Кавитационный теплогенератор: Все подробности про изготовление вихревых теплогенераторов своими руками – преимущества, строение, принцип работы и пошаговая инструкция

Содержание

преимущества, строение, принцип работы и пошаговая инструкция

Хозяева частных домов всячески стремятся сэкономить на отоплении, которое год от года требует немалых затрат. С целью создания обогревательных экономных систем в жилых, производственных, общественных помещениях разрабатываются и применяются на практике различные схемы по выработке выгодной тепловой энергии. Для этих целей подходит кавитационный теплогенератор.

генераторЧтобы сэкономить на тепловой энергии – данный теплогенератор поможет вам сэтим

Вихревое устройство: общее понятие

Подобная установка конструктивно достаточно проста. Она используется для эффективного и выгодного отопления здания с минимальными финансовыми затратами. Экономичность обуславливается специальным нагревом воды через кавитацию. Такой метод заключается в создании мелких пузырьков из пара в зоне сниженного давления рабочей жидкости, которое обеспечивается специальными звуковыми колебаниями, функционированием насоса.

Кавитационный нагреватель справляется с переработкой механической энергии в тепловой поток, что немаловажно для промышленных объектов. В них нагревательные элементы периодически выходят из строя, поскольку функционируют с жидкостями большой разности по температуре.

Именно такие кавитаторы выступают надежной заменой устройствам, работа которых зависит от твердых видов топлива.

В этом видео вы узнаете, как устроен теплогенератор:

Кавитационные генераторы: преимущества

Такие установки нашли широкое применение в бутовых условиях и на производстве. Причиной тому выступают следующие факторы, их характеризующие:

  • ценовая доступность;
  • экономичность отопительной системы;
  • возможность создания конструкции своими руками;
  • высокий КПД обогрева.

Правила эксплуатации гласят, что нельзя устанавливать вихревые изделия внутри жилого помещения из-за создания высокоуровневого шума. Оптимальным вариантом станет обустройство отдельной хозпостройки, котельной.

К недостаткам относятся довольно большие размеры готового к эксплуатации обогревателя. Также отмечается чрезмерная мощность для частного дома, коттеджа, возможная сложность приобретения материалов, которые понадобятся в случае самостоятельного изготовления кавитатора.

генератор_фольгаВ данном обогревателе, одним из плюсов является высокий КПД

Строение нагревателя и принцип работы

Кавитационное отопление характеризуется образованием пузырьков из пара в рабочей жидкости. В результате такого действия давление постепенно снижается благодаря высокой скорости потока. Следует отметить, что необходимое парообразование задается специальным излучением лазерных импульсов либо акустикой, заданной определенными звуками. Воздушные области закрытого типа смешиваются с водяной массой, после чего поступают в зону большого давления, где вскрываются и излучают ожидаемую ударную волну.

Оборудование кавитационного типа отличается способом функционирования. Схематично оно выглядит так:

  1. Водяной поток перемещается по кавитатору, в котором с помощью циркуляционного насоса обеспечивается рабочее давление, поступающее в рабочую емкость.
  2. Далее в таких емкостях повышается скорость, соответственно, и давление жидкости посредством установленных по чертежам трубок.
  3. Потоки, достигая центральной части камеры, перемешиваются, в результате чего и образуется кавитация.
  4. В результате описанного процесса пузырьки пара не увеличиваются в размерах, отсутствует их взаимодействие с электродами.
  5. После этого вода перемещается в противоположную часть емкости и возвращается для совершения нового круга.
  6. Нагревание обеспечивается передвижением и расширением жидкости в месте выхода из сопла.

Из работы вихревой установки видно, что ее конструкция незамысловата и проста, но при этом обеспечивает быстрый и выгодный обогрев помещения.

Типы обогревателей

Кавитационный котел отопления относится к одному из распространенных типов обогревателей. Наиболее востребованные из них:

  1. Роторные установки, среди которых особого внимания заслуживает устройство Григгса. Суть его действия основана на центробежном насосе роторного действия. Внешне описываемая конструкция напоминает диск с несколькими отверстиями. Каждая такая ниша называется ячейкой Григгса, их количество и функциональные параметры взаимозависимы с частотой вращения привода, типом применяемой генераторной установки. Рабочая жидкость подогревается в пространстве между ротором и статором из-за быстрого перемещения по дисковой поверхности.
  2. Статические обогреватели. Котлы лишены каких-либо передвигающихся деталей, кавитация в них обеспечивается за счет специальных элементов Лаваля. Установленный в отопительную систему насос задает необходимое давление воды, которая начинает быстро передвигаться и подогреваться. За счет узких отверстий в соплах жидкость перемещается в ускоренном режиме. Из-за ее быстрого расширения достигается необходимая для обогрева кавитация.

Выбор того или иного нагревателя зависит от потребностей человека. Следует учитывать, что роторный кавитатор более производителен, к тому же он отличается меньшими размерами.

Особенность статического агрегата заключается в отсутствии вращающихся деталей, чем и обуславливается его продолжительный эксплуатационный срок. Длительность работы без технического обслуживания достигает 5 лет. Если же сломается сопло, его без труда можно заменить, что стоит гораздо дешевле в сравнении с приобретением нового рабочего элемента в роторную установку.

Самостоятельное изготовление оборудования

Создать кавитатор своими руками вполне реально, но предварительно стоит ознакомиться со схематическими особенностями, точными чертежами агрегата, понять и подробно изучить принцип, по которому он действует. Наиболее простой моделью принято считать ВТГ Потапова с показателем КПД в 93%. Схематически теплогенератор довольно прост, будет уместен в быту и промышленном применении.

Приступая к сборке агрегата, необходимо подобрать в систему насос, который должен полностью соответствовать требованиям мощности, необходимой тепловой энергии. В большинстве своем описываемые генераторы по форме напоминают сопло, такие модели самые удобные и простые для домашнего применения.

генератор_коробкаПри собственноручном создании теплогенератора не забываем нужные зап.части, например, гильзы

Создание кавитатора невозможно без предварительной подготовки определенных инструментов и приспособлений. К ним относятся:

  • патрубки входного и выходного типа, оснащенные краниками;
  • манометры, измеряющие давление;
  • термометр, без которого невозможно произвести замер температуры;
  • гильзы, которыми дополняются термометры;
  • вентили, с помощью которых из всей отопительной системы устраняются воздушные пробки.

Специалисты рекомендуют следить за диаметральным показателем сечения отверстия, которое присутствует между конфузором и диффузором. Оптимальные пределы варьируются от 8 до 15 единиц, выход за эти рамки нежелателен.

Последовательность конструирования кавитационного теплогенератора своими руками представлена следующими действиями:

  1. Выбор насоса, который предназначен для эксплуатации с жидкостями высоких температур. В противном случае он быстро выйдет из строя. К такому элементу предъявляется обязательное требование: создание давления от 4 атмосфер.
  2. Выполнение емкости для кавитации. Главным условием выступает подбор необходимого по сечению проходного канала.
  3. Выбор сопла с учетом особенностей конфигурации. Такая деталь может быть цилиндрического, конусообразного, округлого типа. Важно, чтобы на входе воды в емкость развивался вихревой процесс.
  4. Подготовка внешнего контура — немаловажная процедура. Он представляет собой изогнутую трубку, которая отходит от кавитационной камеры. Далее она соединяется с двумя гильзами от термометра и двумя манометрами, а также с воздушным вентилем, помещенным в пространство между выходом и входом.

Когда закончена работа с корпусом, следует поэкспериментировать с обогревателем. Процедура заключается в подведении насосной установки к электросети, при этом радиаторы подключаются с обогревательной системой. Следующий шаг — включение сети.

Должен осуществляться строгий контроль показателей манометров. Разница между цифрами на входе и выходе должна колебаться в пределах 8-12 атмосфер.

Если конструкция работает исправно, в нее подается необходимое количество воды. Хороший показатель — подогрев жидкости на 3-5 градусов за 10-15 минут.

Нагреватель кавитационного типа представляет собой выгодную установку, за короткое время обогревает здание, к тому же максимально экономичен. При желании он легко конструируется в домашних условиях, для чего понадобятся доступные и недорогие приспособления.

Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении

Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении

Вот такой, казалось бы, простой прибор позволит позабыть о привычном дорогостоящем отоплении

Заметили, что цена отопления и горячего водоснабжения выросла и не знаете, что с этим делать? Решение проблемы дорогих энергоресурсов — это вихревой теплогенератор. Я расскажу о том, как устроен вихревой теплогенератор и каков принцип его работы. Также вы узнаете, можно ли собрать такой прибор своими руками и как это сделать в условиях домашней мастерской.

Немного истории

Вихревой тепловой генератор считается перспективной и инновационной разработкой. А между тем, технология не нова, так как уже почти 100 лет назад ученые думали над тем, как применить явление кавитации.

Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении

Труба Ранка, проникая в которую газообразная среда делится на горячий и холодный воздух — это явление было открыто в начале двадцатого века, а применяется на практике сегодня

Первая действующая опытная установка, так-называемая «вихревая труба», была изготовлена и запатентована французским инженером Джозефом Ранком в 1934 году.

Ранк первым заметил, что температура воздуха на входе в циклон (воздухоочиститель) отличается от температуры той же воздушной струи на выходе. Впрочем, на начальных этапах стендовых испытаний, вихревую трубу проверяли не на эффективность нагрева, а наоборот, на эффективность охлаждения воздушной струи.

Показанный на схеме принцип работы вихревой трубы несложен — поток проходит через камеру закрутки, где разбивается на два потока с разной температурой

Технология получила новое развитие в 60- х годах двадцатого века, когда советские ученые догадались усовершенствовать трубу Ранка, запустив в нее вместо воздушной струи жидкость.

