Вода плюс железо: Ваш браузер не поддерживается – Химические свойства железа — урок. Химия, 8–9 класс.

Содержание

Железо — общая характеристика элемента, химические свойства железа и его соединений

Желе́зо — элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 26. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия). Металл средней активности, восстановитель.

Основные степени окисления — +2, +3

Простое вещество железо — ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.

Химические свойства простого вещества — железа:

Ржавление и горение в кислороде

1)     На воздухе железо легко окисляется в присутствии влаги (ржавление):

4Fe + 3O2 + 6H2 O → 4Fe(OH)3

Накалённая железная проволока горит в кислороде, образуя окалину — оксид железа (II, III):

3Fe + 2O2

→ Fe3O4

3Fe+2O2→(Fe IIFe2III)O4   (160 °С)

2)     При высокой температуре (700–900°C) железо реагирует с парами воды:

3Fe + 4H2O  –→  Fe3O4 + 4H2­

 

3)     Железо реагирует с неметаллами при нагревании:

2Fe+3Cl2→2FeCl3   (200 °С)

2Fe + 3Br2  –→  2FeBr3

Fe + S  –→  FeS (600 °С)

Fe+2S → Fe+2(S2-1)   (700°С)

4)       В ряду напряжений стоит левее водорода, реагирует с разбавленными кислотами НСl и Н2SO4, при этом образуются соли железа(II) и выделяется водород:

Fe + 2HCl → FeCl2 + H2­ (реакции проводятся без доступа воздуха, иначе Fe+2 постепенно переводится кислородом в Fe+3 )

Fe + H2SO4(разб.) → FeSO4 + H2­

В концентрированных кислотах–окислителях железо растворяется только при нагревании, оно сразу переходит в катион Fе3+:

2Fe + 6H2SO4(конц.)  –→  Fe2(SO4)3 + 3SO2­ + 6H2O

Fe + 6HNO3(конц.)  –→  Fe(NO3)3 + 3NO2­ + 3H2O

(на холоде концентрированные азотная и серная кислоты пассивируют железо).

Железный гвоздь, погруженный в голубоватый раствор медного купороса, постепенно покрывается налетом красной металлической меди

5)     Железо вытесняет металлы, стоящие правее его в ряду напряжений из растворов их солей.

Fe + CuSO4 → FeSO4 + Cu

6)

Амфотерность железа проявляется только в концентрированных щелочах при кипячении:

Fе + 2NaОН (50 %) + 2Н2O= Nа2[Fе(ОН)4]↓+ Н2

и образуется осадок тетрагидроксоферрата(II) натрия.

Техническое железо — сплавы железа с углеродом: чугун содержит 2,06-6,67 % С,

сталь 0,02-2,06 % С, часто присутствуют другие естественные примеси (S, Р, Si) и вводимые искусственно специальные добавки (Мn, Ni, Сr), что придает сплавам железа технически полезные свойства — твердость, термическую и коррозионную стойкость, ковкость и др.

                 Доменный процесс производства чугуна

Доменный процесс производства чугуна составляют следующие стадии:

а) подготовка (обжиг) сульфидных и карбонатных руд — перевод в оксидную руду:

FeS2→Fe2O3   (O2,800°С, -SO2)       FeCO3→Fe2O(O2,500-600°С, -CO2)

б)  сжигание кокса при горячем дутье:

С(кокс) + O2 (воздух) →СO2   (600—700°С)   СO2 + С(кокс) ⇌ 2СО   (700—1000    °С)

в) восстановление оксидной руды угарным газом СО последовательно:

Fe2O3→(CO) (FeIIFe2III)O4→(CO) FeO→(CO) Fe

г) науглероживание железа (до 6,67 % С) и расплавление чугуна:

)→(C(кокс) 900—1200°С)(ж)  (чугун, t пл 1145°С)

В чугуне всегда в виде зерен присутствуют цементит Fe2С и графит.

                                Производство стали

Передел чугуна в сталь проводится в специальных печах (конвертерных, мартеновских, электрических), отличающихся способом обогрева; температура процесса 1700-2000 °С. Продувание воздуха, обогащенного кислородом, приводит к выгоранию из чугуна избыточного углерода, а также серы, фосфора и кремния в виде оксидов. При этом оксиды либо улавливаются в виде отходящих газов (СО

2, SО2), либо связываются в легко отделяемый шлак — смесь Са3(РO4)2 и СаSiO3. Для получения специальных сталей в печь вводят легирующие добавки других металлов.

    Получение чистого железа в промышленности — электролиз раствора солей железа, например:

FеСl2→ Fе↓ + Сl2↑ (90°С)  (электролиз)

(существуют и другие специальные методы, в том числе восстановление оксидов железа водородом).

Чистое железо применяется в производстве специальных сплавов, при изготовлении сердечников электромагнитов и трансформаторов, чугун — в производстве литья и стали, сталь — как конструкционный и инструментальный материалы, в том числе износо-, жаро- и коррозионно-стойкие.

       Оксид железа(II) FеО. Амфотерный оксид с большим преобладанием основных свойств. Черный, имеет ионное строение Fе2+ O2-. При нагревании вначале разлагается, затем образуется вновь. Не образуется при сгорании железа на воздухе. Не реагирует с водой. Разлагается кислотами, сплавляется со щелочами. Медленно окисляется во влажном воздухе. Восстанавливается водородом, коксом. Участвует в доменном процессе выплавки чугуна. Применяется как компонент керамики и минеральных красок. Уравнения важнейших реакций:

4FеО ⇌(FeIIFe2 III) + Fе (560—700 °С , 900—1000°С)

FеО + 2НС1 (разб.) = FеС12 + Н2O

FеО + 4НNO3 (конц.) = Fе(NO3)3 +NO2↑  + 2Н2O

FеО + 4NаОН =2Н2O + Nа4FеO3(красн.)  триоксоферрат(II) (400—500 °С)

FеО + Н22O + Fе (особо чистое)    (350°С)

FеО + С(кокс) = Fе + СО  (выше 1000 °С)

FеО + СО = Fе + СO2    (900°С)

4FеО + 2Н2O(влага) + O2(воздух) →4FеО(ОН) (t)

6FеО + O2 = 2(FeIIFe2III )O4      (300—500°С)

Получение в лаборатории: термическое разложение соединений железа (II) без доступа воздуха:

Fе(ОН)2 = FеО + Н2O (150-200 °С)

FеСОз = FеО + СO2 (490-550 °С)

       Оксид дижелеза (III) – железа(II) (Fe

IIFe2III )O4 . Двойной оксид. Черный, имеет ионное строение Fe2+(Fе3+)2(O2-)4. Термически устойчив до высоких температур. Не реагирует с водой. Разлагается кислотами. Восстанавливается водородом, раскаленным железом. Участвует в доменном процессе производства чугуна. Применяется как компонент минеральных красок (железный сурик), керамики, цветного цемента. Продукт специального окисления поверхности стальных изделий (чернение, воронение). По составу отвечает коричневой ржавчине и темной окалине на железе. Применение брутто-формулы Fe3O4 не рекомендуется. Уравнения важнейших реакций:

2(FeIIFe2 III )O4 = 6FеО + O2   (выше 1538 °С)

(FeIIFe2III )O4 + 8НС1 (разб.) = FеС12 + 2FеС13 + 4Н2O

(FeIIFe2III )O4 +10НNO3 (конц.) =3Fе(NO3)3 + NO2↑+ 5Н2O

(FeIIFe2III )O4 + O2 (воздух) = 6Fе2O3    (450-600°С)

(FeIIFe2III )O4 + 4Н2 = 4Н2O + 3Fе (особо чистое, 1000 °С)

(FeIIFe2III

)O4 + СО =ЗFеО + СO2  (500—800°C)

(FeIIFe2 III )O4 + Fе  ⇌4FеО (900—1000 °С , 560—700 °С)

    Получение: сгорание железа (см.) на воздухе.

В природе — оксидная руда железа магнетит.

       Оксид железа(III) Fе2О3. Амфотерный оксид с преобладанием основных свойств. Красно-коричневый, имеет ионное строение (Fе 3+)2(O2-)3. Термически устойчив до высоких температур. Не образуется при сгорании железа на воздухе. Не реагирует с водой, из раствора выпадает бурый аморфный гидрат Fе2O32

О. Медленно реагирует с кислотами и щелочами. Восстанавливается монооксидом углерода, расплавленным железом. Сплавляется с оксидами других металлов и образует двойные оксиды — шпинели (технические продукты называются ферритами). Применяется как сырье при выплавке чугуна в доменном процессе, катализатор в производстве аммиака, компонент керамики, цветных цементов и минеральных красок, при термитной сварке стальных конструкций, как носитель звука и изображения на магнитных лентах, как полирующее средство для стали и стекла.

Уравнения важнейших реакций:

6Fе2O3 = 4(FeIIFe2III )O4 +O2            (1200—1300 °С)

2O3 + 6НС1 (разб.) →2FеС13 + ЗН2O (t)    (600°С,р)

2O3 + 2NaОН (конц.) →Н2O+ 2NаFеO2 (красн.)  диоксоферрат(III)

2О3 + МО=(МII2III)O4     (М=Сu, Мn, Fе, Ni, Zn)

2O3 + ЗН2 =ЗН2O+ 2Fе (особо чистое, 1050—1100 °С)

2O3 + Fе = ЗFеО    (900 °С)

3Fе2O3 + СО = 2(FeII2III)O4 + СO2  (400—600 °С)

     Получение в лаборатории — термическое разложение солей железа (III) на воздухе:

2(SO4)3 = Fе2O3 + 3SO3    (500-700 °С)

4{Fе(NO3)3 9 Н2O} = 2FеaO3 + 12NO2+ 3O2 + 36Н2O   (600-700 °С)

В природе — оксидные руды железа гематит2O3 и лимонит2O32O

Гидроксид железа (II) Fе(ОН)2. Амфотерный гидроксид с преобладанием основных свойств. Белый (иногда с зеленоватым оттенком), связи Fе — ОН преимущественно ковалентные. Термически неустойчив. Легко окисляется на воздухе, особенно во влажном состоянии (темнеет). Нерастворим в воде. Реагирует с разбавленными кислотами, концентрированными щелочами. Типичный восстановитель. Промежуточный продукт при ржавлении железа. Применяется в изготовлении активной массы железоникелевых аккумуляторов.

Уравнения важнейших реакций:

Fе(OН)2 = FеО + Н2O  (150-200 °С, в атм.N2)

Fе(ОН)2 + 2НС1 (разб.) =FеС12 + 2Н2O

Fе(ОН)2 + 2NаОН (> 50%) = Nа2[Fе(ОН)4] ↓(сине-зеленый) (кипячение)

4Fе(ОН)2 (суспензия) + O2 (воздух) →4FеО(ОН)↓ + 2Н2O  (t)

2Fе(ОН)2 (суспензия)2O2 (разб.) = 2FеО(ОН)↓ + 2Н2O

Fе(ОН)2 + КNO3(конц.) = FеО(ОН)↓ + NO↑+ КОН   (60 °С)

   Получение: осаждение из раствора щелочами или гидратом аммиака в инертной атмосфере:

2+ + 2OH (разб.) = Fе(ОН)2

2+ + 2(NH3Н2O) = Fе(ОН)2+ 2NH4

     Метагидроксид железа FеО(ОН). Амфотерный гидроксид с преобладанием основных свойств. Светло-коричневый, связи Fе — О и Fе — ОН преимущественно ковалентные. При нагревании разлагается без плавления. Нерастворим в воде. Осаждается из раствора в виде бурого аморфного полигидрата Fе2O3  nН2O, который при выдерживании под разбавленным щелочным раствором или при высушивании переходит в FеО(ОН). Реагирует с кислотами, твердыми щелочами. Слабый окислитель и восстановитель. Спекается с Fе(ОН)2. Промежуточный продукт при ржавлении железа. Применяется как основа желтых минеральных красок и эмалей, поглотитель отходящих газов, катализатор в органическом синтезе.

Соединение состава Fе(ОН)3 не известно (не получено).

Уравнения важнейших реакций:

2O3.2O→(200-250 °С, —H2O) FеО(ОН)→( 560-700° С на воздухе , -h3O) →Fе2О3

FеО(ОН) + ЗНС1 (разб.) =FеС13 + 2Н2O

FeO(OH)→Fe2O3.nH2O -коллоид (NаОН (конц.))

FеО(ОН)→Nа3[Fе(ОН)6] белый , Nа5[Fе(OН)8желтоватый (75 °С, NаОН( т))

2FеО(ОН) + Fе(ОН)2=( FeIIFe2III )O4 + 2Н2O         (600—1000 °С)

2FеО(ОН) + ЗН2 = 4Н2O+ 2Fе (особо чистое, 500—600 °С)

2FеО(ОН) + ЗВr2 + 10КОН = 2К2FеO4 + 6Н2O + 6КВr

       Получение: осаждение из раствора солей железа(Ш) гидрата Fе2О32O и его частичное обезвоживание (см. выше).

В природе — оксидная руда железа лимонит2O32О и минерал гётит FеО(ОН).

Феррат калия К2FеО4. Оксосоль. Красно-фиолетовый, разлагается при сильном нагревании. Хорошо растворим в концентрированном растворе КОН, реагирует с кипящей водой, неустойчив в кислотной среде. Сильный окислитель.

Качественная реакция — образование красного осадка феррата бария. Применяется в синтезе ферритов — промышленно важных двойных оксидов железа (III) и других металлов.

Уравнения важнейших реакций:

2FеO4= 4КFеO2 + 3O2 + 2К2O         (700 °С)

2FеO4 + 6Н2O (гор.) =4FeО(ОН)↓ + 8КОН + 3O2

FеО42- + 2OН+(разб.) =4Fе3+ + 3O2↑+10Н2O

FеО42- + 2(NH3. Н2O)     →2FеО(ОН)↓ + N2↑+ 2Н2O+ 4OН

FеО42- + Ва2+ = ВаFеO4 (красн.)↓         (в конц. КОН)

   Получение: образуется при окислении соединений железа, например метагидроксида FеО(ОН), бромной водой, а также при действии сильных окислителей (при спекании) на железо

Fе + 2КОН + 2КNO3 = К2FеO4 + 3КNO2+ H2O (420 °С)

и электролизе в растворе:

электролиз

Fе + 2КОН (конц.) + 2Н2O→ЗН2↑ + К2FеO4 ( электролиз)

(феррат калия образуется на аноде).

      Качественные реакции на ионы Fе2+ и Fе3+

Обнаружение ионов Fе2+ и Fе3+в водном растворе проводят с помощью реактивов К3[Fе(СN)6] и К4[Fе(СN)6] соответственно; в обоих случаях выпадает синий продукт одинакового состава и строения, КFеIII[FеII (СN)6]. В лаборатории этот осадок называют берлинская лазурь, или турнбуллева синь:

2+ + К+ + [Fе(СN)6]3- = КFеIII[FеII (СN) 6]↓

3+ + К+ + [Fе(СN)6]4- = КFеIII[FеII (СN) 6]↓

Химические названия исходных реактивов и продукта реакций:

К3III[Fе(СN) 6]- гексацианоферрат (III) калия

К4III[Fе (СN) 6]- гексацианоферрат (II) калия

КFеIII[FеII (СN) 6]- гексацианоферрат (II) железа  (Ш) калия

Кроме того, хорошим реактивом на ионы Fе3+ является тиоцианат-ион NСS, железо (III) соединяется с ним, и появляется ярко-красная («кровавая») окраска:

3+ + 6NСS= [Fе(NСS)6]3-

Этим реактивом (например, в виде соли КNСS) можно обнаружить даже следы железа (III) в водопроводной воде, если она проходит через железные трубы, покрытые изнутри ржавчиной.

 

Реакции, взаимодействие железа. Уравнения реакции железа с веществами

Реакции, взаимодействие железа. Уравнения реакции железа с веществами.

 

 

Железо реагирует, взаимодействует с неметаллами, оксидами, кислотами, основаниями, солями и пр. веществами.

 

Реакции, взаимодействие железа с неметаллами

Реакции, взаимодействие железа с оксидами

Реакции, взаимодействие железа с солями

Реакции, взаимодействие железа с кислотами

Реакции, взаимодействие железа с основаниями

Реакции, взаимодействие железа с водородсодержащими соединениями

 

Реакции, взаимодействие железа с неметаллами. Уравнения реакции: 

1. Реакция взаимодействия железа и серы:

Fe + S → FeS (t = 600-950 °C),

Fe + 2S → FeS2 (t < 689 °C).

Реакция взаимодействия железа и серы происходит с образованием в первом случае – сульфида железа (II), во втором – дисульфида железа (II).

2. Реакция взаимодействия железа и красного фосфора:

Fe + 3P → Fe3P (t = 600-700 °C).

Реакция взаимодействия железа и красного фосфора происходит с образованием фосфида железа. Также образуются Fe2P, FeP, FeP2.

3. Реакция взаимодействия железа и селена:

Fe + Se → FeSe (t = 600-950 °C).

Реакция взаимодействия железа и селена происходит с образованием селенида железа.

4. Реакция взаимодействия железа и кремния:

2Si + Fe → FeSi2 (to).

Реакция взаимодействия железа и кремния происходит с образованием силицида железа. Реакция протекает при сплавлении реакционной смеси.

5. Реакция взаимодействия железа, кремния и кислорода:

2Fe + Si + 2O2 → Fe2SiO4 (t = 1100-1300 °C),

2Fe + 2Si + 3O2 → 2FeSiO3 (t = 1100-1300 °C).

Реакция взаимодействия железа, кремния и кислорода происходит в первом случае – с  образованием ортосиликата железа, во втором – метасиликата железа.

6. Реакция взаимодействия железа и кислорода:

3Fe + 2O2 → Fe3O4 (t = 150-500 °C),

2Fe + O2 → 2FeO (to),

4Fe + 3O2 → 2Fe2O3 (t = 150-500 °C).

Реакция взаимодействия железа и кислорода происходит в первом случае – с образованием оксида железа (II, III), во втором – оксида железа (II), в третьем – оксида железа (III). Первая и третья реакции представляют собой сгорание железа на воздухе. Вторая реакция происходит при продувании воздуха через расплавленный чугун.

7. Реакция взаимодействия железа и углерода:

3Fe + C → Fe3C (t°).

Реакция взаимодействия железа и углерода происходит с образованием карбида железа.

8. Реакция взаимодействия железа и фтора:

2Fe + 3F2 → 2FeF3 (t > 300 °C).

Реакция взаимодействия железа и фтора происходит с образованием фторида железа.

9. Реакция взаимодействия железа и хлора:

2Fe + 3Cl2 → 2FeCl3 (t > 250 °C).

Реакция взаимодействия железа и хлора происходит с образованием хлорида железа.

10. Реакция взаимодействия железа и брома:

Fe + Br2 → FeBr2 (t = 600-700 °C).

Реакция взаимодействия железа и брома происходит с образованием бромида железа.

11. Реакция взаимодействия железа и йода:

Fe + I2  FeI2 (t = 500 °C).

Реакция взаимодействия железа и йода происходит с образованием йодида железа.

12. Реакция взаимодействия железа и бора:

Fe + B → FeB.

Реакция взаимодействия железа и бора происходит с образованием борида железа.

 

Реакции, взаимодействие железа с оксидами. Уравнения реакции:

1. Реакция взаимодействия железа и воды:

3Fe + 4H2O → Fe3O4 + 4H2 (t < 570 °C).

Реакция взаимодействия железа и воды происходит с образованием оксида железа (II, III). Данная реакция представляет собой исторически первый способ получения водорода.

2. Реакция взаимодействия железа, воды и кислорода:

2Fe + 2H2O + O2 → 2Fe(OH)2.

Реакция взаимодействия железа, воды и кислорода происходит с образованием гидроксида железа. Реакция протекает медленно и представляет собой коррозию железа.

3. Реакция взаимодействия железа, воды и пероксида калия:

Fe + 3K2O2 + 2H2O → K2FeO4 + 4KOH.

Реакция взаимодействия железа, воды и пероксида калия происходит с образованием феррата железа и гидроксида калия. Реакция протекает медленно в концентрированном растворе гидроксида калия.

4. Реакция взаимодействия железа и оксида железа (II, III):

Fe3O4 + Fe → 5FeO (t = 900-1000 °C).

Реакция взаимодействия железа и оксида железа (II, III) происходит с образованием оксида железа (II).

5. Реакция взаимодействия железа и оксида железа (III):

Fe2O3 + Fe → 3FeO (t = 900 °C).

Реакция взаимодействия железа и оксида железа (III) происходит с образованием оксида железа (II).

6. Реакция взаимодействия железа и оксида углерода (II):

Fe + 5CO → [Fe(CO)5] (t = 150-200 °C, р = 1·107-2·107 Па).

Реакция взаимодействия железа и оксида углерода (II) происходит с образованием пентакарбонилжелеза. В ходе реакции железо нагревается в струе СО.

7. Реакция взаимодействия железа и оксида серы:

2Fe + 3SO2 → FeSO3 + FeS2O3.

Реакция взаимодействия железа и оксида серы происходит с образованием сульфита железа и тиосульфата железа.  Реакция медленно протекает при комнатной температуре.

 

Реакции, взаимодействие железа с солями. Уравнения реакции:

1. Реакция взаимодействия железа и нитрата меди:

Cu(NO3)2 + Fe → Fe(NO3)2 + Cu.

Реакция взаимодействия нитрата меди и железа происходит с образованием нитрата железа и меди.

2. Реакция взаимодействия железа и нитрата серебра:

2AgNO3 + Fe → Fe(NO3)2 + 2Ag.

Реакция взаимодействия нитрата серебра и железа происходит с образованием нитрата железа и серебра.

3. Реакция взаимодействия железа и сульфата меди:

Fe + CuSO4 → FeSO4 + Cu.

Реакция взаимодействия сульфата меди и железа происходит с образованием сульфата железа и меди.

4. Реакция взаимодействия железа и хлорида меди:

CuCl2 + Fe → FeCl2 + Cu.

Реакция взаимодействия хлорида меди и железа происходит с образованием меди и хлорида железа.

5. Реакция взаимодействия железа и хлорида железа (III):

2FeCl3 + Fe → 3FeCl2 (tо).

Реакция взаимодействия хлорида железа (III) и железа происходит с образованием хлорида железа (II). Реакция протекает при кипении в тетрагидрофуране.

 

Реакции, взаимодействие железа с кислотами. Уравнения реакции:

1. Реакция взаимодействия железа и азотной кислоты:

Fe + 6HNO3 → Fe(NO3)3 + 3NO2 + 3H2O (to).

Реакция взаимодействия железа и азотной кислоты происходит с образованием нитрата железа, оксида азота и воды. В ходе реакции  используется концентрированная азотная кислота.

2. Реакция взаимодействия железа и ортофосфорной кислоты:

4Fe + 3H3PO4 → FeHPO4 + Fe2(PO4)2 + 4H2.

Реакция взаимодействия железа и ортофосфорной кислоты происходит с образованием гидроортофосфата железа, ортофосфата железа и водорода. В ходе реакции  используется разбавленный раствор ортофосфорной кислоты.

Аналогичные реакции протекают и с другими минеральными кислотами.

 

Реакции, взаимодействие железа с основаниями. Уравнения реакции:

1. Реакция взаимодействия железа, гидроксида натрия и воды:

Fe + 2NaOH + 2H2O → Na2[Fe(OH)4] + H2 (to).

Реакция взаимодействия железа, гидроксида натрия и воды происходит с образованием тетрагидроксоферрата натрия и водорода. Реакция протекает при кипении раствора в атмосфере азота.

2. Реакция электролиза железа, водного раствора гидроксида калия:

Fe + 2KOH + 2H2O → 3H2 + K2FeO4.

Реакция взаимодействия железа и водного раствора гидроксида калия происходит с образованием феррата калия и водорода.

 

Реакции, взаимодействие железа с водородсодержащими соединениями. Уравнения реакции:

1. Реакция взаимодействия железа и бромоводорода:

Fe + 2HBr → FeBr2 + H2 (t = 800-900 °C).

Реакция взаимодействия железа и бромоводорода происходит с образованием бромида железа и водорода.

2. Реакция взаимодействия железа и фтороводорода:

Fe + 2HF → FeF2 + H2.

Реакция взаимодействия железа и фтороводорода происходит с образованием фторида железа и водорода. В ходе реакции  используется разбавленный раствор фтороводорода.

 

Примечание: © Фото https://www.pexels.com, https://pixabay.com

 

карта сайта

 

Коэффициент востребованности 338

Железо и его соединения

В организме человека содержится около 5 г железа, большая часть его (70%) входит в состав гемоглобина крови.

В свободном состоянии железо — серебристо-белый металл с сероватым оттенком. Чистое железо пластично, обладает ферромагнитными свойствами. На практике обычно используются сплавы железа — чугуны и стали.

Fe — самый главный и самый распространенный элемент из девяти d-металлов побочной подгруппы VIII группы. Вместе с кобальтом и никелем образует «семейство железа».

При образовании соединений с другими элементами чаще использует 2 или 3 электрона (В = II, III ).

Железо, как и почти все d-элементы VIII группы, не проявляет высшую валентность, равную номеру группы. Его максимальная валентность достигает VI и проявляется крайне редко.

Наиболее характерны соединения, в которых атомы Fe находятся в степенях окисления +2 и +3.

Fe+2

Fe+3

Fe+6

Оксиды

FeOосновный

Fe2O3основный со слабыми признаками амфотерости

FeO3 — не выделен

Гидроксиды

Fe(OH)2 слабое основание

Fe(OH)3 ↔ HFeO2 + H2O

H2FeO4кислота, в свободном состоянии не выделена

Соли

FeCl2, FeSO4, Fe(NO3)2 и др.

Тип IFeCl3

Тип IIKFeO2

K2FeO4BaFeO4SrFeO4ферраты (IV)

1. Техническое железо (в сплаве с углеродом и другими примесями) получают карботермическим восстановлением его природных соединений по схеме:

Восстановление происходит постепенно, в 3 стадии:

1) 3Fe2O3 + СО = 2Fe3O4 + СO2

2) Fe3O4 + СО = 3FeO +СO2

3) FeO + СО = Fe + СO2

Образующийся в результате этого процесса чугун содержит более 2% углерода. В дальнейшем из чугуна получают стали — сплавы железа, содержащие менее 1,5 % углерода.

2. Очень чистое железо получают одним из способов:

а) разложение пентакарбонила Fe

Fe(CO)5 = Fe + 5СО

б) восстановление водородом чистого FeO

FeO + Н2 = Fe + Н2O

в) электролиз водных растворов солей Fe+2

FeC2O4 = Fe + 2СO2

оксалат железа (II)

Fe — металл средней активности, проявляет общие свойства, характерные для металлов.

Уникальной особенностью является способность к «ржавлению» во влажном воздухе:

4Fe + 6Н2O + 3O2 = 4Fe(OH)3

В отсутствие влаги с сухим воздухом железо начинает заметно реагировать лишь при Т > 150°С; при прокаливании образуется «железная окалина» Fe3O4:

3Fe + 2O2 = Fe3O4

В воде в отсутствие кислорода железо не растворяется. При очень высокой температуре Fe реагирует с водяным паром, вытесняя из молекул воды водород:

3 Fe + 4Н2O(г) = 4H2

Процесс ржавления по своему механизму является электрохимической коррозией. Продукт ржавления представлен в упрощенном виде. На самом деле образуется рыхлый слой смеси оксидов и гидроксидов переменного состава. В отличие от пленки Аl2О3, этот слой не предохраняет железо от дальнейшего разрушения.

2Fe + 3Cl2 = 2FeCl3

2Fe + 3F2 = 2FeF3

2Fe + 3Br2 = 2FeBr3

Fe + I2 = FeI2

Fe + S = FeS

Образуются соединения, в которых преобладает ионный тип связи.

Fe + Р = FexPy

Fe + C = FexCy

Fe + Si = FexSiy

Образуются вещества переменного состава, т к. бертоллиды (в соединениях преобладает ковалентный характер связи)

Fe0 + 2Н+ → Fe2+ + Н2

Поскольку Fe располагается в ряду активности левее водорода (Е°Fe/Fe2+ = -0,44В), оно способно вытеснять Н2 из обычных кислот.

Fe + 2HCl = FeCl2 + Н2

Fe + H2SO4 = FeSO4 + Н2

Fe0 — 3e → Fe3+

Концентрированные HNO3 и H2SO4 «пассивируют» железо, поэтому при обычной температуре металл в них не растворяется. При сильном нагревании происходит медленное растворение (без выделения Н2).

В разб. HNO3 железо растворяется, переходит в раствор в виде катионов Fe3+ а анион кислоты восстанавливется до NO*:

Fe + 4HNO3 = Fe(NO3)3 + NO↑ + 2Н2O

Очень хорошо растворяется в смеси НСl и HNO3

В водных растворах щелочей Fe не растворяется. С расплавленными щелочами реагирует только при очень высоких температурах.

Fe + CuSO4 = FeSO4 + Cu

Fe0 + Cu2+ = Fe2+ + Cu0

Fe(порошок) + 5CO (г) = Fe0(CO)5пентакарбонил железа

Соединения Fe(III)

Красно-бурый порошок, н. р. в Н2O. В природе — «красный железняк».

1) разложение гидроксида железа (III)

2Fe(OH)3 = Fe2O3 + 3H2O

2) обжиг пирита

4FeS2 + 11O2 = 8SO2 + 2Fe2O3

3) разложение нитрата

4Fe(NO3)3 = 2Fe2O3 + 12NO2 + 3O2

Fe2O3 — основный оксид с признаками амфотерности.

I. Основные свойства проявляются в способности реагировать с кислотами:

Fe2О3 + 6Н+ = 2Fe3+ + ЗН2О

Fe2О3 + 6HCI = 2FeCI3 + 3H2O

Fe2О3 + 6HNO3 = 2Fe(NO3)3 + 3H2O

II. Слабокислотные свойства. В водных растворах щелочей Fe2O3 не растворяется, но при сплавлении с твердыми оксидами, щелочами и карбонатами происходит образование ферритов:

Fe2О3 + СаО = Ca(FeО2)2

Fe2О3 + 2NaOH = 2NaFeО2 + H2O

Fe2О3 + MgCO3 = Mg(FeO2)2 + CO2

III. Fe2О3 — исходное сырье для получения железа в металлургии:

Fe2О3 + ЗС = 2Fe + ЗСО или Fe2О3 + ЗСО = 2Fe + ЗСO2

Получают при действии щелочей на растворимые соли Fe3+:

FeCl3 + 3NaOH = Fe(OH)3 + 3NaCl

В момент получения Fe(OH)3 — красно-бурый слизистоаморфный осадок.

Гидроксид Fe(III) образуется также при окислении на влажном воздухе Fe и Fe(OH)2:

4Fe + 6Н2O + 3O2 = 4Fe(OH)3

4Fe(OH)2 + 2Н2O + O2 = 4Fe(OH)3

Гидроксид Fe(III) является конечным продуктом гидролиза солей Fe3+.

Fe(OH)3 — очень слабое основание (намного слабее, чем Fe(OH)2). Проявляет заметные кислотные свойства. Таким образом, Fe(OH)3 имеет амфотерный характер:

1) реакции с кислотами протекают легко:

Fe(OH)3 + 3HCl = FeCl3 + 3H2O

2) свежий осадок Fe(OH)3 растворяется в горячих конц. растворах КОН или NaOH с образованием гидроксокомплексов:

Fe(OH)3 + 3КОН = K3[Fe(OH)6]

В щелочном растворе Fe(OH)3 может быть окислен до ферратов (солей не выделенной в свободном состоянии железной кислоты H2FeO4):

2Fe(OH)3 + 10КОН + 3Br2 = 2K2FeO4 + 6КВr + 8Н2O

Наиболее практически важными являются: Fe2(SO4)3, FeCl3, Fe(NO3)3, Fe(SCN)3, K3[Fe(CN)6).

Характерно образование двойных солей — железных квасцов: (NH4)Fe(SO4)2•12Н2O, KFe(SO4)2• 12Н2O

Соли Fe3+ часто имеют окраску как в твердом состоянии, так и в водном растворе. Это объясняется наличием гидратированных форм или продуктов гидролиза.

1. Fe + неметалл

2Fe + 3Cl2 = 2FeCl3

2.Fe + кислота

Fe + 4HNO3 разб = Fe(NO3)3 + NO + 2H2O

3. Fe2O3 + кислота

Fe2O3 + 3H2SO4 = Fe2(SО4)3 + 3H2O

4. Fe(OH)3 + кислота

Fe(OH)3 + 3HCl = FeCl3 + 3H2O

5. Окисление Fe2+ до Fe3+

2FeCl2 + Cl2 = 2FeCl3

2Fe2O3 + H2O2 + H2SO4 = Fe2(SO4)3 + 2H2O

I. Все растворимые соли Fe3+ в водных растворах сильно гидролизованы:

Fe3+ + Н2O = FeOH2+ + Н+

FeOH2+ + Н2O = Fe(OH)2+ + Н+

Fe(OH)2+ Н2O = Fe(OH)3 + Н+

Водные растворы солей Fe3+ имеют сильнокислую реакцию. Соли Fe3+ с анионами слабых кислот подвергаются необратимому гидролизу.

II. В реакциях с сильными восстановителями соли Fe3+ проявляют окислительную активность:

2FeCl3 + 2KI = 2FeCl2 + I2 + 2KCl

Fe2(SO4)3 + H2S = 2FeSO4 + S + H2SO4

III. При действии щелочей и водных растворов аммиака на растворы солей Fe3+ образуется осадок:

Fe3+ + ЗОН = Fe(OH)3

IV. При нагревании многие соли разлагаются:

2FeCl3 = 2FeCl2 + Cl2

Fe2(SO4)3 = Fe2O3 + 3SO3

4Fe(NO3)3 = 2Fe2O3 + 12NO2 + 3O2

V. Качественные реакции для обнаружения катионов Fe3+:

а) 4Fe3+ + 3[Fe(CN)6]4-желтая кровяная соль = Fe4[Fe(CN)6]3 берлинская лазурь (темно-синий осадок)

б) Fe3+ + 3SCN = Fe(SCN)3 роданид Fe(III) (р-р кроваво-красного цвета)

«Металлы. Железо. Строение атома, физические и химические свойства»

Цель: на основании положения в периодической системе химических элементов, строения атома железа учащиеся должны составить представление о физических и химических свойствах железа.

Реактивы. На демонстрационном столе опилки железа, серная кислота (разбавленная), раствор сульфата меди (2), речной песок, вода дистиллированная. Штатив с пробирками, пипетки, пробка с газоотводной трубкой, стакан, лабораторный штатив, спиртовка.

На ученических столах — серная кислота (разбавленная), сульфат меди (2), опилки железные, штатив с пробирками, пипетки.

Оборудование: карта «Минеральные ресурсы» и таблица «План урока». Коллекция «Полезные ископаемые»; 3 конверта с заданиями. 

Ход урока

1. Изучение нового материала.

УЧИТЕЛЬ. Ребята! Послушайте отрывок из «Поэмы о периодическом законе», В. Половняк.

Громоподобные раскаты
И в небе раскаленный след:
На землю новый камень падал
И ужасался человек
Но редким был подарок неба
Им лишь счастливец обладал:
Топор был выкован железный,
Сверкает лезвием кинжал.
Вот длинный ряд тысячелетний
Приходит в поисках, в борьбе,
И наступает век железный
Кровавый беспокойный век.

Проблемный вопрос: на каком древнем языке железо именуют «небесным камнем»?
(ученики выдвигают версии на поставленный вопрос).

Сообщение ученика. 30 июня 1908 году эвенка Чучанги рассказывал: тут я увидел страшное диво — лесины падают, хвоя горит. Жарко очень. Жарко сгореть можно. Вдруг над горой, где уже упал лес, стало сильно светло, будто второе солнце появилось. Эту местность эвенки стали называть «страной мертвого леса», площадь радиусом 25-30 км после падения метеорита.

При падении Тунгусского метеорита по всей Центральной Сибири был виден ослепительно-яркий свет. Установлено, что в земную атмосферу со скоростью 70 км/с влетело метеоритное тело массой 1000000 т. Удары огромной силы, подобные взрывам, были слышны, в тысяче километров от места падения! Куски «небесного тела», которые называют «метеоритами», бывают похожи на камни черно-бурого цвета. В свободном состоянии железо встречается только в метеоритах. Ежесуточно на Землю выпадают до 10 т метеоритного вещества.[3]

УЧИТЕЛЬ. Итак, запишите в свои тетради тему урока: Железо. Строение атома, физические и химические свойства.

Цель урока: на основании положения в периодической системе химических элементов, строение атома железа составить представление о физических и химических свойствах железа.

1. Строение и свойства атомов.

Что можно дополнительно сказать о железе на основании положения его в периодической системе химических элементов? (Ученики сообщают — 8 группа, побочная подгруппа, 4 большой период, d-элемент. Химическое знак – Fe. Порядковый номер – 26. Относительная атомная масса (Ar) – 56).

УЧИТЕЛЬ. А теперь я прошу вас написать строение атома, электронную и графическую формулы железа?( к доске приглашаются ученики).

Ученики составляют следующую запись:

Схема строения атома: Fe +26 )2 )8 )14 )2.

Электронная формула атома 1s2 2s2 p6 3s2 p6 4s2 3d6.

Графическая схема:

В соединениях железо проявляет степень окисления, в основном +2 и +3, реже +4 и +6. Как и всегда при изучении соединений, мы рассмотрим физические свойства железа: 

2. Физические свойства железа.

Вашим помощником на этом уроке будет таблица «План урока», которая висит на доске ( см. приложение). Прошу вас использовать ее в работе на сегодняшнем уроке. (Учитель демонстрирует опилки железа). Начнем с физических свойств железа. Блестящий серебристо-белый металлический. Один из наиболее распространенных элементов в природе, по содержанию в земной коре (4,65% по массе) уступает лишь кислороду, кремнию и алюминию. Оно входит в состав многих оксидных руд – гематита, или красного железняка Fe2O3, магнетита Fe3O4, пирита FeS2 и др.

Комментируя руды, учитель демонстрирует коллекцию «Полезные ископаемые» и просит учеников на карте «Минеральные ресурсы», найти основные месторождения и назвать их?

УЧИТЕЛЬ. Сравним атомный радиус железа 0,126 нм с атомным радиусом натрия 0,186 нм, магния 0,16 нм, алюминии 0,14 нм. Какое влияние на свойства железа оказывает такие размеры атома и возможность отдавать электроны c внешнего и предпоследнего слоя?

Железо, имеющее атомы небольших размеров и большое число электронов, участвующих в металлической связи, должно обладать высокой температурой плавления и значительной твердостью, но вместе с тем сравнительно небольшой электропроводностью. Железо тугоплавкое – tпл = 1539°С, относительно мягкое (по школе твердость его равна 4), способен сильно притягиваться магнитами.

У железа есть две аллотропные модификации: альфа-железа устойчивое до 910°С, имеет кубическую объемно-центрированную решетку; гамма-железо t=910 – 1400°С – кубическую гранецентрированную.

Железо может отдавать электроны, находящиеся на двух ( внешнем и предпоследнем) слоях. Проявляет восстановительные свойства. Степень железа зависит от окислительной способности реагирующих с ним веществ. Итак, химические свойства железа:

3. Химические свойства железа.

Познакомимся с химическими свойствами железа: искры, вырывающиеся при резке стального инструмента, представляет с собой раскаленные частички окалины. В кислороде железо сгорает, разбрасывая искры – частички железной окалины Fe3O4.

Свойства №1 Взаимодействия железа с кислородом: 


промежуточный оксид

Свойства №2 Взаимодействие железа с водой:

Учитель пишет на доске уравнение реакции и просит уравнять его с помощью электронного баланса. Это задание выполняет ученик у доски, а остальные – на своих рабочих местах:

 

Затем учитель проводит демонстрацию опыта «Взаимодействия железа с водой» (см. приложение).

Свойство №3 Взаимодействие железа с разбавленными кислотами: 

УЧИТЕЛЬ. Используя предложенные вам реактивы, проведите химическую реакцию, о которой идет речь. Напишите уравнение реакции в молекулярном и ионном виде. Докажите, что железо в данном процессе проявляет свойство восстановителя.

Учитель приглашает к доске ученика, который проводит эксперимент и записывает уравнение реакции, а остальные выполняют предложенное задание на своих рабочих местах:

В электрохимическом ряду напряжений металлов железо расположено до водорода. Поэтому оно растворяется в разбавленных серной и соляной кислотах, вытесняя из них водород и образуя соответствующую соль, степень окисления +2.

Свойства №4 Взаимодействие с растворами солей: 

УЧИТЕЛЬ. Используя предложенные вам реактивы, проведите химическую реакцию, о которой идет речь. Напишите уравнение реакции в молекулярном и ионном виде – это задание делают ученики первого варианта, а ученики второго варианта – докажите, что железо в данном процессе проявляет свойство восстановителя.

Учитель приглашает к доске ученика, который проводит эксперимент. А остальные выполняют предложенное задание на своих рабочих местах:

2. Подведем итоги урока по таблице «План урока»

3. Закрепление материала.

УЧИТЕЛЬ. Ребята! К нам на урок химии прислали три конверта, в них помещены задания для тех, кто хочет получить отметку «5» и «4». Приглашаю к доске желающих. Ученикам, работающим на своих местах, можно выполнить задание по своему усмотрению.

№1 конверт (за правильно выполненное задание – «5»).

Какой объем оксида углевода (2) потребуется для восстановления железа из 2,32 кг магнитного железа (), содержащего 5% пустой породы? Какое количество вещества железа при этом получится, если выход его составляет 80% от теоретически возможного?

№2 конверт (за правильное выполненное задания – «4»).

Напишите два уравнения реакции железа с концентрированной серной кислотой, в которой продуктом восстановления кислоты будет соответственно оксид серы(4), сера S. При уравнивании записей реакции используйте метод электронного баланса. Определите окислитель и восстановитель в этих реакциях.

УЧИТЕЛЬ. Ребята! У нас еще остался конверт (учитель показывает конверт). Что же здесь находится? (Учитель вскрываетконверт и читает). Домашнее задание (записывает на доске домашнее задание).

Учить §14 до статьи «Соединение железа», по рабочей тетради тема «Железо» №3-4 письменно.

Завершая знакомство со свойствами железа, хочу напомнить, насколько химия многолика. Она дает ученику огромные возможности, но при этом требует ответственного отношения и понимания химических реакций. Надеюсь, что полученные сведения окажутся вам полезными.

Комментирую отметки учащихся.

ЛИТЕРАТУРА:

  1. Бусев А.И., Ефимов И.П., Определения, понятия, термины в химии. Просвещение 1981.
  2. Габриелян О.С. Химия 9 класс Дрофа,2001.
  3. Гонтарук Т.И. автор- составитель. Я познаю мир. Детская энциклопедия. АСП 1999, с. 294-297.
  4. Полосин В.С. Школьный эксперимент по неорганической химии. Просвещение 1970.
  5. ТретьяковЮ.Д. Справочные материалы. Просвещение 1988.

Приложение

Оксид железа (III), свойства, получение, химические реакции

Оксид железа (III), свойства, получение, химические реакции.

 

 

Оксид железа (III) – неорганическое вещество, имеет химическую формулу Fe2O3.

 

Краткая характеристика оксида железа (III)

Модификации оксида железа (III)

Физические свойства оксида железа (III)

Получение оксида железа (III)

Химические свойства оксида железа (III)

Химические реакции оксида железа (III)

Применение и использование оксида железа (III)

 

Краткая характеристика оксида железа (III):

Оксид железа (III) – неорганическое вещество красно-коричневого цвета.

Оксид железа (III) содержит три атома кислорода и два атома железа.

Химическая формула оксида железа (III) Fe2O3.

В воде не растворяется. С водой не реагирует.

Термически устойчив.

Оксид железа (III) – амфотерный оксид с большим преобладанием основных свойств. Как амфотерный оксид проявляет в зависимости от условий либо основные, либо кислотные свойства.

 

Модификации оксида железа (III):

Известны следующие кристаллические модификации железа: α- Fe2O3, γ-Fe2O3.

 

Физические свойства оксида железа (III)*:

Наименование параметра:Значение:
Химическая формулаFe2O3
Синонимы и названия иностранном языкеiron(III) oxide (англ.)

гематит (рус.)

красный железняк (рус.)

Тип веществанеорганическое
Внешний видкрасно-коричневые тригональные кристаллы
Цветкрасно-коричневый
Вкус—**
Запах
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.)твердое вещество
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м35242
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см35,242
Температура кипения, °C1987
Температура плавления, °C1566
Молярная масса, г/моль159,69

Примечание:

* оксид железа α-форма.

** — нет данных.

 

Получение оксида железа (III):

В природе встречается в виде минералов гематита (красный железняк), лимонита и маггемита.

Оксид железа (III) получают в результате следующих химических реакций:

  1. 1. окисления железа:

4Fe + 3O2 → 2Fe2O3.

  1. 2. термического разложения полигидрата оксида железа (III):

Fe2O3•nH2O →  Fe2O3 + nH2O (t = 500-700 oC).

  1. 3. термического разложения метагидроксида железа:

2FeO(OH) → Fe2O3 + H2O (t = 500-700 oC).

  1. 4. термического разложения гидроксида железа (III):

2Fe(OH)3 → Fe2O3 + 3H2O (t°).

  1. 5. термического разложения сульфата железа (III):

Fe2(SO4)3 → Fe2O3 + 3SO3 (t = 500-700 oC).

 

Химические свойства оксида железа (III). Химические реакции оксида железа (III):

Оксид железа (III) относится к амфотерным оксидам, но с большим преобладанием основных свойств.

Химические свойства оксида железа (III) аналогичны свойствам амфотерных оксидов других металлов. Поэтому для него характерны следующие химические реакции:

1. реакция оксида железа (III) с алюминием:

2Al + Fe2O3 → 2Fe +  Al2О (t°).

В результате реакции образуется оксид алюминия и железо.

2. реакция оксида железа (III) с углеродом:

Fe2O3 + 3С → 2Fe + 3CО (t°).

В результате реакции образуется железо и оксид углерода.

3. реакция оксида железа (III) с водородом:

Fe2O3 + H2 → 2FeO + H2О (t°),

Fe2O3 + 3H2 → 2Fe + 3H2О (t = 1050-1100 °C),

3Fe2O3 + H2 → 2Fe3O4 + H2О (t = 400 °C).

В результате реакции в первом случае образуется оксид железа (II) и вода, во втором – железо и вода, в третьем – оксид железа (II, III) и вода.

4. реакция оксида железа (III) с железом:

Fe2O3 + Fe → 3FeО (t = 900 °C).

В результате реакции образуется оксид железа (II).

5. реакция оксида железа (III) с оксидом натрия:

5Na2О + Fe2O3 → 2Na5FeО4 (t = 450-500 °C).

В результате реакции образуется соль – феррат натрия.

6. реакция оксида железа (III) с оксидом магния:

MgО + Fe2O3 → MgFe2О4 (t°).

В результате реакции образуется соль – феррит магния.

7. реакция оксида железа (III) с оксидом меди (II):

CuО + Fe2O3 → CuFe2О4 (t°).

В результате реакции образуется соль – феррит меди.

8. реакция оксида железа (III) с оксидом титана:

TiО + Fe2O3 → TiFe2О4 (t°).

В результате реакции образуется соль – феррит титана.

9. реакция оксида железа (III) с оксидом марганца:

MnО + Fe2O3 → MnFe2О4 (t°).

В результате реакции образуется соль – феррит марганца.

10. реакция оксида железа (III) с оксидом никеля:

NiО + Fe2O3 → NiFe2О4 (t°).

В результате реакции образуется соль – феррит никеля.

11. реакция оксида железа (III) с оксидом кадмия:

CdО + Fe2O3 → CdFe2О4 (t°).

В результате реакции образуется соль – феррит кадмия.

12. реакция оксида железа (III) с оксидом цинка:

ZnО + Fe2O3 → ZnFe2О4 (t = 450-500 °C),

ZnО + Fe2O3 → Fe2ZnО4 (t = 450-500 °C).

В результате реакции образуется оксид железа-цинка.

13. реакция оксида железа (III) с оксидом кальция:

CaО + Fe2O3 → CaFe2О4 (t = 900-1000 °C)

В результате реакции образуется оксид кальция-железа.

14. реакция оксида железа (III) с оксидом углерода:

Fe2O3 + 3СО → 2Fe + 3СО2 (t = 700 °C),

Fe2O3 + СО → 2FeО + СО2 (t = 500-600 °C),

3Fe2O3 + СО → 2Fe3О4 + СО2 (t = 400 °C),

В результате реакции в первом случае образуется железо и углекислый газ, во втором – оксид железа (II) и углекислый газ, в третьем – оксид железа (II, III) и углекислый газ.

15. реакция оксида железа (III) с гидроксидом натрия:

Fe2O3 + 2NaOH → 2NaFeO2 + H2О (t  = 600 oC, p).

В результате реакции образуется соль – феррит натрия и вода. Реакция протекает при избыточном давлении.

16. реакция оксида железа (III) с карбонатом натрия:

Fe2O3 + Na2СO3 → 2NaFeO2 + СО2 (t  = 800-900 oC).

В результате реакции образуется соль – феррит натрия и оксид углерода.

17. реакция оксида железа (III) с плавиковой кислотой:

Fe2O3 + 6HF → 2FeF3 + 3H2O.

В результате химической реакции получается соль – фторид железа и вода.

18. реакция оксида железа (III) с азотной кислотой:

Fe2O3 + 6HNO3 → 2Fe(NO3)3 + 3H2O.

В результате химической реакции получается соль – нитрат железа и вода. Азотная кислота – разбавленный раствор.

Аналогично проходят реакции оксида железа и с другими кислотами.  

19. реакция оксида железа (III) с бромистым водородом (бромоводородом):

Fe2O3 + 6HBr → 2FeBr3 + 3H2O.

В результате химической реакции получается соль – бромид железа и вода.

20. реакция оксида железа (III) с йодоводородом:

Fe2O3 + 6HI → 2FeI3 + 3H2O.

В результате химической реакции получается соль – йодид железа и вода.

21. реакция оксида железа (III) с хлоридом железа:

Fe2O3 + FeСl3 → 3FeOCl3 (t  = 350 oC).

В результате химической реакции получается оксид хлорида-железа.

22. реакция термического разложения оксида железа (III):

6Fe2O3 → 4Fe3O4 + O2 (t  = 1200-1390 oC).

В результате химической реакции получается оксид железа (II, III) и кислород.

 

Применение и использование оксида железа:

Оксид железа используется в металлургии для выплавки чугуна, как катализатор в химической и нефтехимической промышленности, как пищевая добавка (E172), как компонент керамики, красок и пр. целей.

 

Примечание: © Фото //www.pexels.com, //pixabay.com

 

карта сайта

оксид железа реагирует кислота 1 2 3 4 5 вода
уравнение реакций соединения масса взаимодействие оксида железа
реакции с оксидом железа

 

Коэффициент востребованности 2 996

Химические свойства переходных металлов (меди, цинка, хрома, железа).

Химические свойства меди

Медь (Cu) относится к d-элементам и расположена в IB группе периодической таблицы Д.И.Менделеева. Электронная конфигурация атома меди в основном состоянии записывается виде 1s22s22p63s23p63d104s1 вместо предполагаемой формулы 1s22s22p63s23p63d94s2. Другими словами, в случае атома меди наблюдается так называемый «проскок электрона» с 4s-подуровня на 3d-подуровень. Для меди, кроме нуля, возможны степени окисления +1 и +2. Степень окисления +1 склонна к диспропорционированию и стабильна лишь в нерастворимых соединениях типа CuI, CuCl, Cu2O и т. д., а также в комплексных соединениях, например, [Cu(NH3)2]Cl и [Cu(NH3)2]OH. Соединения меди в степени окисления +1 не имеют конкретной окраски. Так, оксид меди (I) в зависимости от размеров кристаллов может быть темно-красный (крупные кристаллы) и желтый (мелкие кристаллы), CuCl и CuI —   белыe, а Cu2S — черно-синий. Более химически устойчивой является степень окисления меди, равная +2. Соли, содержащие медь в данной степени окисления, имеют синюю и сине-зеленую окраску.

Медь является очень мягким, ковким и пластичным металлом с высокой электро- и теплопроводностью. Окраска металлической меди красно-розовая. Медь находится в ряду активности металлов правее водорода, т.е. относится к малоактивным металлам.

Взаимодействие с простыми веществами

с кислородом

В обычных условиях медь с кислородом не взаимодействует. Для протекания реакции между ними требуется нагрев. В зависимости от избытка или недостатка кислорода и температурных условий может образовать оксид меди (II) и оксид меди (I):

vzaimodejstvie-medi-s-kislorodom2

с серой

Реакция серы с медью в зависимости от условий проведения может приводить к образованию как сульфида меди (I), так и сульфида меди (II). При нагревании смеси порошкообразных Cu и S до температуры 300-400оС образуется сульфид меди (I):

2cu-plus-s-ravno-cu2s

При недостатке серы и проведении реакции при температуре более 400оС образуется сульфид меди (II). Однако, более простым способом получения сульфида меди (II) из простых веществ является взаимодействие меди с серой, растворенной в сероуглероде:

cu-plus-s-ravno-cus-v-cs2

Данная реакция протекает при комнатной температуре.

с галогенами

С фтором, хлором и бромом медь реагирует, образуя галогениды с общей формулой CuHal2, где Hal – F, Cl или Br:

Cu + Br2  = CuBr2

В случае с йодом — самым слабым окислителем среди галогенов — образуется иодид меди (I):

2cu-plus-i2-ravno-2cui

С водородом, азотом, углеродом и кремнием медь не взаимодействует.

Взаимодействие со сложными веществами

с кислотами-неокислителями

Кислотами-неокислителями являются практически все кислоты, кроме концентрированной серной кислоты и азотной кислоты любой концентрации. Поскольку кислоты-неокислители в состоянии окислить только металлы, находящиеся в ряду активности до водорода; это означает, что медь с такими кислотами не реагирует.

cu-plus-hcl-konc-i-cu-plus-hcl-konc-table2

с кислотами-окислителями
— концентрированной серной кислотой

С концентрированной серной кислотой медь реагирует как при нагревании, так и при комнатной температуре. При нагревании реакция протекает в соответствии с уравнением:

Поскольку медь не является сильным восстановителем, сера восстанавливается в данной реакции только до степени окисления +4 (в SO2).

— с разбавленной азотной кислотой

Реакция меди с разбавленной HNO3 приводит к образованию нитрата меди (II) и монооксида азота:

3Cu + 8HNO3(разб.) = 3Cu(NO3)2 + 2NO↑ + 4H2O

— с концентрированной азотной кислотой

Концентрированная HNO3 легко реагирует с медью при обычных условиях. Отличие реакции меди с концентрированной азотной кислотой от взаимодействия с разбавленной азотной кислотой заключается в продукте восстановления азота. В случае концентрированной HNO3 азот восстанавливается в меньшей степени: вместо оксида азота (II) образуется оксид азота (IV), что связано с большей конкуренцией между молекулами азотной кислоты в концентрированной кислоте за электроны восстановителя (Cu):

Cu + 4HNO3 = Cu(NO3)2 + 2NO2 + 2H2O

с оксидами неметаллов

Медь реагирует с некоторыми оксидами неметаллов. Например, с такими оксидами, как NO2, NO, N2O медь окисляется до оксида меди (II), а азот восстанавливается до степени окисления 0, т.е. образуется простое вещество N2:

vzaimodejstvie-cu-s-oxidami-azota

В случае диоксида серы, вместо простого вещества (серы) образуется сульфид меди(I). Связано это с тем, что медь с серой, в отличие от азота, реагирует:

cu-pljus-so2

с оксидами металлов

При спекании металлической меди с оксидом меди (II) при температуре 1000-2000 оС может быть получен оксид меди (I):

cu-pljus-cuo-ravno-cu2o

Также металлическая медь может восстановить при прокаливании оксид железа (III) до оксида железа (II):

cu-pljus-fe2o3-ravno-2feo-plus-cuo

с солями металлов

Медь вытесняет менее активные металлы (правее нее в ряду активности) из растворов их солей:

Cu + 2AgNO3 = Cu(NO3)2 + 2Ag↓

Также имеет место интересная реакция, в которой медь растворяется в соли более активного металла – железа в степени окисления +3. Однако противоречий нет, т.к. медь не вытесняет железо из его соли, а лишь восстанавливает его со степени окисления +3 до степени окисления +2:

Fe2(SO4)3 + Cu = CuSO4 + 2FeSO4

Cu + 2FeCl3 = CuCl2  + 2FeCl2

Последняя реакция используется при производстве микросхем на стадии травления медных плат.

Коррозия меди

Медь со временем подвергается коррозии при контакте с влагой, углекислым газом и кислородом воздуха:

2Cu + H2O + СО2 + О2 = (CuOН)2СO3

В результате протекания данной реакции медные изделия покрываются рыхлым сине-зеленым налетом гидроксокарбоната меди (II).

Химические свойства цинка

Цинк Zn находится в IIБ группе IV-го периода. Электронная конфигурация валентных орбиталей атомов химического элемента в основном состоянии 3d104s2. Для цинка возможна только одна единственная степень окисления, равная +2. Оксид цинка ZnO и гидроксид цинка Zn(ОН)2 обладают ярко выраженными амфотерными свойствами.

Цинк при хранении на воздухе тускнеет, покрываясь тонким слоем оксида ZnO. Особенно легко окисление протекает при высокой влажности и в присутствии углекислого газа вследствие протекания реакции:

2Zn + H2O + O2 + CO2 → Zn2(OH)2CO3

Пар цинка горит на воздухе, а тонкая полоска цинка после накаливания в пламени горелки сгорает в нем зеленоватым пламенем:

zn-plus-o2-2

При нагревании металлический цинк также взаимодействует с галогенами, серой, фосфором:

zn-plus-cl2-i-zn-plus-s-i-zn-plus-p

С водородом, азотом, углеродом, кремнием и бором цинк непосредственно не реагирует.

Цинк реагирует с кислотами-неокислителями с выделением водорода:

Zn + H2SO4 (20%) → ZnSO4 + H2

Zn + 2HCl  →  ZnCl2 + H2

Особенно легко растворяется в кислотах технический цинк, поскольку содержит в себе примеси других менее активных металлов, в частности, кадмия и меди. Высокочистый цинк по определенным причинам устойчив к воздействию кислот. Для того чтобы ускорить реакцию, образец цинка высокой степени чистоты приводят в соприкосновение с медью или добавляют в раствор кислоты немного соли меди.

При температуре 800-900oC (красное каление) металлический цинк, находясь в расплавленном состоянии, взаимодействует с перегретым водяным паром, выделяя из него водород:

Zn + H2O = ZnO + H2

Цинк реагирует также и с кислотами-окислителями: серной концентрированной и азотной.

Цинк как активный металл может образовывать с концентрированной серной кислотой сернистый газ, элементарную серу и даже сероводород.

Zn + 2H2SO4 = ZnSO4 + SO2↑ + 2H2O

Состав продуктов восстановления азотной кислоты определяется концентрацией раствора:

Zn + 4HNO3(конц.) = Zn(NO3)2 + 2NO2↑ + 2H2O

3Zn + 8HNO3(40%) = 3Zn(NO3)2 + 2NO↑ + 4H2O

4Zn +10HNO3(20%) = 4Zn(NO3)2 + N2O↑ + 5H2O

5Zn + 12HNO3(6%) = 5Zn(NO3)2 + N2↑ + 6H2O

4Zn + 10HNO3(0,5%) = 4Zn(NO3)2 + NH4NO3 + 3H2O

На направление протекания процесса влияют также температура, количество кислоты, чистота металла, время проведения реакции.

Цинк реагирует с растворами щелочей, при этом образуются тетрагидроксоцинкаты и водород:

Zn + 2NaOH + 2H2O = Na2[Zn(OH)4] + H2

Zn + Ba(OH)2 + 2H2O = Ba[Zn(OH)4] + H2

С безводными щелочами цинк при сплавлении образует цинкаты и водород:

В сильнощелочной среде цинк является крайне сильным восстановителем, способным восстанавливать азот в нитратах и нитритах до аммиака:

4Zn + NaNO3 + 7NaOH + 6H2O → 4Na2[Zn(OH)4] + NH3

Благодаря комплексообразованию цинк медленно растворяется в растворе аммиака, восстанавливая водород:

Zn + 4NH3·H2O → [Zn(NH3)4](OH)2 + H2↑ + 2H2O

Также цинк восстанавливает менее активные металлы (правее него в ряду активности) из водных растворов их солей:

Zn + CuCl2 = Cu + ZnCl2

Zn + FeSO4 = Fe + ZnSO4

Химические свойства хрома

Хром — элемент VIB группы таблицы Менделеева. Электронная конфигурация атома хрома записывается как 1s 22s 22p 63s 23p63d54s1, т.е. в случае хрома,  также как и в случае атома меди,  наблюдается так называемый «проскок электрона»

Наиболее часто проявляемыми степенями окисления хрома являются значения +2, +3 и +6. Их следует запомнить, и в рамках программы ЕГЭ по химии можно считать, что других степеней окисления хром не имеет.

При обычных условиях хром устойчив к коррозии как на воздухе, так и в воде.

Взаимодействие с неметаллами

с кислородом

Раскаленный до температуры более 600 oС порошкообразный металлический хром сгорает в чистом кислороде образуя окcид хрома (III):

4Cr + 3O2 =ot=> 2Cr2O3

с галогенами

С хлором и фтором хром реагирует при более низких температурах, чем с кислородом (250 и 300 oC соответственно):

2Cr + 3F2 =ot=> 2CrF3

2Cr + 3Cl2 =ot=> 2CrCl3

С бромом же хром реагирует при температуре красного каления (850-900 oC):

2Cr + 3Br2 =ot=> 2CrBr3

с азотом

С азотом металлический хром взаимодействует при температурах более 1000 oС:

2Cr + N2 =ot=> 2CrN

с серой

С серой хром может образовывать как сульфид хрома (II) так и сульфид хрома (III), что зависит от пропорций серы и хрома:

Cr + S  =ot=>  CrS

2Cr + 3S  =ot=>  Cr2S3

С водородом хром не реагирует.

Взаимодействие со сложными веществами

Взаимодействие с водой

Хром относится к металлам средней активности (расположен в ряду активности металлов между алюминием и водородом). Это означает, что реакция протекает  между раскаленным до красного каления хромом и перегретым водяным паром:

2Cr + 3H2O =ot=>  Cr2O3 + 3H2

Взаимодействие с кислотами

Хром при обычных условиях пассивируется концентрированными серной и азотной кислотами, однако, растворяется в них при кипячении, при этом окисляясь до степени окисления +3:

Cr + 6HNO3(конц.) =to=> Cr(NO3)3 + 3NO2↑ + 3H2O

2Cr + 6H2SO4(конц)  =to=> Cr2(SO4)3 + 3SO2↑ + 6H2O

В случае разбавленной азотной кислоты основным продуктом восстановления азота является простое вещество N2:

10Cr + 36HNO3(разб) = 10Cr(NO3)3 + 3N2↑ + 18H2O

Хром расположен в ряду активности левее водорода, а это значит, что он способен выделять H2 из растворов кислот-неокислителей. В ходе таких реакций в отсутствие доступа кислорода воздуха образуются соли хрома (II):

Cr + 2HCl = CrCl2 + H2

Cr + H2SO4(разб.) = CrSO4 + H2

При проведении же реакции на открытом воздухе, двухвалентный хром мгновенно окисляется содержащимся в воздухе кислородом до степени окисления +3. При этом, например, уравнение с соляной кислотой примет вид:

4Cr + 12HCl + 3O2 = 4CrCl3 + 6H2O

При сплавлении металлического хрома с сильными окислителями в присутствии щелочей хром окисляется до степени окисления +6, образуя хроматы:

2.2.4. Химические свойства переходных металлов (меди, цинка, хрома, железа).

Химические свойства железа

Железо Fe, химический элемент, находящийся в VIIIB группе и имеющий порядковый номер 26 в таблице Менделеева. Распределение электронов в атоме железа следующее 26Fe1s22s22p63s23p63d64s2, то есть железо относится к d-элементам,  поскольку заполняемым в его случае является d-подуровень. Для него наиболее характерны две степени окисления +2 и +3. У оксида FeO и гидроксида Fe(OH)2 преобладают основные свойства, у оксида Fe2O3 и гидроксида Fe(OH)3 заметно выражены амфотерные. Так оксид и гидроксид железа (lll) в некоторой степени растворяются при кипячении в концентрированных растворах щелочей,  а также реагируют с безводными щелочами при сплавлении. Следует отметить что степень окисления железа +2 весьма неустойчива, и легко переходит в степень окисления +3. Также известны соединения железа в редкой степени окисления +6 – ферраты, соли не существующей «железной кислоты» H2FeO4. Указанные соединения относительно устойчивы лишь в твердом состоянии, либо в сильнощелочных растворах.  При недостаточной щелочности среды ферраты довольно быстро окисляют даже воду,  выделяя из нее кислород.

Взаимодействие с простыми веществами

С кислородом

При сгорании в чистом кислороде железо образует, так называемую, железную окалину, имеющую формулу Fe3O4 и фактически представляющую собой смешанный оксид, состав которого условно можно представить формулой FeO∙Fe2O3. Реакция горения железа имеет вид:

3Fe + 2O2 =to=> Fe3O4

С серой

При нагревании железо реагирует с серой, образуя сульфид двухвалентого железа:

Fe + S =to=> FeS

Либо же при избытке серы дисульфид железа:

Fe + 2S =to=> FeS2

С галогенами

Всеми галогенами кроме йода металлическое железо окисляется до степени окисления +3, образуя галогениды железа (lll):

2Fe + 3F2 =to=> 2FeF3 – фторид железа (lll)

2Fe + 3Cl2 =to=> 2FeCl3 – хлорид железа (lll)

2Fe + 3Br2 =to=> 2FeBr3 – бромид железа (lll)

Йод же, как наиболее слабый окислитель среди галогенов, окисляет железо лишь до степени окисления +2:

Fe + I2 =to=> FeI2 – йодид железа (ll)

Следует отметить, что соединения трехвалентного железа легко окисляют иодид-ионы в водном растворе до свободного йода I2 при этом восстанавливаясь до степени окисления +2. Примеры, подобных реакций из банка ФИПИ:

2FeCl3 + 2KI = 2FeCl2 + I2 + 2KCl

2Fe(OH)3 + 6HI = 2FeI2 + I2 + 6H2O

Fe2O3 + 6HI = 2FeI2 + I2 + 3H2O

С водородом

Железо с водородом не реагирует (с водородом из металлов реагируют только щелочные металлы и щелочноземельные):

Взаимодействие со сложными веществами

Взаимодействие с кислотами
С кислотами-неокислителями

Так как железо расположено в ряду активности левее водорода, это значит, что оно способно вытеснять водород из кислот-неокислителей (почти все кислоты кроме H2SO4 (конц.)  и HNO3 любой концентрации):

Fe + H2SO4 (разб.) =  FeSO4 + H2

Fe + 2HCl =  FeCl2 + H2

Нужно обратить внимание на такую уловку в заданиях ЕГЭ, как вопрос на тему того до какой степени окисления окислится железо при действии на него разбавленной  и концентрированной соляной кислоты. Правильный ответ – до +2 в обоих случаях.

Ловушка здесь заключается в интуитивном ожидании более глубокого окисления железа (до с.о. +3) в случае его взаимодействия с концентрированной соляной кислотой.

Взаимодействие с кислотами-окислителями

С концентрированными серной и азотной кислотами в обычных условиях железо не реагирует по причине пассивации. Однако, реагирует с ними при кипячении:

2Fe + 6H2SO4 = ot=> Fe2(SO4)3 + 3SO2 + 6H2O

Fe + 6HNO3 =ot=> Fe(NO3)3 + 3NO2 + 3H2O

Обратите внимание на то,  что разбавленная серная кислота окисляет железо до степени окисления +2, а концентрированная до +3.

Коррозия (ржавление) железа

На влажном воздухе железо весьма быстро подвергается ржавлению:

4Fe + 6H2O + 3O2 = 4Fe(OH)3

С водой в отсутствие кислорода железо не реагирует ни в обычных условиях, ни при кипячении. Реакция с водой протекает лишь при температуре выше температуры красного каления (>800 оС). т.е.:

Leave Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *