольно долго служить, так как принцип их работы основан на размыкании цепи без повреждения конструкции самого предохранителя.
Основные параметры
Параметры, которые характеризуют плавкий предохранитель – это номинальный ток, номинальное напряжение, мощность, скорость срабатывания.
Рассчитать номинальный ток срабатывания предохранителя можно по формуле
Где U – напряжение в сети, а Pmax – максимальная мощность нагрузки с запасом около 20 %.
Скорость срабатывания плавких предохранителей различна. Например, в схемах, где присутствуют полупроводниковые приборы, лучше если предохранитель сгорит быстрее, чтобы не повредить приборы, но если это мощный предохранитель который используется в цепи электродвигателя, то намного полезнее будет, если он не будет каждый раз разрывать цепь в момент броска пусковых токов.
Замена предохранителя
Заменить предохранитель, например, в автомобиле не составит труда обычному человеку. Но для того чтобы заменить предохранитель в силовой цепи, нужно обязательно снять напряжение, иначе при вставке предохранителя в держатель, может появиться электрическая дуга, которая может вызвать электрический ожог и другие травмы человека. В особых случаях в высоковольтных установках замену предохранителя следует проводить при закороченном на землю питании сети и только квалифицированным персоналом.
Лекция № 17 предохранители низкого напряжения
План:
Назначение, принцип действия и устройство предохранителя; физические явления в электрическом аппарате.
Параметры предохранителя.
Конструкция предохранителей.
Предохранители с гашением дуги в закрытом объёме.
Предохранители с мелкозернистым наполнителем (серии ПН-2, ПРС).
Предохранители с жидкометаллическим контактом.
Быстродействующие предохранители для защиты полупроводниковых приборов.
Предохранитель — выключатель.
Выбор, применение и эксплуатация предохранителя для защиты электродвигателя и полупроводниковых устройств.
17.1 Назначение, принцип действия и устройство предохранителя
Назначение предохранителя. Предохранители появились одновременно с электрическими сетями. Простота устройства и обслуживания, малые размеры, высокая отключающая способность, небольшая стоимость обеспечили их очень широкое применение. Предохранители НН изготовляются на токи от мА до тысяч А и на напряжение до 660 В, а предохранители ВН — до 35 кВ и выше.
Предохранители — это ЭА, предназначенные для защиты электрических цепей от токовых перегрузок и токов КЗ.
Отключение защищаемой цепи происходит посредством разрушения специально предусмотренных для этого токоведущих частей под действием тока, превышающего определенное значение.
В большей части конструкций отключение цепи осуществляется путем расплавления плавкой вставки, которая нагревается непосредственно током цепи. После отключения цепи необходимо заменить перегоревшую вставку на исправную. Эта операция осуществляется вручную или автоматически. В последнем случае заменяется весь предохранитель.
Широкое применение предохранителей в самых различных областях народного хозяйства и в быту привело к многообразию их конструкций. Однако, несмотря на это, все они имеют следующие основные элементы: корпус или несущую деталь, плавкую вставку, контактное присоединительное устройство, дугогасительное устройство или дугогасительную среду.
Принцип работы предохранителя, физические явления в электрическом аппарате. Отключение защищаемой цепи происходит посредством разрушения специально предусмотренных для этого токоведущих частей под действием тока, превышающего определённое значение.
В большей части конструкций отключение цепи осуществляется путём расплавления плавкой вставки, которая нагревается непосредственно током защищаемой цепи. После отключения цепи необходимо заменить перегоревшую вставку на исправную. Эта операция осуществляется вручную либо автоматически. В последнем случае заменяется весь предохранитель.
При токах > I плавления предохранитель должен срабатывать в соответствии с времятоковой характеристикой. Сростом тока степень ускорения перегорания плавкой вставки должна возрастать намного быстрее тока. Для получения такой характеристики придают вставке определенную форму или используют металлургический эффект.
Вставку выполняют в виде пластинки с вырезами (рис. 66,а), уменьшающими ее сечение на отдельных участках. На этих суженых участках выделяется больше теплоты, чем на широких. При Iном избыточная теплота вследствие теплопроводности материала вставки успевает распределятся к более широким частям и вся вставка имеет практически одну температуру. При перегрузках (I ) нагрев суженных участков идет быстрее, т.к. только часть теплоты успевает отводиться к широким участкам. Плавкая вставка плавится в одном самом горячем месте (рис 66,б). При КЗ (I » ) нагрев суженных участков идет настолько интенсивно, что практически отводом теплоты от них можно пренебречь. Плавкая вставка перегорает одновременно во всех или нескольких суженых местах (рис 66,в).
Рис. 66 – Распределение температур (а) и места перегорания фигурных плавких вставок при перегрузках (б) и при КЗ (в)
Во многих конструкциях вставке 1 придается такая форма (рис 67,а) , при которой электродинамические силы F, возникающие при токах КЗ , разрывают вставку еще до того, как она успевает расплавиться. На рис. 67,а место разрыва обозначено кружком. Этот участок выполняется меньшего сечения.
Рис. 67. Примеры форм плавких вставок с ускоренным их разрывом
При токах перегрузки электродинамические силы малы и плавкая вставка плавится.в суженом месте. В конструкции на рис. 67,б ускорение отключения цепи при перегрузках и КЗ достигается за счет пружины 2, разрывающей вставку 1 при размягчении металла на суженных участках, до того, как происходит плавление этих участков.
Металлургический эффект заключается в том, что многие легкоплавкие металлы (олово, свинец и др.) способны в расплавленном состоянии растворять другие тугоплавкие металлы (медь, серебро и др.). Это явление используется в предохранителях с вставками из ряда параллельных проволок.
Для ускорения плавления вставок при перегрузках на проволоки напаиваются оловянные шарики. При токах перегрузки шарик расплавляется и растворяет часть металла, на котором он напаян. Вставка перегорает в месте напайки шарика.
Все о предохранителях — блоки реле и места их расположений
Мы рады приветствовать Вас на интернет портале vsepredohraniteli.ru, представляющим из себя систематизированный каталог со схемами предохранителей, а также блоками реле, разгруппированный по маркам и моделям автомобилей.
Наш материал будет полезен Всем автомобилистам. Мы расскажем, где находятся предохранители, за что они отвечают, а так же чем и как правильно его заменить. Благодаря наличию расшифровки блоков реле, Вам не придется угадывать либо самому вручную перебирать их, что бы узнать какой отвечает за прикуриватель, а какой за свет фар либо подсветку салона. Теперь все схемы с видео инструкциями есть у нас на сайте.
Не всегда, что бы избавится от проблемы с автомобилем, надо обращаться на сервис. С помощью нашего материала, вы узнаете точное расположение требуемого предохранителя и самостоятельно его замените, а значит, сэкономите не малую сумму денег.
Воспользуйтесь нашим опытом в данной сфере, ознакомишь с рекомендациями в разделе «Советы». А если захотите поделиться своими знаниями, будем рады Вашим комментариям.