За счет большей, в сравнении воздухом, плотности жидкой среды, температура жидкости, при прохождении через вихревую трубу, менялась более интенсивно. В итоге, опытным путем было установлено, что жидкая среда, проходя через усовершенствованную трубу Ранка, аномально быстро разогревалась с коэффициентом преобразования энергии в 100%!

К сожалению, необходимости в дешёвых источниках тепловой энергии на тот момент не было, и технология не нашла практического применения. Первые действующие кавитационные установки, предназначенные для нагрева жидкой среды, появились только в середине 90-х годов двадцатого века.

Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении

На фото показан демонстрационный вихревой генератор, в котором вода циркулирует в замкнутом контуре

Череда энергетических кризисов и, как следствие, увеличивающийся интерес к альтернативным источникам энергии послужили причиной для возобновления работ над эффективными преобразователями энергии движения водяной струи в тепло. В результате, сегодня можно купить установку необходимой мощности и использовать ее в большинстве отопительных систем.

Принцип действия

Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении

Так выглядит рабочий генератор Потапова — поток воды из патрубка очень горячий

Традиционно считалось, что кавитация — это паразитное явление, характеризующееся интенсивным образованием пузырьков, которые, во время схлопывания, провоцируют разрушение окружающих предметов.

Характерный пример последствий кавитации — разрушение корабельных винтов или разрушение крыльчатки лопастных насосов. Теплогенератор вихревого типа — это прибор, в котором паразитное явление приносит пользу.

Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении

На фото еще один теплогенератор Потапова, в ходе испытательных работ подключённый к отопительному радиатору

Кавитация позволяет не давать воде тепло, а извлекать тепло из движущейся воды, при этом нагревая ее до значительных температур.

Несмотря на то, что кавитация — это паразитное явление, конструкционные элементы современных теплогенераторов, в отличии от тех же корабельных винтов, не страдают. Это объясняется тем, что кавитационные процессы протекают не вокруг дискового активатора, а за ним.

Принцип действия кавитационного преобразователя

ИллюстрацияОписание процесса
  1. В преобразователь трубного типа подается основной поток жидкой среды обычной температуры;
  2. Навстречу движению основного потока подаются дополнительные потоки жидкой среды;
  3. Разнонаправленные потоки, сталкиваясь, создают эффект кавитации, за счет чего жидкая среда на выходе из преобразователя нагревается.

Устройство и особенности функционирования

Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении

Так выглядит стационарная кавитационная установка, подключённая к промышленной системе отопления

Устройство действующих образцов вихревых теплогенераторов внешне несложное. Мы можем видеть массивный двигатель, к которому подключена цилиндрическое приспособление «улитка».

«Улитка» — это доработанная версия трубы Ранка. Благодаря характерной форме, интенсивность кавитационных процессов в полости «улитки» значительно выше в сравнении с вихревой трубой.

Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении

Дисковый активатор, одетый на вал — это приспособление отвечает за движение водной среды и за создание кавитационного эффекта

В полости «улитки» располагается дисковый активатор — диск с особой перфорацией. При вращении диска, жидкая среда в «улитке» приводится в действие, за счет чего происходят кавитационные процессы:

  • Электродвигатель крутит дисковый активатор. Дисковый активатор — это самый важный элемент в конструкции теплогенератора, и он, посредством прямого вала или посредством ременной передачи, подсоединён к электродвигателю. При включении устройства в рабочий режим, двигатель передает крутящий момент на активатор;
  • Активатор раскручивает жидкую среду. Активатор устроен таким образом, что жидкая среда, попадая в полость диска, закручивается и приобретает кинетическую энергию;
  • Преобразование механической энергии в тепловую. Выходя из активатора, жидкая среда теряет ускорение и, в результате резкого торможения, возникает эффект кавитации. В результате, кинетическая энергия нагревает жидкую среду до + 95 °С, и механическая энергия становится тепловой.

Сфера применения

ИллюстрацияОписание сферы применения
Отопление. Оборудование, преобразующее механическую энергию движения воды в тепло, с успехом применяется при обогреве различных зданий, начиная с небольших частных построек и заканчивая крупными промышленными объектами.

Кстати, на территории России уже сегодня можно насчитать не менее десяти населённых пунктов, где централизованное отопление обеспечивается не традиционными котельными, а гравитационными генераторами.

Нагрев проточной воды для бытового использования. Теплогенератор, при включении в сеть, очень быстро нагревает воду. Поэтому такое оборудование можно использовать для разогрева воды в автономном водопроводе, в бассейнах, банях, прачечных и т.п.
Смешивание несмешиваемых жидкостей. В лабораторных условиях, кавитационные установки могут использоваться для высококачественного перемешивания жидких сред с разной плотностью, до получения однородной консистенции.

Интеграция в отопительную систему частного дома

Для того, чтобы применить теплогенератор в отопительной системе, его в нее надо внедрить. Как это правильно сделать? На самом деле, в этом нет ничего сложного.

Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении

Схема внедрения вихревого теплогенератора в отопительную систему загородного дома или квартиры — кроме наличия насоса, особых отличий от монтажа обычного котла нет

Перед генератором (на рисунке отмечен цифрой 2) устанавливается центробежный насос (на рисунке — 1), которой будет поддавать воду с давлением до 6 атмосфер. После генератора устанавливается расширительный бак (на рисунке — 6) и запорная арматура.

Преимущества применения кавитационных теплогенераторов

Достоинства вихревого источника альтернативной энергии
Экономичность. Благодаря эффективному расходованию электричества и высокому КПД, теплогенератор экономичнее в сравнении с другими видами отопительного оборудования.
Малые габариты в сравнении с обычным отопительным оборудованием сходной мощности. Стационарный генератор, подходящий для отопления небольшого дома, вдвое компактнее современного газового котла.

Если установить теплогенератор в обычную котельную вместо твёрдотопливного котла, останется много свободного места.

Небольшая масса установки. За счет небольшого веса, даже крупные установки высокой мощности можно запросто расположить на полу котельной, не строя специальный фундамент. С расположением компактных модификаций проблем вообще нет.

Единственно, на что нужно обратить внимание при монтаже прибора в отопительной системе, так это на высокий уровень шума. Поэтому монтаж генератора возможен только в нежилом помещении — в котельной, подвале и т.п

.

Простая конструкция. Теплогенератор кавитационного типа настолько прост, что в нем нечему ломаться.

В устройстве небольшое количество механически подвижных элементов, а сложная электроника отсутствует в принципе. Поэтому вероятность поломки прибора, в сравнении с газовыми или даже твердотопливными котлами, минимальна.

Нет необходимости в дополнительных доработках. Теплогенератор можно интегрировать в уже существующую отопительную систему. То есть, не потребуется менять диаметр труб или их расположение.
Нет необходимости в водоподготовке. Если для нормальной работы газового котла нужен фильтр проточной воды, то устанавливая кавитационный нагреватель, можно не бояться засоров.

За счет специфических процессов в рабочей камере генератора, засоры и накипь на стенках не появляются.

Работа оборудования не требует постоянного контроля. Если за твёрдотопливными котлами нужно присматривать, то кавитационный обогреватель работает в автономном режиме.

Инструкция эксплуатации устройства проста — достаточно включить двигатель в сеть и, при необходимости, выключить.

Экологичность. Кавитационные установки никак не влияют на экосистему, ведь единственный энергопотребляющий компонент — это электродвигатель.

Схемы изготовления теплогенератора кавитационного типа

Для того чтобы сделать действующий прибор своими руками, рассмотрим чертежи и схемы действующих устройств, эффективность которых установлена и документально зарегистрирована в патентных бюро.

ИллюстрацииОбщее описание конструкций кавитационных теплогенераторов
Общий вид агрегата. На рисунке 1 показана наиболее распространенная схема устройства кавитационного теплогенератора.

Цифрой 1 обозначена вихревая форсунка, на которой смонтирована камера закрутки. С боку камеры закрутки можно видеть входной патрубок (3), который присоединён к центробежному насосу (4).

Цифрой 6 на схеме обозначены впускные патрубки для создания встречного возмущающего потока.

Особо важный элемент на схеме — это резонатор (7) выполненный в виде полой камеры, объем которой изменяется посредством поршня (9).

Цифрой 12 и 11 обозначены дроссели, которые обеспечивают контроль интенсивности подачи водных потоков.

Прибор с двумя последовательными резонаторами. На рис 2 показан теплогенератор, в котором резонаторы (15 и 16) установлены последовательно.

Один из резонаторов (15) выполнен в виде полой камеры, окружающей сопло, обозначенное цифрой 5. Второй резонатор (16) также выполнен в виде полой камеры и расположен с обратного торца устройства в непосредственной близости от входных патрубков (10) подающих возмущающие потоки.

Дроссели, помеченные цифрами 17 и 18, отвечают за интенсивность подачи жидкой среды и за режим работы всего устройства.

Теплогенератор с встречными резонаторами. На рис. 3 показана малораспространённая, но очень эффективная схема прибора, в котором два резонатора (19, 20) расположены друг напротив друга.

В этой схеме вихревая форсунка (1) соплом (5) огибает выходное отверстие резонатора (21). Напротив, резонатора, отмеченного цифрой 19, вы можете видеть входное отверстие (22) резонатора под номером 20.

Обратите внимание на то, что выходные отверстия двух резонаторов расположены соосно.

ИллюстрацииОписание камеры закрутки (Улитки) в конструкции кавитационного теплогенератора
«Улитка» кавитационного теплогенератора в поперечном разрезе. На этой схеме можно видеть следующие детали:

1 — корпус, который выполнен полым, и в котором располагаются все принципиально важные элементы;

2 — вал, на котором закреплен роторный диск;

3 — роторное кольцо;

4 — статор;

5 — технологические отверстия проделанная в статоре;

6 — излучатели в виде стержней.

Основные трудности при изготовлении перечисленных элементов могут возникнуть при производстве полого корпуса, так как лучше всего его сделать литым.

Так как оборудования для литья металла в домашней мастерской нет, такую конструкцию, пусть и с ущербом для прочности, придётся делать сварной.

Схема совмещения роторного кольца (3) и статора (4). На схеме показано роторное кольцо и статор в момент совмещения при прокручивании роторного диска. То есть, при каждом совмещении этих элементов мы видим образование эффекта, аналогичного действию трубы Ранка.

Такой эффект будет возможен при условии, что в агрегате, собранном по предложенной схеме, все детали будут идеально подогнаны друг к другу

.

Поворотное смещение роторного кольца и статора. На этой схеме показано то положение конструктивных элементов «улитки», при котором происходит гидравлический удар (схлопывание пузырьков), и жидкая среда нагревается.

То есть, за счёт скорости вращения роторного диска, можно задать параметры интенсивности возникновения гидравлических ударов, провоцирующих выброс энергии. Проще говоря, чем быстрее будет раскручиваться диск, тем температура водной среды на выходе будет выше.

Подведем итоги

Теперь вы знаете, что собой представляет популярный и востребованный источник альтернативной энергии. А значит, вам будет просто решить: подходит такое оборудование или нет. Также рекомендую к просмотру видео в этой статье.

Поделитесь с друзьями в соц.сетях

Facebook

Twitter

Google+

Telegram

Vkontakte

Кавитационный теплогенератор. Устройство и работа. Применение

Кавитационный теплогенератор – специальное устройство, в котором применяется эффект нагрева жидкости кавитационным способом. То есть это эффект, при котором образуются микроскопические пузырьки пара в областях локального уменьшения давления в воде. Это может наблюдаться во время вращения насосной крыльчатки или вследствие воздействия на воду звукового колебания. В результате этого жидкость нагревается, а это значит, что при помощи нее можно обогревать дом или квартиру.

На сегодняшний день кавитационный теплогенератор считается инновационным изобретением. Однако уже практически век тому назад ученые размышляли над тем, как можно использовать эффект кавитации. Впервые подобную установку собрал Джозеф Ранк в 1934 году. Именно он отметил, что входные и выходные температуры воздушных масс этой трубы отличаются. Советские ученые несколько усовершенствовали трубы Ранка, использовав для этой цели жидкость. Опыты показали, что установка позволяет быстро разогревать воду. Однако на тот период необходимость в такой установке была минимальна, ведь энергия стоила копейки. Сегодня же, вследствие удорожания электричества, нефти и газа, потребность в таких установках возрастает.

Виды
Кавитационный теплогенератор по своему устройству может быть роторным, трубчатым или ультразвуковым:
  • Роторные устройства представляют агрегаты, в которых используются центробежные насосы с измененной конструкцией. В качестве статора здесь применяется насосный корпус, куда устанавливается входная и выходная труба. Главным рабочим элементом здесь выступает камера, где размещается подвижный ротор, он работает по принципу колеса.

Роторная установка имеет сравнительно простую конструкцию, однако для эффективной ее работы необходим очень точный монтаж всех его элементов. В том числе здесь требуется точнейшее балансирование двигающегося цилиндра. Необходима плотная посадка роторного вала, а также тщательная выверка и замена пришедших в негодность материалов изоляции. КПД таких устройств не являются довольно большим. Они имеют не очень большой срок службы. К тому же такие агрегаты работают с выделением достаточно большого шума.

  • Трубчатые тепловые генераторы осуществляют кавитационное нагревание благодаря продольному расположению трубок. При помощи помпы нагнетается давление во входящую камеру. В результате жидкость направляется через указанные трубки. На входе вследствие этого появляются пузырьки. Во второй камере устанавливается высокое давление. Пузырьки, которые при попадании во вторую камеру разрушаются, вследствие чего они отдают свою тепловую энергию. Эта энергия вместе с паром направляется на обогрев дома. Коэффициент полезного действия подобных конструкций может достигать высоких показателей.
  • Ультразвуковые тепловые генераторы. Кавитация здесь образуется благодаря ультразвуковым волнам, которые создает установка. В результате такого принципа работы обеспечиваются минимальные потери энергии. Трения здесь практически нет, вследствие чего коэффициент полезного действия ультразвукового теплового генератора невероятно высок.
Устройство

Кавитационный теплогенератор имеет устройство в зависимости от принципа действия. Типичным и наиболее распространенным представителем роторных тепловых генераторов является центрифуга Григгса. В такой агрегат заливается вода, после чего запускается ось вращения при помощи электрического двигателя. Главным достоинством такой конструкции является то, что привод нагревает жидкость, а также выступает в качестве насоса. Поверхность цилиндра имеет огромное количество неглубоких круглых отверстий, которые позволяют создать эффект турбулентности. Нагревание жидкости обеспечивается благодаря силам трения и кавитации.

Число отверстий в установке зависит от используемой роторной частоты вращения. Статор в тепловом генераторе выполнен в виде цилиндра, который запаян с двух концов, где непосредственно вращается ротор. Существующий зазор между статором и ротором равняется примерно 1,5 мм. Отверстия в роторе необходимы для того, чтобы в жидкости, трущейся о поверхности цилиндра, появлялись завихрения с целью создания кавитационных полостей.

В указанном зазоре также наблюдается и нагревание жидкости. Чтобы тепловой генератор эффективно работал, поперечный размер ротора должен составлять минимум 30 см. В то же время скорость его вращения должна достигать 3000 оборотов в минуту.

В ультразвуковых устройствах для создания эффекта кавитации используется кварцевая пластина. Она под воздействием электрического тока создает колебания звука. Эти звуковые колебания направляются на вход, вследствие чего устройство производит вибрации. На обратной фазе волны создаются участки разряжения, вследствие чего можно наблюдать кавитационные процессы, которые создают пузырьки.

Чтобы обеспечить максимальный коэффициент полезного действия, рабочая камера теплового генератора выполняется в виде резонатора, который настроен на ультразвуковую частоту. Образованные пузырьки моментально переносятся потоком через узкие трубки. Это необходимо, чтобы получить разряжение, так как пузырьки в тепловом генераторе могут быстро смыкаться, отдавая свою энергию обратно.

Принцип работы

Кавитационный теплогенератор позволяет создать процесс, во время которого в жидкости создаются пузырьки. Если рассматривать этот процесс, то он сравним с закипанием воды. Однако при кавитации наблюдается локальное падение давления, что и приводит к появлению пузырьков. В тепловом генераторе формируются вихревые потоки, вследствие них происходит кавитационный разрыв пузырьков, что приводит к нагреванию жидкости. Нагревание приводит к резкому снижению давления жидкости. Полученная энергия получается довольно дешевой, она отлично подходит для отопления помещений. В качестве теплоносителя можно использовать антифриз.

Для подобных установок обычно нужно примерно в 1,5 раза меньше электрической энергии, чем это необходимо для радиаторных и иных систем. При этом нагревание жидкости осуществляется в замкнутой системе. Работают такие агрегаты посредством преобразования одной энергии в другую. В итоге она превращается в тепловую.

Применение

Кавитационный теплогенератор в большинстве случаев применяется для нагревания воды, а также смешивания жидкостей. Поэтому подобные установки в большинстве случаев используются для:
  • Отопления. Тепловой генератор преобразует механическую энергию движения воды в тепловую энергию, которую успешно можно использовать для обогрева зданий различного характера. Это могут быть небольшие частные постройки, в том числе крупные промышленные объекты. К примеру, на территории нашей страны на текущий момент можно насчитать минимум с десяток населенных пунктов, в которых централизованное отопление осуществляется не обычными котельными, а кавитационными установками.
  • Нагревания проточной воды, которая применяется в быту. Тепловой генератор, который включен в сеть, может довольно быстро нагревать воду. В результате подобное оборудование с успехом можно применять для разогревания воды в бассейнах, автономном водопроводе, саунах, прачечных и тому подобное.
  • Смешивания несмешиваемых жидкостей. Устройства кавитационного типа могут применяться в лабораториях, где имеется необходимость высококачественного смешивания жидкостей, имеющих разную плотность.
Как выбрать

Кавитационный теплогенератор может быть выполнен в нескольких исполнениях. Поэтому выбирать такое устройство для отопления своего дома нужно с учетом ряда параметров:

  • Подбирать тепловой генератор необходимо, исходя из того, для какой площади необходимо отопление. Также следует учесть, какая погода наблюдается в зимний период. Важной характеристикой будет и теплоизоляция стен. То есть нужно выбирать устройство, которое будет обеспечивать необходимое количество тепла.
  • Если Вы приобретаете стандартную установку, то желательно, чтобы она была оборудована приборами контроля выделяемой теплоты и датчиками защиты. Лучше сразу приобрести установку с автоматическим блоком контроля и управления. Поэтому кавитационную установку рекомендуется приобретать в комплексе с другим оборудованием с услугой установки под ключ. Специалисты сами подберут и выполнят расчеты по монтажу тепловой системы в вашем доме.
  • Если Вы решили сэкономить и приобрести оборудование по отдельности, то здесь важно определиться с особенностями всех элементов системы. Насос должен иметь возможность работы с жидкостями, которые нагреты до высокой температуры. В противном случае система быстро придет в негодность и ее придется ремонтировать. К тому же насос должен обеспечивать давление от 4 атмосфер.
  • Если Вы решили соорудить кавитационную установку самостоятельно, то здесь важно верно подобрать сечение канала камеры кавитации. Оно должно составлять порядка 8-15 мм. Перед созданием такой установки важно тщательно изучить действующие схемы подобных устройств. Кавитационный теплогенератор по своему виду будет напоминать насосную станцию, которой не нужна дымоотводная труба. При ее работе не выделяется угарный газ, грязь или копоть.
Похожие темы:

Кавитационный теплогенератор своими руками чертежи устройство

Для отопления помещений или нагрева жидкостей зачастую применяются классические приспособления – тэны, камеры сгорания, нити накаливания и т.д. Но наряду с ними применяются устройства с принципиально иным типом воздействия на теплоноситель. К таким устройствам относится кавитационный теплогенератор, работа которого заключается в формировании пузырьков газа, за счет которых и возникает выделение тепла.

Устройство и принцип работы

Принцип действия кавитационного теплогенератора заключается в эффекте нагрева за счет преобразования механической энергии в тепловую. Теперь более детально рассмотрим само кавитационное явление. При создании избыточного давления в жидкости возникают завихрения, из-за того, что давление жидкости больше чем у содержащегося в ней газа, молекулы газа выделяются в отдельные включения – схлопывание пузырьков. За счет разности давления вода стремиться сжать газовый пузырь, что аккумулирует на его поверхности большое количество энергии, а температура внутри достигает порядка 1000 — 1200ºС.

При переходе кавитационных полостей в зону нормального давления пузырьки разрушаются, и энергия от их разрушения выделяется в окружающее пространство. За счет чего происходит выделение тепловой энергии, а жидкость нагревается от вихревого потока. На этом принципе основана работа тепловых генераторов, далее рассмотрите принцип работы простейшего варианта кавитационного обогревателя.

Простейшая модель

Посмотрите на рисунок 1, здесь представлено устройство простейшего кавитационного теплогенератора, который заключается в нагнетании насосом воды к месту сужения трубопровода. При достижении водяным потоком сопла давление жидкости значительно возрастает и начинается образование кавитационных пузырьков. При выходе из сопла пузырьки выделяют тепловую мощность, а давление после прохождения сопла значительно снижается. На практике может устанавливаться несколько сопел или трубок для повышения эффективности.

Идеальный теплогенератор Потапова

Идеальным вариантом установки считается теплогенератор Потапова, который имеет вращающийся диск (1) установленный напротив стационарного (6). Подача холодной воды осуществляется с трубы расположенной внизу (4) кавитационной камеры (3), а отвод уже нагретой с верхней точки (5) той же камеры. Пример такого устройства приведен на рисунке 2 ниже:

Рис. 2: кавитационный теплогенератор Потапова

Но широкого распространения устройство не получило из-за отсутствия практического обоснования его работы.

Основная задача кавитационного теплогенератора – образование газовых включений, а от их количества и интенсивности будет зависеть качество нагрева. В современной промышленности существует несколько видов таких теплогенераторов, отличающихся принципом выработки пузырьков в жидкости. Наиболее распространенными являются три вида:

  • Роторные теплогенераторы – рабочий элемент вращается за счет электропривода и вырабатывает завихрения жидкости;
  • Трубчатые – изменяют давление за счет системы труб, по которым движется вода;
  • Ультразвуковые – неоднородность жидкости в таких теплогенераторах создается за счет звуковых колебаний низкой частоты.

Помимо вышеперечисленных видов существует лазерная кавитация, но промышленной реализации этот метод еще не нашел. Теперь рассмотрим каждый из видов более детально.

Роторный теплогенератор

Состоит из электрического двигателя, вал которого соединен с роторным механизмом, предназначенным для создания завихрений в жидкости. Особенностью роторной конструкции является герметичный статор, в котором и происходит нагревание. Сам статор имеет цилиндрическую полость внутри – вихревую камеру, в которой происходит вращение ротора. Ротор кавитационного теплогенератора представляет собой цилиндр с набором углублений на поверхности, при вращении цилиндра внутри статора эти углубления создают неоднородность в воде и обуславливают протекание кавитационных процессов.

Рис. 3: конструкция генератора роторного типа

Количество углублений и их геометрические параметры определяются в зависимости от модели вихревого теплогенератора. Для оптимальных параметров нагрева расстояние между ротором и статором составляет порядка 1,5мм. Данная конструкция является не единственной в своем роде, за долгую историю модернизаций и улучшений рабочий элемент роторного типа претерпел массу преобразований.

Одной первых эффективных моделей кавитационных преобразователей был генератор Григгса, в котором использовался дисковый ротор с несквозными отверстиями на поверхности. Один из современных аналогов дисковых кавитационных теплогенераторов приведен на рисунке 4 ниже:

Рис. 4: дисковый теплогенератор

Несмотря на простоту конструкции, агрегаты роторного типа достаточно сложные в применении, так как требуют точной калибровки, надежных уплотнений и соблюдения геометрических параметров в процессе работы, что обуславливает трудности их эксплуатации. Такие кавитационные теплогенераторы характеризуются достаточно низким сроком службы – 2 — 4 года из-за кавитационной эрозии корпуса и деталей. Помимо этого они создают достаточно большую шумовую нагрузку при работе вращающегося элемента. К преимуществам такой модели относится высокая продуктивность – на 25% выше, чем у классических нагревателей.

Трубчатые

Статический теплогенератор не имеет вращающихся элементов. Нагревательный процесс в них происходит за счет движения воды по трубам, сужающимся по длине или за счет установки сопел Лаваля. Подача воды на рабочий орган осуществляется гидродинамическим насосом, который создает механическое усилие жидкости в сужающемся пространстве, а при ее переходе в более широкую полость возникают кавитационные завихрения.

В отличии от предыдущей модели трубчатое отопительное оборудование не производит большого шума и не изнашивается так быстро. При установке и эксплуатации не нужно заботиться о точной балансировке, а при разрушении нагревательных элементов их замена и ремонт обойдутся куда дешевле, чем у роторных моделей. К недостаткам трубчатых теплогенераторов относят значительно меньшую производительность и громоздкие габариты.

Ультразвуковые

Данный тип устройства имеет камеру-резонатор, настроенную на определенную частоту звуковых колебаний. На ее входе устанавливается кварцевая пластина, которая производит колебания при подаче электрических сигналов. Вибрация пластины создает волновой эффект внутри жидкости, который достигая стенок камеры-резонатора и отражается. При возвратном движении волны встречаются с прямыми колебаниями и создают гидродинамическую кавитацию.

Рис. 5: принцип работы ультразвукового теплогенератора

Далее пузырьки уносятся водным потоком по узким входным патрубкам тепловой установки. При переходе в широкую область пузырьки разрушаются, выделяя тепловую энергию. Ультразвуковые кавитационные генераторы также обладают хорошими эксплуатационными показателями, так как не имеют вращающихся элементов.

Применение

В промышленности и в быту кавитационные теплогенераторы нашли реализацию в самых различных сферах деятельности. В зависимости от поставленных задач они применяются для:

  • Отопления – внутри установок происходит преобразование механической энергии в тепловую, благодаря чему нагретая жидкость двигается по системе отопления. Следует отметить, что кавитационные теплогенераторы могут отапливать не только промышленные объекты, но и целые поселки.
  • Нагревание проточной воды – кавитационная установка способна быстро нагревать жидкость, за счет чего может легко заменять газовую или электрическую колонку.
  • Смешение жидких веществ – за счет разрежения в слоях с получением мелких полостей такие агрегаты позволяют добиться надлежащего качества перемешивания жидкостей, которые естественным образом не совмещаются из-за разной плотности.

Плюсы и минусы

В сравнении с другими теплогенераторами, кавитационные агрегаты отличаются рядом преимуществ и недостатков.

К плюсам таких устройств следует отнести:

  • Куда более эффективный механизм получения тепловой энергии;
  • Расходует значительно меньше ресурсов, чем топливные генераторы;
  • Может применяться для обогрева как маломощных, так и крупных потребителей;
  • Полностью экологичен – не выделяет в окружающую среду вредных веществ во время работы.

К недостаткам кавитационных теплогенераторов следует отнести:

  • Сравнительно большие габариты – электрические и топливные модели имеют куда меньшие размеры, что немаловажно при установке в уже эксплуатируемом помещении;
  • Большая шумность за счет работы водяного насоса и самого кавитационного элемента, что затрудняет его установку в бытовых помещениях;
  • Неэффективное соотношение мощности и производительности для помещений с малой квадратурой (до 60м 2 выгоднее использовать установку на газу, жидком топливе или эквивалентной электрической мощности с нагревательным тэном).

КТГ своими руками

Наиболее простым вариантом для реализации в домашних условиях является кавитационный генератор трубчатого типа с одним или несколькими соплами для нагревания воды. Поэтому разберем пример изготовления именно такого устройства, для этого вам понадобится:

  • Насос – для нагревания обязательно выбирайте тепловой насос, который не боится постоянного воздействия высоких температур. Он должен обеспечивать рабочее давление на выходе в 4 – 12атм.
  • 2 манометра и гильзы для их установки – размещаются с двух сторон от сопла для измерения давления на входе и выходе из кавитационного элемента.
  • Термометр для измерения величины нагрева теплоносителя в системе.
  • Клапан для удаления лишнего воздуха из кавитационного теплогенератора. Устанавливается в самой верхней точке системы.
  • Сопло – должно иметь диаметр проходного отверстия от 9 до 16мм, делать меньше не рекомендуется, так как кавитация может возникнуть уже в насосе, что значительно снизит срок его эксплуатации. По форме сопло может быть цилиндрическим, коническим или овальным, с практической точки зрения вам подойдет любое.
  • Трубы и соединительные элементы (радиаторы отопления при их отсутствии ) – выбираются в соответствии с поставленной задачей, но наиболее простым вариантом являются пластиковые трубы под пайку.
  • Автоматика включения/отключения кавитационного теплогенератора – как правило, подвязывается под температурный режим, устанавливается на отключение примерно при 80ºС и на включение при снижении менее 60ºС. Но режим работы кавитационного теплогенератора вы можете выбрать самостоятельно.

Рис. 6: схема кавитационного теплогенератора

Перед соединением всех элементов желательно нарисовать схему их расположения на бумаге, стенах или на полу. Места расположения необходимо размещать вдали от легковоспламеняемых элементов или последние нужно убрать на безопасное расстояние от системы отопления.

Соберите все элементы, как вы изобразили на схеме, и проверьте герметичность без включения генератора. Затем опробуйте в рабочем режиме кавитационного теплогенератора, нормальным нарастанием температуры жидкости считается 3- 5ºС за одну минуту.

Хозяева частных домов всячески стремятся сэкономить на отоплении, которое год от года требует немалых затрат. С целью создания обогревательных экономных систем в жилых, производственных, общественных помещениях разрабатываются и применяются на практике различные схемы по выработке выгодной тепловой энергии. Для этих целей подходит кавитационный теплогенератор.

Вихревое устройство: общее понятие

Подобная установка конструктивно достаточно проста. Она используется для эффективного и выгодного отопления здания с минимальными финансовыми затратами. Экономичность обуславливается специальным нагревом воды через кавитацию. Такой метод заключается в создании мелких пузырьков из пара в зоне сниженного давления рабочей жидкости, которое обеспечивается специальными звуковыми колебаниями, функционированием насоса.

Кавитационный нагреватель справляется с переработкой механической энергии в тепловой поток, что немаловажно для промышленных объектов. В них нагревательные элементы периодически выходят из строя, поскольку функционируют с жидкостями большой разности по температуре.

Именно такие кавитаторы выступают надежной заменой устройствам, работа которых зависит от твердых видов топлива.

В этом видео вы узнаете, как устроен теплогенератор:

Кавитационные генераторы: преимущества

Такие установки нашли широкое применение в бутовых условиях и на производстве. Причиной тому выступают следующие факторы, их характеризующие:

  • ценовая доступность;
  • экономичность отопительной системы;
  • возможность создания конструкции своими руками;
  • высокий КПД обогрева.

Правила эксплуатации гласят, что нельзя устанавливать вихревые изделия внутри жилого помещения из-за создания высокоуровневого шума. Оптимальным вариантом станет обустройство отдельной хозпостройки, котельной.

К недостаткам относятся довольно большие размеры готового к эксплуатации обогревателя. Также отмечается чрезмерная мощность для частного дома, коттеджа, возможная сложность приобретения материалов, которые понадобятся в случае самостоятельного изготовления кавитатора.

Строение нагревателя и принцип работы

Кавитационное отопление характеризуется образованием пузырьков из пара в рабочей жидкости. В результате такого действия давление постепенно снижается благодаря высокой скорости потока. Следует отметить, что необходимое парообразование задается специальным излучением лазерных импульсов либо акустикой, заданной определенными звуками. Воздушные области закрытого типа смешиваются с водяной массой, после чего поступают в зону большого давления, где вскрываются и излучают ожидаемую ударную волну.

Оборудование кавитационного типа отличается способом функционирования. Схематично оно выглядит так:

  1. Водяной поток перемещается по кавитатору, в котором с помощью циркуляционного насоса обеспечивается рабочее давление, поступающее в рабочую емкость.
  2. Далее в таких емкостях повышается скорость, соответственно, и давление жидкости посредством установленных по чертежам трубок.
  3. Потоки, достигая центральной части камеры, перемешиваются, в результате чего и образуется кавитация.
  4. В результате описанного процесса пузырьки пара не увеличиваются в размерах, отсутствует их взаимодействие с электродами.
  5. После этого вода перемещается в противоположную часть емкости и возвращается для совершения нового круга.
  6. Нагревание обеспечивается передвижением и расширением жидкости в месте выхода из сопла.

Из работы вихревой установки видно, что ее конструкция незамысловата и проста, но при этом обеспечивает быстрый и выгодный обогрев помещения.

Типы обогревателей

Кавитационный котел отопления относится к одному из распространенных типов обогревателей. Наиболее востребованные из них:

  1. Роторные установки, среди которых особого внимания заслуживает устройство Григгса. Суть его действия основана на центробежном насосе роторного действия. Внешне описываемая конструкция напоминает диск с несколькими отверстиями. Каждая такая ниша называется ячейкой Григгса, их количество и функциональные параметры взаимозависимы с частотой вращения привода, типом применяемой генераторной установки. Рабочая жидкость подогревается в пространстве между ротором и статором из-за быстрого перемещения по дисковой поверхности.
  2. Статические обогреватели. Котлы лишены каких-либо передвигающихся деталей, кавитация в них обеспечивается за счет специальных элементов Лаваля. Установленный в отопительную систему насос задает необходимое давление воды, которая начинает быстро передвигаться и подогреваться. За счет узких отверстий в соплах жидкость перемещается в ускоренном режиме. Из-за ее быстрого расширения достигается необходимая для обогрева кавитация.

Выбор того или иного нагревателя зависит от потребностей человека. Следует учитывать, что роторный кавитатор более производителен, к тому же он отличается меньшими размерами.

Особенность статического агрегата заключается в отсутствии вращающихся деталей, чем и обуславливается его продолжительный эксплуатационный срок. Длительность работы без технического обслуживания достигает 5 лет. Если же сломается сопло, его без труда можно заменить, что стоит гораздо дешевле в сравнении с приобретением нового рабочего элемента в роторную установку.

Самостоятельное изготовление оборудования

Создать кавитатор своими руками вполне реально, но предварительно стоит ознакомиться со схематическими особенностями, точными чертежами агрегата, понять и подробно изучить принцип, по которому он действует. Наиболее простой моделью принято считать ВТГ Потапова с показателем КПД в 93%. Схематически теплогенератор довольно прост, будет уместен в быту и промышленном применении.

Приступая к сборке агрегата, необходимо подобрать в систему насос, который должен полностью соответствовать требованиям мощности, необходимой тепловой энергии. В большинстве своем описываемые генераторы по форме напоминают сопло, такие модели самые удобные и простые для домашнего применения.

При собственноручном создании теплогенератора не забываем нужные зап.части, например, гильзы

Создание кавитатора невозможно без предварительной подготовки определенных инструментов и приспособлений. К ним относятся:

  • патрубки входного и выходного типа, оснащенные краниками;
  • манометры, измеряющие давление;
  • термометр, без которого невозможно произвести замер температуры;
  • гильзы, которыми дополняются термометры;
  • вентили, с помощью которых из всей отопительной системы устраняются воздушные пробки.

Специалисты рекомендуют следить за диаметральным показателем сечения отверстия, которое присутствует между конфузором и диффузором. Оптимальные пределы варьируются от 8 до 15 единиц, выход за эти рамки нежелателен.

Последовательность конструирования кавитационного теплогенератора своими руками представлена следующими действиями:

  1. Выбор насоса, который предназначен для эксплуатации с жидкостями высоких температур. В противном случае он быстро выйдет из строя. К такому элементу предъявляется обязательное требование: создание давления от 4 атмосфер.
  2. Выполнение емкости для кавитации. Главным условием выступает подбор необходимого по сечению проходного канала.
  3. Выбор сопла с учетом особенностей конфигурации. Такая деталь может быть цилиндрического, конусообразного, округлого типа. Важно, чтобы на входе воды в емкость развивался вихревой процесс.
  4. Подготовка внешнего контура — немаловажная процедура. Он представляет собой изогнутую трубку, которая отходит от кавитационной камеры. Далее она соединяется с двумя гильзами от термометра и двумя манометрами, а также с воздушным вентилем, помещенным в пространство между выходом и входом.

Когда закончена работа с корпусом, следует поэкспериментировать с обогревателем. Процедура заключается в подведении насосной установки к электросети, при этом радиаторы подключаются с обогревательной системой. Следующий шаг — включение сети.

Должен осуществляться строгий контроль показателей манометров. Разница между цифрами на входе и выходе должна колебаться в пределах 8-12 атмосфер.

Если конструкция работает исправно, в нее подается необходимое количество воды. Хороший показатель — подогрев жидкости на 3-5 градусов за 10-15 минут.

Нагреватель кавитационного типа представляет собой выгодную установку, за короткое время обогревает здание, к тому же максимально экономичен. При желании он легко конструируется в домашних условиях, для чего понадобятся доступные и недорогие приспособления.

Плотно занимаясь вопросами утепления и отопления дома, мы часто сталкиваемся с тем, что появляются какие-то чудо-приборы или материалы, которые позиционируются как прорыв века. При дальнейшем изучении оказывается, что это очередная манипуляция. Яркий тому пример кавитационный теплогенератор. В теории все получается очень выгодно, но пока на практике (в процессе полноценной эксплуатации) доказать эффективность прибора не удалось. То ли времени не хватило, то ли не все так гладко.

Критический взгляд на кавитационный теплогенератор

С позиции обычного пользователя кавитационный теплогенератор вызывает некоторое недоверие. Такова уж природа человека. По заявлениям изобретателей этот прибор выдает КПД в 300%. То есть агрегат, потребляя 1 кВт электрической энергии, выдает 3 кВт тепловой. Но так ли это на самом деле?

На уважаемых форумах нагрев воды кавитацией считают возможным, но эффективность этого процесса не превышает 60%. А по факту, это новшество всерьез никто не воспринимает. Да, на кавитационный теплогенератор есть патент, но это еще ничего не значит. Например, на краску-утеплитель тоже есть сертификаты и некоторые подрядчики даже пролоббировали возможность утеплять ею фасады многоэтажек в рамках государственной программы. Вот только после такого утепления люди оббили пороги судов, чтобы вернуть потраченные деньги, так как эффективность жидкой теплоизоляции не подтвердилась на практике.

Изобретатель может получить на свое детище патент, который в случае успешного внедрения будет приносить доход. Но это не дает гарантии, что прибор будет в будущем работать по заявленному алгоритму. Также нет гарантий, что его будут выпускать серийно.

При замере эффективности опытных образцов использовался какой-то хитрый способ вычисления КПД, понять который простому смертному не дано. Конкретики мало, сплошное замыливание глаз. Грубо говоря, все гладко только в теории. Если образец 100% рабочий, то почему ученым еще не присвоена Нобелевская премия?

На множественных форумах нам не удалось найти ни одного человека, который бы отапливал свой дом кавитационным генератором. Нет реальных доказательств его эффективности. В сети можно найти видео про этот прибор, но толкового объяснения, что и как работает – нет, все вокруг да около и крайне неубедительно. Мы считаем, что данный метод обогрева дома не стоит внимания.

Что такое кавитация

Кавитация – это негативное явление, которое возникает из-за перепада давления в жидкости. Когда давление воды понижается до значения давления насыщенного пара – это приводит к вскипанию. Это когда жидкость частично переходит в состояние пара, то есть образуются пузырьки. Когда давление повышается до уровня выше значения насыщенного пара – пузырьки лопаются. В результате всхлопывания возникают локальные волны давления до 7 тыс. бар. Эти волны давления и называются кавитацией.

Для утепления мансарды изнутри минватой своими руками нужно использовать паробарьеры.

Это касается и технологии утепления крыши изнутри минватой. Но кроме пароизоляции еще используется гидробарьер.

  • эрозия металлов;
  • питтинговая коррозия;
  • появление вибраций.

Изобретатели кавитационного генератора уверяют, им удалось извлечь из негативного явления пользу.

Сделать своими руками?

Вы можете купить готовый кавитационный теплогенератор, но сделать это устройство своими руками по чертежам вряд ли получиться. В лучшем случае выйдет шумная машина, в которой кавитации не будет. Кроме этого, перед тем как что-то сделать, нужно задать себе вопрос: «Зачем?». Есть масса способов обогреть дом:

  • газовые, твердотопливные, электрические котлы в тандеме с водяными системами отопления;
  • электрические обогреватели;
  • системы ПЛЭН;
  • теплые инфракрасные полы;
  • кондиционер;
  • тепловые насосы или гелиосистемы – если хочется экзотики.

Не верьте тем, кто говорит, что сделать кавитационные теплогенераторы своими руками легко и просто, потратив две копейки. Это не так. Вы потратите только свое время и не получите взамен ничего, кроме разочарования.

Выбор материалов для утепления кровли изнутри минватой относительно невелик.

По сравнению со скатной крышей, утепление чердачного перекрытия минватой является более простым процессом.

Вот на видео ниже пример того, как народный умелец сделать данный прибор. Как думаете, можно им обогреть хоть что-нибудь?

Кавитационный теплогенератор: применение, механизм, конструкции

Кавитационный теплогенератор – это тепловой насос, гидродинамический преобразователь энергии движения жидкости в нагрев калориферов.

Кавитация

На первый взгляд, тема кавитационных теплогенераторов представляется фантастичной и вычеркнута из Википедии, но по детальному изучению оказалась любопытной. Тем интереснее становился вопрос, чем дальше авторы углублялись в изучение. Книга Фоминского о дармовых источниках энергии начинается с описания глобальной экологической катастрофы конца XX века. Среди общеизвестных фактов о вреде двигателей внутреннего сгорания, невероятных сведений о ценности кавитационных теплогенераторов выдвигаются гипотезы об изменении режима дыхания лесов планеты и… об остановке тёплого течения Гольфстрим. В 2003 году книжка читалась как сборник фантастики. Напомним, сейчас Европа обеспокоена остановкой Гольфстрима, становится ясным, что автор сумел предсказать будущее на 10 лет вперёд.

Это наталкивает на мысль, что идея кавитационных теплогенераторов не столь утопична, как пытаются представить средства массовой информации. Известно, что КПД термоэлектрических источников составлял доли процента в начале XX века, сегодня это направление считается перспективным. Эффективность первых термопар достигала 3%, что сопоставимо с успехами паровых двигателей начала XIX века. Уже сегодня инженеры (см. скрин) говорят, что КПД кавитационного теплогенератора допустим выше единицы.

Кавитационный теплогенератор – насос. Поток жидкости просто переносит энергию из места в место. Любой кондиционер и холодильник показывают КПД выше 100%, работают по принципу теплового насоса, перекачивая энергию из одной области пространства в другую. Сопоставим с поливом деревьев: энергия электричества не может напитать корни, но стоит к двигателю приделать гребной винт, как потоки воды устремляются, чтобы принести живительную влагу. Принцип действия кавитационного теплогенератора в точности аналогичен.

Тепловой насос считается дорогим типом оборудования. Обычно качает тепло Земных недр или речного потока. Температура в указанных источниках невысока, понижая давление фреона, удаётся добиться забора тепла и доставки в нужное место. Холодильник не вырабатывает мороз непосредственно. Он разряжает фреон, за счёт законов термодинамики тепло переходит на испаритель, оттуда доставляется к радиатору на задней стенке.

Аналогичным образом кавитационные пузырьки образуются в местах, где давление воды ниже точки перехода в иное агрегатное состояние (см. рис.). Как результат, поглощается большое количество энергии. На перевод вещества в иное агрегатное состояние приходится затратить тепло. Которое берётся из окружающей воды, а та – перекачивает с корпуса кавитационного теплогенератора, потом из помещения. На корпусе тепло образуется за счёт нагнетания давления помпой. КПД выше единицы объясняется отбором тепла у окружающей среды. Высок процент использования собственных потерь генератора на нагрев обмоток и трение.

Помощь кавитационного теплогенератора

Климат сегодня сильно меняется из-за работы двигателей внутреннего сгорания. 40% углекислого газа на планете вырабатывается транспортом, значительная часть выбрасывается частными домовладельцами, жгущими топливо для обогрева. Выделяется в атмосферу сонм вредных веществ, нарушаются условия существования жизни на планете. Следовательно, энергия ТЭС не предлагается в качестве альтернативы, приносящей пользу. В силу очевидных причин.

Кавитационные теплогенераторы позволяют решить часть сложностей очевидным способом: перекачивая энергию из части пространства в другую, получится решать насущные потребности человеческой жизнедеятельности. К примеру, генератор может давать тепло и забирать. Ключевое преимущество обогревателей в том, что энергия не исчезает бесследно. Она остаётся теплом на омическом сопротивлении проводов, преодолевает силы трения. Все происходит в районе силовой установки, в конечном итоге теряется паразитными эффектами, неиспользуемыми в силу разрозненности факторов. Кавитационный генератор позволит собрать потерянные крохи простым методом: примется откачивать тепло из очага его образования:

  1. Обмотки двигателя.
  2. Поверхности трения.

Уже за счёт фактора КПД установки повысится: тепловые потери греют место, откуда перекачивается тепло. Это безусловный плюс. Остальное возьмётся из воздуха. Стоит вдуматься:

  • Холодильник летом греет кухню, КПД падает.
  • Кондиционер забирает жару с мороза или выкачивает холод с подсолнечной стороны здания.

А кавитационный теплогенератор способен собственные потери утилизировать с пользой. Обязан быть признан перспективным. Сложность – как получить побольше пузырьков из механического движения. Этому уже сегодня посвящены десятки, если не сотни патентов, к примеру, RU 2313036. Несложно догадаться, что для перекачивания тепло нужно откуда-то взять. Это правильная постановка вопроса, из-за упущения смысла происходящего люди не хотят верить, что кавитационный генератор – реальность: «Как теплотехник, скажу – это бред. Энергия из ниоткуда не возникает. Затрачивать меньше электроэнергии и получать больше тепловой позволяет тепловой насос.» (форум okolotok.ru)

Если профессионалу непонятно, что речь идёт о своеобразном тепловом насосе, что знает широкая публика про кавитационный теплогенератор… Установим, кому окажется полезен кавитационный теплогенератор. Доведённую до совершенства конструкцию допустимо применять:

  1. Для отбора энергии сточных вод.
  2. Охлаждения цехов с одновременным обогревом рабочих мест.
  3. Обогрева помещений без использования нефти, газа, мазута, угля, дров и пр.

Механизм кавитации

Образование пузырьков возможно в движущемся потоке. Там, где резко снижено давление. К подобным местам относят гребные лопасти судов, переходники трубопроводов с разным диаметром (см. рис.). Собственно, конструкции кавитационных генераторов делят на роторные и трубчатые. Обе приводятся в движение электричеством, но принцип действия различается. Винт и труба показаны на скринах для иллюстрации сказанного.

Для объяснения происходящего нужно взглянуть на график агрегатных состояний. Там показаны твёрдое тело (solid), жидкость (liquid) и пар в виде областей для некой температуры (по горизонтали) и давления (по вертикали). Пунктирами обозначены линии:

  1. По горизонтали – нормальное атмосферное давление.
  2. По вертикали – точки таяния льда и кипения воды.

Видно, что в нормальных условиях пар образуется при температуре 100 градусов, при падении давления вполовину точка кипения смещается до нуля градусов Цельсия. Эффект хорошо знаком альпинистам, знающим – на высоте невозможно сварить мясо. Вода закипает уже при 70-80 градусах Цельсия.

Гребной винт судна образует пузырьки при нормальной температуре воды. Кавитация оказывает пагубное влияние. На рисунке видно, что уже через пару лет эксплуатации поверхность покрывается выщербинами. Кавитация затратна для гидравлических систем.

Образовавшийся пузырёк не лопается за счёт силы натяжения воды и двигается в область с большим давлением, уносясь потоком. Постепенно в передней части образуется вмятина, форма меняется с шаровидной, становясь похожей на эритроцит. Постепенно стенки смыкаются, получается тор (баранка). Образовавшиеся течения создают крутящий момент, фигура пытается вывернуться наизнанку. В результате колба лопается, остаётся некий сгусток турбулентностей (см. рис.). При переходе пара в иное агрегатное состояние выделяется поглощённая ранее энергия. На этом транспорт тепла заканчивается.

Разговор о вечных двигателях: научные небылицы

Виктор Шаубергер

Австрийский физик Виктор Шаубергер в бытность лесником разработал любопытную систему сплава брёвен. По внешнему виду напоминала изгибы натуральных рек, а не прямую линию. Двигаясь по столь своеобразной траектории, дерево быстрее достигало места назначения. Шаубергер пояснял это снижением сил гидравлического трения.

Ходят слухи, что Шаубергер заинтересовался вихревым движением жидкости. Австрийские любители пива на соревнованиях раскручивали бутылку, чтобы придать вращательное движение напитку. Пиво быстрее залетало в брюхо, хитрец выигрывал. Шаубергер самостоятельно повторил трюк и убедился в эффективности.

Не нужно путать описанный случай с вихрем сточной воды, всегда закручивающейся в одном направлении. Сила Кориолиса обусловлена вращением Земли и замечена, как считается, Джованни Баттиста Риччоли и Франческо Мариа Гримальди в 1651 году. Явление объяснено и описано в 1835 году Гаспаром-Густавом Кориолисом. В начальный момент времени за счёт случайного движения потока воды происходит отдаление от центра воронки, траектория закручивается по спирали. За счёт давления воды процесс набирает силу, образуется конусовидное углубление на поверхности.

Виктор Шаубергер ориентировочно 10 мая 1930 года получил патент Австрии за номером 117749 на турбину специфичной конструкции в виде заостряющегося бура. По словам учёного, в 1921 году на её основе сделан генератор, снабжавший энергией целую ферму. Шаубергер утверждал, что КПД устройства близок к 1000% (три нуля).

  1. Вода закручивалась по спирали на входе в патрубок.
  2. На входе стояла упомянутая турбина.
  3. Направляющие спирали совпадали с формой потока, в результате осуществлялась максимально эффективная передача энергии.

Все прочее о Викторе Шаубергере сводится к научной фантастике. Утверждали что он изобрёл двигатель Репульсион, приводивший в движение летающую тарелку, защищавшую Берлин в период Второй мировой войны. По окончании боевых действий комиссовался и отказался делиться собственными открытиями, способными принести большой вред миру на Земле. Его история, как две капли воды, напоминает случившееся с Николой Теслой.

Считается, что Шаубергер собрал первый кавитационный теплогенератор. Имеется фото, где он стоит рядом с этой «печью». В одном из последних писем утверждал, что открыл новые субстанции, делающие возможными невероятные вещи. К примеру, очистку воды. Одновременно утверждая, что его воззрения поколеблют основы религии и науки, предрекал победу «русским». Сегодня сложно судить, насколько оставался приближен к реалиям учёный за полгода до смерти.

Ричард Клем и вихревой двигатель

Ричард Клем (Richard Clem) по собственным словам на исходе 1972 года испытывал асфальтный насос. Его насторожило странное поведение машины после выключения. Начав эксперименты с горячим маслом, Ричард быстро пришёл к выводу, что налицо нечто вроде вечного двигателя. Специфичной формы ротор из конуса, прорезанного спиральными каналами, снабжён разбегающимися форсунками. Раскрученный до некоторый скорости, сохранял движение, успевая приводить в действие масляный насос.

Уроженец Далласа задумал пробный пробег в 600 миль (1000 км) до Эль Пасо, потом решился опубликовать изобретение, но доехал только до Абилена, свалив неудачу на слабый вал. В заметках по этому поводу говорится, что конус требовалось раскрутить до некоторой скорости, а масло нагреть до 150 градусов Цельсия, чтобы все заработало. Устройство демонстрировало среднюю мощность в 350 лошадиных сил при массе 200 фунтов (90 кг).

Насос работал на давление 300 – 500 фунтов на квадратный дюйм (20 – 30 атм.), и чем выше оказывалась плотность масла, тем резвее крутился конус. Ричард вскоре умер, а наработки изъяты. Патент под номером US3697190 на асфальтный насос легко найти в интернете, но Клем на него не ссылался. Нет гарантий, что «работоспособная» версия не изъята ранее из документации бюро. Энтузиасты и сегодня строят двигатели Клема и демонстрируют принцип действия на Ютубе.

 

Разумеется, это лишь подобие конструкции, изделие неспособно для себя создавать свободную энергию. Клем говорил, что первый двигатель ни на что не годился, пришлось обойти 15 компаний в поисках финансирования. Мотор работает на масле для жарки, температуры в 300 градусов не выдерживает автомобильное. По заявлениям репортёров, аккумулятор на 12 В считается единственным видимым со стороны источником питания устройства.

Двигатель занесли в кавитационные по простой причине: периодически уже горячее масло требовалось охлаждать через теплообменник. Следовательно, внутри нечто совершало работу. Подумав, исследователи отнесли это на эффект кавитации у входа в насос и внутри распределительной системы трубок. Подчеркнем: «Ни один двигатель Ричарда Клема, изготовленных сегодня, не работоспособен».

Несмотря на это, Российское Энергетическое Агентство в базе данных опубликовало информацию (energy.csti.yar.ru/documents/view/3720031515) с оговоркой, что конструкция двигателя (им) напоминает турбину Николы Теслы.

Конструкции кавитационных теплогенераторов

Ссылки на то, что разработки по кавитационным двигателям засекречены, не выдерживают критики. Многие устройства действуют с КПД выше 1, если речь о перекачке тепла. Следовательно, сверхсекретного в этом нет. Конструкторы изготавливают образцы вполне работоспособных кавитационных теплогенераторов. Нельзя сказать, что КПД высок, но определённый потенциал у конструкции присутствует.

Роторные

Центрифуга Григгса считается достойным примером роторных кавитационных теплогенераторов. В устройство закачивается вода, ось начинает вращаться, приводимая в движение электродвигателем. Безусловный плюс конструкции  – единственный привод служит насосом в системе отопления и нагревателем жидкой фазы. На поверхности рабочего цилиндра прорезано множество неглубоких отверстий круглой формы, где жидкость образует турбулентности. Нагрев происходит за счёт сил трения в приповерхностном слое и кавитации.

Трубчатые

На скрине из видео показана сборка кавитационного обогревателя с продольным расположением трубок. Конструкция описана в патенте RU 2313036. Помпой нагнетается давление во входной камере, жидкость устремляется сквозь конструкцию из трубок. На входе (см. рис.) образуются пузырьки за счет кавитации по описанной выше схеме. Выходя на той стороне, попадают во вторую камеру с высоким давлением, лопаются и отдают тепло.

На входе перед системой узких трубок давление жидкости повышается помпой, температура в этом месте увеличена. Указанная энергия и забирается образовавшимися пузырьками с паром для обогрева помещений. Как оговорено выше, такой тепловой насос способен на КПД более 100%, о чем заявляет автор конструкции. Каждый убедится самостоятельно, посмотрев видео на Ютуб (название канала – на скрине).

Ультразвуковые

В 2013 году опубликован патент WO2013102247 A1. После полугодового рассмотрения комиссия бюро отдала исключительные права на ультразвуковой кавитационный теплогенератор Иоэлю Дотте Эхарту Рубему. Смысл задумки в преобразовании электрического тока кварцевой пластиной. Колебания звуковой частоты подаются на вход, и устройство начинает создавать вибрации. В обратной фазе волны образуются участки разряжения, где за счёт кавитации образуются пузырьки.

Для достижения максимального эффекта рабочая камера кавитационного теплогенератора выполнена в виде резонатора на ультразвуковую частоту. Полученные пузырьки немедленно уносятся потоком через узкие трубки. Это нужно для получения разряжения, дабы пузырьки в кавитационном теплогенераторе не сомкнулись немедленно, тут же отдав энергию обратно.

Несложно догадаться, что потери минимальные, а трение отсутствует вовсе, поэтому КПД ультразвукового кавитационного теплогенератора шикарный. Учёный говорит, что перекачка тепла возможна с выигрышем в 2,5 раза. Это пока меньше полученного Виктором Шаубергером, но заставит задуматься. Устройство предположительно возможно использовать и для охлаждения помещений.

По ходу текста автор подробно объясняет механизм переотражения волны в кавитационном теплогенераторе, суть которого несущественна в рамках обзора.

устройство, виды, применение. Кавитационный теплогенератор своими руками Вихревой теплогенератор сделать своими руками

Разнообразные способы экономии энергии или получения дарового электричества сохраняют свою популярность. Благодаря развитию Интернета информация о всевозможных «чудо-изобретениях» становится все доступнее. Одна конструкция, потеряв популярность, сменяется другой.

Сегодня мы рассмотрим так называемый вихревой кавитационный генератор — устройство, изобретатели которого обещают нам высокоэффективный обогрев помещения , в котором оно установлено. Что это такое? Данное устройство использует эффект нагрева жидкости при кавитации — специфическом эффекте образования микропузырьков пара в зонах локального снижения давления в жидкости, происходящем либо при вращении крыльчатки насоса, либо при воздействии на жидкость звуковых колебаний. Если Вам когда-либо доводилось пользоваться ультразвуковой ванной, то Вы могли заметить, как ее содержимое ощутимо нагревается.

В Интернете распространены статьи о вихревых генераторах роторного типа, принцип действия которых состоит в создании областей кавитации при вращении в жидкости крыльчатки специфической формы. Жизнеспособно ли данное решение?

Начнем с теоретических выкладок. В данном случае мы расходуем электроэнергию на работу электродвигателя (средний КПД — 88%), полученную механическую энергию же частично тратим на трение в уплотнениях кавитационного насоса, частично — на нагрев жидкости вследствие кавитации. То есть в любом случае в тепло будет преобразована лишь часть потраченной электроэнергии. Но если вспомнить, что КПД обычного ТЭНа составляет от 95 до 97 процентов, становится понятным, что чуда не будет: гораздо более дорогой и сложный вихревой насос окажется менее эффективен, чем простая нихромовая спираль .

Можно возразить, что при использовании ТЭНов в систему отопления необходимо вводить дополнительные циркуляционные насосы, в то время как вихревой насос сможет сам перекачивать теплоноситель. Но, как ни странно, создатели насосов борются с возникновением кавитации, не только значительно снижающей эффективность работы насоса, но и вызывающей его эрозию. Следовательно, насос-теплогенератор не только должен быть мощнее специализированного перекачивающего насоса, но и потребует применения более совершенных материалов и технологий для обеспечения сравнимого ресурса.

Конструктивно наше сопло Лаваля будет выглядеть как металлический патрубок с трубной резьбой на концах, позволяющей при помощи резьбовых муфт соединить его с трубопроводом. Для изготовления патрубка понадобится токарный станок.

  • Сама форма сопла, точнее, его выходной части, может отличаться по исполнению. Вариант «а» наиболее прост в изготовлении, а его характеристики можно варьировать изменением угла выходного конуса в пределах 12-30 градусов. Однако такой тип сопла обеспечивает минимальное сопротивление потоку жидкости, а, следовательно, и наименьшую кавитацию в потоке.
  • Вариант «б» более сложен в изготовлении, но за счет максимального перепада давления на выходе сопла создаст и наибольшую турбулентность потока. Условия для возникновения кавитации в этом случае являются оптимальными.
  • Вариант «в» — компромиссный по сложности изготовления и эффективности, поэтому стоит остановиться на нем.

Множество полезных изобретений осталось невостребованными. Это происходит из-за человеческой лени или из-за страха перед непонятным. Одним из таких открытий долгое время был вихревой теплогенератор. Сейчас на фоне тотальной экономии ресурсов, стремлению к использованию экологически чистых источников энергии, теплогенераторы стали применять на практике для отопления дома или офиса. Что же это такое? Прибор, который раньше разрабатывался только в лабораториях, или новое слово в теплоэнергетике.

Система отопления с вихревым теплогенератором

Принцип действия

Основой работы теплогенераторов является преобразование механической энергии в кинетическую, а затем – в тепловую.

Еще в начале ХХ столетия Жозеф Ранк обнаружил сепарацию вихревой струи воздуха на холодную и горячую фракции. В середине прошлого века немецкий изобретатель Хилшем модернизировал устройство вихревой трубы. Спустя немного времени, русский ученый А. Меркулов запустил в трубу Ранке вместо воздуха воду. На выходе температура воды значительно повысилась. Именно этот принцип лежит в основе работы всех теплогенераторов.

Проходя через водяной вихрь, вода образует множество воздушных пузырьков. Под воздействием давления жидкости пузырьки разрушаются. Вследствие этого освобождается какая-то часть энергии. Происходит нагрев воды. Этот процесс получил название кавитация. На принципе кавитации рассчитывается работа всех вихревых теплогенераторов. Генератор такого типа называется «кавитационный».

Виды теплогенераторов

Все теплогенераторы делятся на два основных вида:

  1. Роторный. Теплогенератор, в котором вихревой поток создается при помощи ротора.
  2. Статический. В таких видах водяной вихрь создается при помощи специальных кавитационных трубок. Давление воды производит центробежный насос.

Каждый вид обладает своими преимуществами и недостатками, на которых следует остановиться подробнее.

Роторный теплогенератор

Статором в данном устройстве служит корпус центробежного насоса.

Роторы могут быть различные. В интернете представлено множество схем и инструкций по их выполнению. Теплогенераторы – скорее научный эксперимент, постоянно находящийся в процессе разработки.

Конструкция роторного генератора

Корпусом является пустотелый цилиндр. Расстояние между корпусом и вращающейся частью рассчитывается индивидуально (1.5-2 мм).

Нагревание среды происходит благодаря ее трению с корпусом и ротором. Помогают этому пузырьки, которые образуются за счет кавитации воды в ячейках ротора. Производительность таких устройств на 30% выше статических. Установки довольно шумные. Имеют повышенную изношенность деталей, за счет постоянного воздействия агрессивной среды. Требуется постоянный контроль: за состоянием сальников, уплотнителей и др. Это значительно усложняет и удорожает обслуживание. При их помощи редко монтируют отопление дома, им нашли немного другое применение – обогрев больших производственных помещений.

Модель промышленного кавитатора

Статический теплогенератор

Основной плюс данных установок в том, что в них ничего не вращается. Электроэнергия тратится только на работу насоса. Кавитация происходит при помощи естественных физических процессов в воде.

Кавитационный генератор своими руками чертежи устройство

Плотно занимаясь вопросами утепления и отопления дома, мы часто сталкиваемся с тем, что появляются какие-то чудо-приборы или материалы, которые позиционируются как прорыв века. При дальнейшем изучении оказывается, что это очередная манипуляция. Яркий тому пример кавитационный теплогенератор. В теории все получается очень выгодно, но пока на практике (в процессе полноценной эксплуатации) доказать эффективность прибора не удалось. То ли времени не хватило, то ли не все так гладко.

Критический взгляд на кавитационный теплогенератор

С позиции обычного пользователя кавитационный теплогенератор вызывает некоторое недовериеС позиции обычного пользователя кавитационный теплогенератор вызывает некоторое недоверие. Такова уж природа человека. По заявлениям изобретателей этот прибор выдает КПД в 300%. То есть агрегат, потребляя 1 кВт электрической энергии, выдает 3 кВт тепловой. Но так ли это на самом деле?

На уважаемых форумах нагрев воды кавитацией считают возможным, но эффективность этого процесса не превышает 60%. А по факту, это новшество всерьез никто не воспринимает. Да, на кавитационный теплогенератор есть патент, но это еще ничего не значит. Например, на краску-утеплитель тоже есть сертификаты и некоторые подрядчики даже пролоббировали возможность утеплять ею фасады многоэтажек в рамках государственной программы. Вот только после такого утепления люди оббили пороги судов, чтобы вернуть потраченные деньги, так как эффективность жидкой теплоизоляции не подтвердилась на практике.

Изобретатель может получить на свое детище патент, который в случае успешного внедрения будет приносить доход. Но это не дает гарантии, что прибор будет в будущем работать по заявленному алгоритму. Также нет гарантий, что его будут выпускать серийно.

При замере эффективности опытных образцов использовался какой-то хитрый способ вычисления КПД, понять который простому смертному не дано. Конкретики мало, сплошное замыливание глаз. Грубо говоря, все гладко только в теории. Если образец 100% рабочий, то почему ученым еще не присвоена Нобелевская премия?

На множественных форумах нам не удалось найти ни одного человека, который бы отапливал свой дом кавитационным генератором. Нет реальных доказательств его эффективности. В сети можно найти видео про этот прибор, но толкового объяснения, что и как работает – нет, все вокруг да около и крайне неубедительно. Мы считаем, что данный метод обогрева дома не стоит внимания.

Что такое кавитация

Кавитация – это негативное явление, которое возникает из-за перепада давления в жидкости. Когда давление воды понижается до значения давления насыщенного пара – это приводит к вскипанию. Это когда жидкость частично переходит в состояние пара, то есть образуются пузырьки. Когда давление повышается до уровня выше значения насыщенного пара – пузырьки лопаются. В результате всхлопывания возникают локальные волны давления до 7 тыс. бар. Эти волны давления и называются кавитацией.

Для утепления мансарды изнутри минватой своими руками нужно использовать паробарьерыДля утепления мансарды изнутри минватой своими руками нужно использовать паробарьеры.

 

Это касается и технологии утепления крыши изнутри минватой. Но кроме пароизоляции еще используется гидробарьер.

Последствия кавитации:

  • эрозия металлов;
  • питтинговая коррозия;
  • появление вибраций.

Изобретатели кавитационного генератора уверяют, им удалось извлечь из негативного явления пользу.

Сделать своими руками?

Вы можете купить готовый кавитационный теплогенератор, но сделать это устройство своими руками по чертежам вряд ли получиться. В лучшем случае выйдет шумная машина, в которой кавитации не будет. Кроме этого, перед тем как что-то сделать, нужно задать себе вопрос: «Зачем?». Есть масса способов обогреть дом:

Есть масса способов обогреть дом

Последствия кавитации.

Не верьте тем, кто говорит, что сделать кавитационные теплогенераторы своими руками легко и просто, потратив две копейки. Это не так. Вы потратите только свое время и не получите взамен ничего, кроме разочарования.

Выбор материалов для утепления кровли изнутри минватой относительно невеликВыбор материалов для утепления кровли изнутри минватой относительно невелик.

 

По сравнению со скатной крышей, утепление чердачного перекрытия минватой является более простым процессом.

Вот на видео ниже пример того, как народный умелец сделать данный прибор. Как думаете, можно им обогреть хоть что-нибудь?

Leave Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *