Обозначение узо на схемах: Обозначение УЗО на схеме по ГОСТ. Как обозначается УЗО на однолинейной схеме

Содержание

Обозначение УЗО на схеме по ГОСТ. Как обозначается УЗО на однолинейной схеме

Ни один человек, каким бы талантливым и смекалистым он не был, не сможет научиться понимать электрические чертежи без предварительного знакомства с условными обозначениями, которые используются в электромонтаже практически на каждом шагу. Опытные специалисты утверждают, что шанс стать настоящим профессионалом своего дела может быть только у того электрика, которые досконально изучил и усвоил все общепринятые обозначения, используемые в проектной документации.

Приветствую всех друзья на сайте «Электрик в доме». Сегодня я бы хотел уделить внимание одному из первоначальным вопросов, с которым сталкиваются все электрики перед монтажом — это проектная документация объекта.

Кто то составляет ее сам, кому то предоставляет заказчик. Среди множества этой документации можно встретить экземпляры, в которых встречаются различия между условными обозначениями тех или иных элементов. Например в разных проектах один и тот же коммутационный аппарат графически может отображаться по разному.

Встречалось такое?

Понятно, что обсудить обозначение всех элементов в пределах одной статьи невозможно, поэтому тема данного урока будет сужена, и сегодня обсудим и рассмотрим, как выполняется обозначение узо на схеме.

Каждый начинающий мастер обязан внимательно ознакомиться с общепринятыми ГОСТами и правилами маркировки электрических элементов и оборудования на план-схемах и чертежах. Многие пользователи могут со мной не согласится, аргументируя это тем, что зачем мне знать ГОСТ, я всего лишь занимаюсь установкой розеток и выключателей в квартирах. Схемы должны знать инженера проектировщики и профессора в университетах.

Уверяю вас это не так. Любой уважающий себя специалист обязан не только понимать и уметь читать электрические схемы, но и должен знать, как графически отображаются на схемах различные коммуникационные аппараты, защитные устройства, приборы учета, розетки и выключатели. В общем, активно применять проектную документацию в своей повседневной работе.

Обозначение УЗО на однолинейной схеме

Основные группы обозначений УЗО (графические и буквенные) используются электромонтерами очень часто. Работа по составлению рабочих схем, графиков и планов требует очень большой внимательности и аккуратности, так как одно-единственное неточное указание или пометка могу привести к серьезной ошибке в дальнейшей работе и стать причиной выхода из строя дорогостоящего оборудования.

Кроме того, неверные данные могут ввести в заблуждение сторонних специалистов, привлеченных для электромонтажа и стать причиной возникновения сложностей при монтаже электрических коммуникаций.

В настоящее время любое обозначение узо на схеме может быть представлено двумя способами: графическим и буквенным.

На какие нормативные документы следует ссылаться?

Из основных документов для электрических схем, которые ссылаются на графическое и буквенное обозначение коммутационных устройств можно выделить следующие:

  1. — ГОСТ 2.755-87 ЕСКД «Обозначения условные графические в электрических схемах устройства коммутационные и контактные соединения»;
  2. — ГОСТ 2.710-81 ЕСКД «Обозначения буквенно-цифровые в электрических схемах».

Графическое обозначение УЗО на схеме

Итак, выше я представил основные документы, по которым регулируется обозначения в электрических схемах. Что нам дают указанные ГОСТы по изучению нашего вопроса? Мне стыдно признаться, но абсолютно ничего. Дело в том, что на сегодняшний день в данных документах отсутствует информация о том, как должно выполняться обозначение узо на однолинейной схеме.

Действующий на сегодня ГОСТ никаких особых требований к правилам составления и использования

графических обозначений УЗО не выдвигает. Именно поэтому некоторые электромонтеры предпочитают использовать для маркировки определенных узлов и устройств свои собственные наборы значений и меток, каждая из которых может несколько отличаться от привычных нашему взгляду значений.

Для примера давайте рассмотрим, какие обозначения наносятся на корпусе самих устройств. Устройство защитного отключения фирмы hager:

Или к примеру УЗО от Schneider Electric:

Чтобы избежать путаницы, предлагаю Вам совместно разработать универсальный вариант обозначений УЗО, которым можно руководствоваться практически в любой рабочей ситуации.

По своему функциональному назначению устройство защитного отключения можно описать так – это выключатель, который при нормальной работе способен включать/отключать свои контакты и автоматически размыкать контакты при появлении тока утечки. Ток утечки это дифференциальный ток, возникающий при ненормальной работе электроустановки. Какой орган реагирует на дифференциальный ток? Специальный датчик — трансформатор тока нулевой последовательности.

Если представить все вышеописанное в графической форме, то получается что условное обозначение УЗО на схеме можно представить в виде двух второстепенных обозначений — выключателя и датчика реагирующего на дифференциальный ток (трансформатора тока нулевой последовательности) который воздействует на механизм отключения контактов.

В этом случае

графическое обозначение узо на однолинейной схеме будет выглядеть так.

Как обозначается дифавтомат на схеме?

По поводу обозначений дифавтоматов в ГОСТ на данный момент тоже нет данных. Но, исходя из вышеизложенной схемы, дифавтомат графически также можно представить в виде двух элементов — УЗО и автоматического выключателя. В этом случае графическое обозначение дифавтомата на схеме будет выглядеть так.

Буквенное обозначение УЗО на электрических схемах

Любому элементу на электрических схемах присваивается не только графическое обозначение, но и буквенное с указанием позиционного номера. Такой стандарт регулируется ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах» и обязателен для применения ко всем элементам в электрических схемах.

Так, например, согласно ГОСТ 2.710-81 автоматические выключатели принято обозначать путем специальногобуквенно-цифрового позиционного обозначения таким образом: QF1, QF2, QF3 и т.д. Рубильники (разъединители) обозначаются как QS1, QS2, QS3 и т.д. Предохранители на схемах обозначаются как FU с соответствующим порядковым номером.

Аналогично, как и с графическими обозначениями, в ГОСТ 2.710-81 нет конкретных данных, как выполнять буквенно-цифровое обозначение УЗО и дифференциальных автоматов на схемах.

Как быть в таком случае? В этом случае многие мастера используют два варианта обозначений.

Первый вариант воспользоваться самым удобным буквенно-цифровым обозначением Q1 (для УЗО) и QF1 (для АВДТ), которые обозначают функции выключателей и указывают на порядковый номер аппарата, находящегося в схеме.

То есть кодировка буквы Q означает – «выключатель или рубильник в силовых цепях», что вполне может быть применима к обозначению УЗО.

Кодовая комбинация QF расшифровывается как Q – «выключатель или рубильник в силовых цепях», F – «защитный», что вполне может быть применима не только к обычным автоматам, но и к диф.автоматам.

Второй вариант это использовать буквенно-цифровую комбинацию Q1D — для УЗО и комбинацию QF1D — для дифференциального автомата. По приложению 2 таблицы 1 ГОСТ 2.710 функциональное значение буквы D означает – «дифференцирующий».

Я очень часто встречал на реальных схемах такое обозначение QD1 – для устройств защитного отключения, QFD1 – для дифференциальных автоматов.

Какие можно сделать выводы из вышеописанного?

Ввиду того что обозначение УЗО и дифференциальных автоматов по ГОСТ отсутствует, информация рассмотренная в данной статье, не относится к нормативным документам обязательным для исполнения, а является всего лишь РЕКОМЕНДАЦИЕЙ. Каждый проектировщик может изображать на схемах эти элементы по своему усмотрению. Для этого нужно всего лишь привести условно графические обозначения (УГО) элементов, их расшифровку и пояснения к схеме. Все эти действия предусматриваются в ГОСТ 2.702-2011.

Как обозначается УЗО на однолинейной схеме — пример реального проекта

Как говорится в известной пословице «лучше один раз увидеть, чем сто раз услышать», поэтому давайте рассмотрим на реальном примере.

Предположим, что перед нами находится однолинейная схема электроснабжения квартиры. Из всех этих графических обозначение можно выделить следующее:

Вводное устройство защитного отключения расположено сразу после счетчика. Кстати как вы могли заметить буквенное обозначение УЗО – QD. Еще один пример как обозначается узо:

Заметьте, что на схеме помимо УГО элементов также наносится их маркировка, то есть: тип устройства по роду тока (А, АС), номинальный ток, дифференциальный ток утечки, количество полюсов. Далее переходим к УГО и маркировке дифференциальных автоматов:

Розеточные линии на схеме подключаются через диф.автоматы. Буквенное обозначение дифавтомата на схеме QFD1, QFD2, QFD3 и т.д.

Еще один пример как обозначаются диф.автоматы на однолинейной схеме магазина.

Вот и все дорогие друзья. На этом наш сегодняшний урок подошел к концу. Надеюсь, данная статья была для вас полезной и Вы нашли здесь ответ на свой вопрос. Если остались вопросы задавайте их в комментариях, с удовольствием отвечу. Давайте делиться опытом, кто как обозначает УЗО и АВДТ на схемах. Буду признателен на репост в соц.сетях))).

Понравилась статья — поделись с друзьями!

 

Обозначение УЗО на однолинейной схеме – RozetkaOnline.COM

Действующие государственные стандарты (ГОСТ) не регламентируют графическое и буквенное обозначение УЗО (устройства защитного отключения), отсутствуют дополнительные графические символы, позволяющие точнее описать основные функции и свойства стандартного оборудования.

УЗО является одним из основных элементов электрических однолинейных схем, поэтому производителями модульного оборудования и проектировщиками принято следующее условное обозначение для него:

Такое схематическое отображение устройств защитного отключения, наиболее точно показывает его принцип работы и отличает от другого модульного оборудования, если знать, что такое УЗО и как оно работает.

При этом, так как государственные стандарты не регламентируют вид УЗО, обязательно на схемах и планах нужно показывать блок с условными графическими обозначениями (УГО), в котором давать расшифровку и пояснения к графическим элементам, даже если решено использовать иной от представленного вид. Возможность самим разработать условные обозначения, если их нет в стандартах указана в ГОСТ 2.702-2011.

Буквенная маркировка УЗОQF, если пользоваться правилами их формирования по ГОСТ 2.710-81 ЕСКД (ЧИТАТЬ PDF) “Обозначения буквенно-цифровые в электрических схемах“. Это полностью совпадает с обозначением автоматического выключателя и некоторых других модульных устройств, делая однолинейные схемы менее читаемыми и понятными.

Многие вводят свои буквенные обозначения: Q, QFD, QDF и т.д. которые, если опираться на актуальные стандарты, неверны, не раскрывают функции УЗО, но помогают отличать от других элементов защитной автоматики на однолинейных схемах.

Это бывает важно, особенно если на схеме одновременно присутствуют УЗО, и дифавтоматы. Их графические обозначения похожи и не всегда их легко отличить друг от друга.Учитывая, что проектировщики электроустановок нередко максимально упрощают применяемые графические символы, опуская важные детали.

Рассмотрим условное Обозначение дифференциального автоматического автомата на однолинейной схеме и сравним его с УЗО.

Обозначение узо и автоматов на схеме. Характеристики и выбор

Установка УЗО значительно повышает уровень безопасности при работе на электроустановках. Если УЗО обладает высокой чувствительностью (30 мА), то при этом обеспечивается защита от прямого контакта (прикосновения).

Тем не менее, установка УЗО не означает от выполнения обычных мер предосторожности при работе на электроустановках.

Кнопку тест необходимо нажимать регулярно, как минимум один раз в 6 месяцев. Если тест не срабатывает, то надо задуматься о замене УЗО, так как уровень электробезопасности снизился.

Установите УЗО на панели или корпусе. Подключите оборудование в точном соответствии со схемой. Включите все нагрузки, подключенные к защищаемой сети.

Срабатывает УЗО.

Если УЗО срабатывает, выясните, какое устройство является причиной срабатывания, путем последовательного отключения нагрузки (отключаем по очереди эл. оборудование и смотрим результат). При обнаружении такого устройства его необходимо отключить от сети и проверить. Если электрическая линия имеет очень большую длину, обычные токи утечки могут быть достаточно велики. В этом случае имеется вероятность ложных срабатываний. Чтобы избежать этого, необходимо разделить систему, по крайней мере, на два контура, каждый из которых будет защищен своим УЗО. Можно расчитать длинну электрической линии.

При невозможности определения документальным способом суммы токов утечки проводки и нагрузок, можно пользоваться примерным расчетом (в соответствии с СП 31-110-2003), принимая ток утечки нагрузки равным 0,4мА на 1А потребляемой нагрузкой мощности и ток утечки электросети равным 10мкА на один метр длины фазового провода электропроводки.

Пример расчета УЗО.

Для примера рассчитаем УЗО для электроплиты, мощностью 5 кВт, установленную на кухне малогабаритной квартиры.

Примерное расстояние от щитка до кухни может составлять 11 метров, соответственно расчетная утечка проводки составляет 0,11мА. Электроплита, на полной мощности, потребляет (приближенно) 22.7А и обладает расчетным током утечки 9,1мА. Таким образом, сумма токов утечки данной электроустановки составляет 9,21мА. Для защиты от токов утечки можно использовать УЗО с номиналом тока утечки 27,63мА, что округляется до ближайшего большего значения существующих номиналов по диф. току, а именно УЗО 30мА.

Следующим шагом, является определение рабочего тока УЗО. При указанном выше максимальном токе, потребляемым электроплитой, можно использовать номинал (с небольшим запасом) УЗО 25А, или с большим запасом — УЗО 32А.

Таким образом мы расчетно определили номинал УЗО, которое можно использовать для защиты электроплиты: УЗО 25А 30мА или УЗО 32А 30мА. (надо не забыть защитить УЗО автоматическим выключателем 25А для первого номинала УЗО и 25А или 32А для второго номинала).

Обозначение УЗО.

На схеме УЗО обозначается следующим образом рис. 1 однофазное УЗО, рис. 2 -трехфазное УЗО.

Схема подключения УЗО рассмотрим на примере. На фото. 1 показан фрагмент распределительного шкафа.

Фото. 1 Схема подключения трехфазного УЗО с автоматическим выключателем (на фото цифра1 УЗО, 2- автоматический выключатель) и однофазных УЗО (3).

УЗО не защищает от токов короткого замыкания, поэтому его устанавливают в паре с автоматическим выключателем. Что ставить раньше УЗО или автоматический выключатель в данном случае не принципиально. Номинал УЗО должен быть равным или немного больше наминала автоматическо выключателя. Например, автоматический выключатель 16 Ампер, значит, УЗО ставим 16 или 25 А.

Как видно на фото. 1 на трехфазное УЗО (цифра 1) подходят три фазных и нулевой проводник, а после УЗО подключен автоматический выключатель (цифра 2). Потребитель будет подключаться: фазные проводники (красные стрелки) с автоматического выключателя; нулевой проводник (синяя стрелка) — с УЗО.

Под цифрой 3 на фото показаны дифференциальные автоматы, соединенные сборной шиной, принцип работы диф. автомата такой же, как у УЗО, но он дополнительно защищает от токов короткого замыкания и не требует дополнительной защита от КЗ.

А подключение, что у УЗО, что у диф. автоматов одинаковое.

Подключаем к клемме L фазу, к N ноль (обозначения нанесены на корпусе УЗО). Потребители подключаются также.

Ниже приведена схема использования УЗО в квартире, для дополнительной защиты от поражения электрическим током.

Рис. 1 Схема УЗО в квартире.

В данном случае УЗО ставится до счетчика, на всю группу автоматических выключателей, чем обеспечивается дополнительная защита от поражения электрическим током и возникновения пожара.

Ни один человек, каким бы талантливым и смекалистым он не был, не сможет научиться понимать электрические чертежи без предварительного знакомства с условными обозначениями, которые используются в электромонтаже практически на каждом шагу. Опытные специалисты утверждают, что шанс стать настоящим профессионалом своего дела может быть только у того электрика, которые досконально изучил и усвоил все общепринятые обозначения, используемые в проектной документации.

Приветствую всех друзья на сайте «Электрик в доме». Сегодня я бы хотел уделить внимание одному из первоначальным вопросов, с которым сталкиваются все электрики перед монтажом — это проектная документация объекта.

Кто то составляет ее сам, кому то предоставляет заказчик. Среди множества этой документации можно встретить экземпляры, в которых встречаются различия между условными обозначениями тех или иных элементов. Например в разных проектах один и тот же коммутационный аппарат графически может отображаться по разному. Встречалось такое?

Понятно, что обсудить обозначение всех элементов в пределах одной статьи невозможно, поэтому тема данного урока будет сужена, и сегодня обсудим и рассмотрим, как выполняется .

Каждый начинающий мастер обязан внимательно ознакомиться с общепринятыми ГОСТами и правилами маркировки электрических элементов и оборудования на план-схемах и чертежах. Многие пользователи могут со мной не согласится, аргументируя это тем, что зачем мне знать ГОСТ, я всего лишь занимаюсь установкой розеток и выключателей в квартирах. Схемы должны знать инженера проектировщики и профессора в университетах.

Уверяю вас это не так. Любой уважающий себя специалист обязан не только понимать и уметь читать электрические схемы , но и должен знать, как графически отображаются на схемах различные коммуникационные аппараты, защитные устройства, приборы учета, розетки и выключатели. В общем, активно применять проектную документацию в своей повседневной работе.

Обозначение узо на однолинейной схеме

Основные группы обозначений УЗО (графические и буквенные) используются электромонтерами очень часто. Работа по составлению рабочих схем, графиков и планов требует очень большой внимательности и аккуратности, так как одно-единственное неточное указание или пометка могу привести к серьезной ошибке в дальнейшей работе и стать причиной выхода из строя дорогостоящего оборудования.

Кроме того, неверные данные могут ввести в заблуждение сторонних специалистов, привлеченных для электромонтажа и стать причиной возникновения сложностей при монтаже электрических коммуникаций.

В настоящее время любое обозначение узо на схеме может быть представлено двумя способами: графическим и буквенным .

На какие нормативные документы следует ссылаться?

Из основных документов для электрических схем, которые ссылаются на графическое и буквенное обозначение коммутационных устройств можно выделить следующие:

  1. — ГОСТ 2.755-87 ЕСКД «Обозначения условные графические в электрических схемах устройства коммутационные и контактные соединения»;
  2. — ГОСТ 2.710-81 ЕСКД «Обозначения буквенно-цифровые в электрических схемах».

Графическое обозначение УЗО на схеме

Итак, выше я представил основные документы, по которым регулируется обозначения в электрических схемах. Что нам дают указанные ГОСТы по изучению нашего вопроса? Мне стыдно признаться, но абсолютно ничего. Дело в том, что на сегодняшний день в данных документах отсутствует информация о том, как должно выполняться обозначение узо на однолинейной схеме.

Действующий на сегодня ГОСТ никаких особых требований к правилам составления и использования графических обозначений УЗО не выдвигает. Именно поэтому некоторые электромонтеры предпочитают использовать для маркировки определенных узлов и устройств свои собственные наборы значений и меток, каждая из которых может несколько отличаться от привычных нашему взгляду значений.

Для примера давайте рассмотрим, какие обозначения наносятся на корпусе самих устройств. Устройство защитного отключения фирмы hager:

Или к примеру УЗО от Schneider Electric:

Чтобы избежать путаницы, предлагаю Вам совместно разработать универсальный вариант обозначений УЗО, которым можно руководствоваться практически в любой рабочей ситуации.

По своему функциональному назначению устройство защитного отключения можно описать так – это выключатель, который при нормальной работе способен включать/отключать свои контакты и автоматически размыкать контакты при появлении тока утечки. Ток утечки это дифференциальный ток, возникающий при ненормальной работе электроустановки. Какой орган реагирует на дифференциальный ток? Специальный датчик — трансформатор тока нулевой последовательности.

Если представить все вышеописанное в графической форме, то получается что условное обозначение УЗО на схеме можно представить в виде двух второстепенных обозначений — выключателя и датчика реагирующего на дифференциальный ток (трансформатора тока нулевой последовательности) который воздействует на механизм отключения контактов.

В этом случае графическое обозначение узо на однолинейной схеме будет выглядеть так.

Как обозначается дифавтомат на схеме?

По поводу обозначений дифавтоматов в ГОСТ на данный момент тоже нет данных. Но, исходя из вышеизложенной схемы, дифавтомат графически также можно представить в виде двух элементов — УЗО и автоматического выключателя. В этом случае графическое обозначение дифавтомата на схеме будет выглядеть так.

Буквенное обозначение узо на электрических схемах

Любому элементу на электрических схемах присваивается не только графическое обозначение, но и буквенное с указанием позиционного номера. Такой стандарт регулируется ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах» и обязателен для применения ко всем элементам в электрических схемах.

Так, например, согласно ГОСТ 2.710-81 автоматические выключатели принято обозначать путем специальногобуквенно-цифрового позиционного обозначения таким образом: QF1, QF2, QF3 и т.д. Рубильники (разъединители) обозначаются как QS1, QS2, QS3 и т.д. Предохранители на схемах обозначаются как FU с соответствующим порядковым номером.

Аналогично, как и с графическими обозначениями, в ГОСТ 2.710-81 нет конкретных данных, как выполнять буквенно-цифровое обозначение УЗО и дифференциальных автоматов на схемах .

Как быть в таком случае? В этом случае многие мастера используют два варианта обозначений.

Первый вариант воспользоваться самым удобным буквенно-цифровым обозначением Q1 (для УЗО) и QF1 (для АВДТ), которые обозначают функции выключателей и указывают на порядковый номер аппарата, находящегося в схеме.

То есть кодировка буквы Q означает – «выключатель или рубильник в силовых цепях», что вполне может быть применима к обозначению УЗО.

Кодовая комбинация QF расшифровывается как Q – «выключатель или рубильник в силовых цепях», F – «защитный», что вполне может быть применима не только к обычным автоматам, но и к диф.автоматам.

Второй вариант это использовать буквенно-цифровую комбинацию Q1D — для УЗО и комбинацию QF1D — для дифференциального автомата. По приложению 2 таблицы 1 ГОСТ 2.710 функциональное значение буквы D означает – «дифференцирующий ».

Я очень часто встречал на реальных схемах такое обозначение QD1 – для устройств защитного отключения, QFD1 – для дифференциальных автоматов.

Какие можно сделать выводы из вышеописанного?

Как обозначается узо на однолинейной схеме — пример реального проекта

Как говорится в известной пословице «лучше один раз увидеть, чем сто раз услышать», поэтому давайте рассмотрим на реальном примере.

Предположим, что перед нами находится однолинейная схема электроснабжения квартиры. Из всех этих графических обозначение можно выделить следующее:

Вводное устройство защитного отключения расположено сразу после счетчика. Кстати как вы могли заметить буквенное обозначение УЗО – QD. Еще один пример как обозначается узо:

Заметьте, что на схеме помимо УГО элементов также наносится их маркировка, то есть: тип устройства по роду тока (А, АС), номинальный ток, дифференциальный ток утечки, количество полюсов. Далее переходим к УГО и маркировке дифференциальных автоматов:

Розеточные линии на схеме подключаются через диф.автоматы. Буквенное обозначение дифавтомата на схеме QFD1, QFD2, QFD3 и т.д.

Еще один пример как обозначаются диф.автоматы на однолинейной схеме магазина.

Вот и все дорогие друзья. На этом наш сегодняшний урок подошел к концу. Надеюсь, данная статья была для вас полезной и Вы нашли здесь ответ на свой вопрос. Если остались вопросы задавайте их в комментариях, с удовольствием отвечу. Давайте делиться опытом, кто как обозначает УЗО и АВДТ на схемах. Буду признателен на репост в соц.сетях))).

В одной из наших статей мы уже рассказывали про УЗО, про назначение и про его подключение. «УЗО схемы подключения, типы, принцип работы » В этой статье мы затронем тему маркировки УЗО. Именно по маркировке можно определиться с правильным выбором УЗО.

Маркировка устройства защитного отключения (УЗО)

Каждое устройство защитного отключения должно (УЗО) иметь стойкую маркировку, которая включает в себя следующие данные:

1.Наименование или торговый знак изготовителя.
2.Типовое обозначение УЗО и АВДТ дифференциальный автомат, каталожный или серийный номер.
3.Одно или несколько значений номинального напряжения Un ВДТ и АВДТ.
4.Номинальный ток In для ВДТ. Для АВДТ указывают номинальный ток In в амперах без указания единицы измерения с предшествующим обозначением типа мгновенного расцепления (B,C или D). Например, B16: тип мгновенного расцепления – B, номинальный ток – 16А.
5.Номинальную частоту, если ВДТ разработан для частоты, отличной от 50 и (или) 60 Гц, а АВДТ предназначен для работы только при одной частоте.
6.Номинальный отключающий дифференциальный ток IΔn ВДТ и АВДТ.
7.Значения отключающего дифференциального тока, если ВДТ и АВДТ имеют несколько таких значений.
8.Номинальную включающую и отключающую способность Im 1 ВДТ.
9.Номинальную коммутационную способность при коротком замыкании Icn АВДТ в амперах.
10.Номинальную дифференциальную включающую и отключающую способность IΔm, если она отличается от номинальной включающей и отключающей способности ВДТ. Номинальную дифференциальную включающую и отключающую способность IΔm,если она отличается от номинальной коммутационной способности при коротком замыкании АВДТ.
11.Степень защиты, при ее отличии от IP20.
12.Рабочее положение, при необходимости.
13.Символ для ВДТ и АВДТ типа S.
14.Указание на то, что ВДТ и АВДТ функционально зависят от напряжения, если это имеет место.
15.Обозначение органа управления контрольного устройства ВДТ и АВДТ буквой «Т».
16.Схему подключения ВДТ и АВДТ.
17.Рабочую характеристику при наличии дифференциальных токов с составляющими постоянного тока: ◦ВДТ и АВДТ типа АС маркируют символом;~
◦ВДТ и АВДТ типа А обозначают символом. ~-

18.Контрольную температуру калибровки АВДТ, если она отличается от 30 оС.

Маркировка должна быть четко видна после установки ВДТ и АВДТ. Если размеры устройств не позволяют разместить всю перечисленнуюинформацию, то данные, указанные в пп. 4, 6 и 151 для ВДТ и пп. 4, 6 и 13 для АВДТ, должны быть видны после их монтажа. Характеристики, перечисленные в пп. 1–3, 10, 12 и 16 для ВДТ,в пп. 1–3, 9 и 16 для АВДТ, могут быть нанесены на боковых и задних поверхностях устройств и быть видимыми только до их установки в низковольтном распределительном устройстве. Остальная информация должна быть приведена в эксплуатационной документации на изделия или в каталогах изготовителя.

В разделе 6 «Маркировка и другая информация об изделии» ГОСТ Р 51326.1 и в соответствующем шестом разделе стандарта МЭК 61008-1 отсутствуют требования о маркировке на изделии или о представлении в ином виде следующих характеристик ВДТ:

Номинального условного тока короткого замыкания Inc;
номинального условного дифференциального тока короткого замыкания IΔc.

На устройство дифференциального тока, помимо маркировки, указанной в пп. 1–3, 5–7, 10–13 и 15, наносят значение максимального номинального тока автоматического выключателя, с которым УДТ может быть собрано, например – «63 А max», а также специальный символ:

После сборки устройства дифференциального тока с автоматическим выключателем не должны быть видны данные, приведенные в пп. 3 и 11, а также значение максимального номинального тока автоматического выключателя, с которым УДТ может быть собрано.Устройства дифференциального тока и автоматические выключатели, которые предназначены для совместной сборки, должны иметь одинаковое наименование изготовителя или торговый знак. Изготовитель должен предоставить допустимые для ВДТ значения характеристики I2t и пикового тока Ip. В противном случае применяют минимальные значения, приведенные в таблице 15 ГОСТ Р 51236.1 В каталоге или эксплуатационной документации на изделие изготовитель также должен указать сведения хотя бы об одном устройстве защиты от короткого замыкания, подходящем для защиты ВДТ. Разомкнутое (отключенное) положение устройства защитного отключения, управляемого органом оперирования, перемещаемым вверх–вниз (вперед–назад), должно обозначаться знаком О (окружностью), замкнутое (включенное) его положение маркируется знакомI (вертикальной чертой). Эти обозначения должны быть хорошо видны после установки УЗО. Для обозначения включенного и отключенного положений УЗО допускается также использование дополнительных символов. При необходимости различать входные и выходные выводы их следует четко обозначать, например, словами «линия» и «нагрузка», расположенными около соответствующих выводов, или стрелками, указывающими направление протекания электроэнергии.
Выводы устройства защитного отключения, предназначенные только для присоединения нейтрального проводника, должны быть маркированы буквой N.
Выводы устройства защитного отключения, которые используют исключительно лишь для присоединения защитного проводника, маркируют символом заземлени:

В статье использовались материалы «Книги защитного модульного оборудования производства ABB

Маркировка устройства защитного отключения (УЗО) ABB

Читайте также…

Ни один человек, каким бы талантливым и смекалистым он не был, не сможет научиться понимать электрические чертежи без предварительного знакомства с условными обозначениями, которые используются в электромонтаже практически на каждом шагу. Опытные специалисты утверждают, что шанс стать настоящим профессионалом своего дела может быть только у того электрика, которые досконально изучил и усвоил все общепринятые обозначения, используемые в проектной документации.

Приветствую всех друзья на сайте «Электрик в доме». Сегодня я бы хотел уделить внимание одному из первоначальным вопросов, с которым сталкиваются все электрики перед монтажом — это проектная документация объекта.

Кто то составляет ее сам, кому то предоставляет заказчик. Среди множества этой документации можно встретить экземпляры, в которых встречаются различия между условными обозначениями тех или иных элементов. Например в разных проектах один и тот же коммутационный аппарат графически может отображаться по разному. Встречалось такое?

Понятно, что обсудить обозначение всех элементов в пределах одной статьи невозможно, поэтому тема данного урока будет сужена, и сегодня обсудим и рассмотрим, как выполняется .

Каждый начинающий мастер обязан внимательно ознакомиться с общепринятыми ГОСТами и правилами маркировки электрических элементов и оборудования на план-схемах и чертежах. Многие пользователи могут со мной не согласится, аргументируя это тем, что зачем мне знать ГОСТ, я всего лишь занимаюсь установкой розеток и выключателей в квартирах. Схемы должны знать инженера проектировщики и профессора в университетах.

Уверяю вас это не так. Любой уважающий себя специалист обязан не только понимать и уметь читать электрические схемы , но и должен знать, как графически отображаются на схемах различные коммуникационные аппараты, защитные устройства, приборы учета, розетки и выключатели. В общем, активно применять проектную документацию в своей повседневной работе.

Обозначение узо на однолинейной схеме

Основные группы обозначений УЗО (графические и буквенные) используются электромонтерами очень часто. Работа по составлению рабочих схем, графиков и планов требует очень большой внимательности и аккуратности, так как одно-единственное неточное указание или пометка могу привести к серьезной ошибке в дальнейшей работе и стать причиной выхода из строя дорогостоящего оборудования.

Кроме того, неверные данные могут ввести в заблуждение сторонних специалистов, привлеченных для электромонтажа и стать причиной возникновения сложностей при монтаже электрических коммуникаций.

В настоящее время любое обозначение узо на схеме может быть представлено двумя способами: графическим и буквенным.

На какие нормативные документы следует ссылаться?

Из основных документов для электрических схем, которые ссылаются на графическое и буквенное обозначение коммутационных устройств можно выделить следующие:

  1. — ГОСТ 2.755-87 ЕСКД «Обозначения условные графические в электрических схемах устройства коммутационные и контактные соединения»;
  2. — ГОСТ 2.710-81 ЕСКД «Обозначения буквенно-цифровые в электрических схемах».

Графическое обозначение УЗО на схеме

Итак, выше я представил основные документы, по которым регулируется обозначения в электрических схемах. Что нам дают указанные ГОСТы по изучению нашего вопроса? Мне стыдно признаться, но абсолютно ничего. Дело в том, что на сегодняшний день в данных документах отсутствует информация о том, как должно выполняться обозначение узо на однолинейной схеме.

Действующий на сегодня ГОСТ никаких особых требований к правилам составления и использования графических обозначений УЗО не выдвигает. Именно поэтому некоторые электромонтеры предпочитают использовать для маркировки определенных узлов и устройств свои собственные наборы значений и меток, каждая из которых может несколько отличаться от привычных нашему взгляду значений.

Для примера давайте рассмотрим, какие обозначения наносятся на корпусе самих устройств. Устройство защитного отключения фирмы hager:

Или к примеру УЗО от Schneider Electric:

Чтобы избежать путаницы, предлагаю Вам совместно разработать универсальный вариант обозначений УЗО, которым можно руководствоваться практически в любой рабочей ситуации.

По своему функциональному назначению устройство защитного отключения можно описать так – это выключатель, который при нормальной работе способен включать/отключать свои контакты и автоматически размыкать контакты при появлении тока утечки. Ток утечки это дифференциальный ток, возникающий при ненормальной работе электроустановки. Какой орган реагирует на дифференциальный ток? Специальный датчик — трансформатор тока нулевой последовательности.

Если представить все вышеописанное в графической форме, то получается что условное обозначение УЗО на схеме можно представить в виде двух второстепенных обозначений — выключателя и датчика реагирующего на дифференциальный ток (трансформатора тока нулевой последовательности) который воздействует на механизм отключения контактов.

В этом случае графическое обозначение узо на однолинейной схеме будет выглядеть так.

Как обозначается дифавтомат на схеме?

По поводу обозначений дифавтоматов в ГОСТ на данный момент тоже нет данных. Но, исходя из вышеизложенной схемы, дифавтомат графически также можно представить в виде двух элементов — УЗО и автоматического выключателя. В этом случае графическое обозначение дифавтомата на схеме будет выглядеть так.

Буквенное обозначение узо на электрических схемах

Любому элементу на электрических схемах присваивается не только графическое обозначение, но и буквенное с указанием позиционного номера. Такой стандарт регулируется ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах» и обязателен для применения ко всем элементам в электрических схемах.

Так, например, согласно ГОСТ 2.710-81 автоматические выключатели принято обозначать путем специальногобуквенно-цифрового позиционного обозначения таким образом: QF1, QF2, QF3 и т.д. Рубильники (разъединители) обозначаются как QS1, QS2, QS3 и т.д. Предохранители на схемах обозначаются как FU с соответствующим порядковым номером.

Аналогично, как и с графическими обозначениями, в ГОСТ 2.710-81 нет конкретных данных, как выполнять буквенно-цифровое обозначение УЗО и дифференциальных автоматов на схемах .

Как быть в таком случае? В этом случае многие мастера используют два варианта обозначений.

Первый вариант воспользоваться самым удобным буквенно-цифровым обозначением Q1 (для УЗО) и QF1 (для АВДТ), которые обозначают функции выключателей и указывают на порядковый номер аппарата, находящегося в схеме.

То есть кодировка буквы Q означает – «выключатель или рубильник в силовых цепях», что вполне может быть применима к обозначению УЗО.

Кодовая комбинация QF расшифровывается как Q – «выключатель или рубильник в силовых цепях», F – «защитный», что вполне может быть применима не только к обычным автоматам, но и к диф.автоматам.

Второй вариант это использовать буквенно-цифровую комбинацию Q1D — для УЗО и комбинацию QF1D — для дифференциального автомата. По приложению 2 таблицы 1 ГОСТ 2.710 функциональное значение буквы D означает – «дифференцирующий».

Я очень часто встречал на реальных схемах такое обозначение QD1 – для устройств защитного отключения, QFD1 – для дифференциальных автоматов.

Какие можно сделать выводы из вышеописанного?

electricvdome.ru

Основное назначение однолинейной схемы – графическое отображение системы электрического питания (электроснабжение объекта, разводка электричества в квартире и т.д.). Проще говоря, на однолинейной схеме изображается силовая часть электроустановки. По названию можно понять, что однолинейная схема выполняется в виде одной линии. Т.е. электрическое питание (и однофазное, и трёхфазное), подводимое к каждому потребителю, обозначается одинарной линией.


Чтобы указать количество фаз, на графической линии используются специальные засечки. Одна засечка обозначает, что электрическое питание однофазное, три засечки – что питание трёхфазное.

Кроме одинарной линии используются обозначения защитных и коммутационных аппаратов. К первым аппаратам относятся высоковольтные выключатели (масляные, воздушные, элегазовые, вакуумные), автоматические выключатели, устройства защитного отключения, дифференциальные автоматы, предохранители, выключатели нагрузки. Ко вторым относятся разъединители, контакторы, магнитные пускатели.

Высоковольтные выключатели на однолинейных схемах изображаются в виде небольших квадратов. Что касается автоматических выключателей, УЗО, дифференциальных автоматов, контакторов, пускателей и другой защитной и коммутационной аппаратуры, то они изображаются в виде контакта и некоторых поясняющих графических дополнений, в зависимости от аппарата.

Монтажная схема (схема соединения, подключения, расположения) используется для непосредственного производства электрических работ. Т.е. это рабочие чертежи, используя которые, выполняется монтаж и подключение электрооборудования. Также по монтажным схемам собирают отдельные электрические устройства (электрические шкафы, электрические щиты, пульты управления, и т.д.).


На монтажных схемах изображают все проводные соединения как между отдельными аппаратами (автоматические выключатели, пускатели и др.), так и между разными видами электрооборудования (электрические шкафы, щитки и т.д.). Для правильного подключения проводных соединений на монтажной схеме изображаются электрические клеммники, выводы электрических аппаратов, марка и сечение электрических кабелей, нумерация и буквенное обозначение отдельных проводов.

Схема электрическая принципиальная – наиболее полная схема со всеми электрическими элементами, связями, буквенными обозначениями, техническими характеристиками аппаратов и оборудования. По принципиальной схеме выполняют другие электрические схемы (монтажные, однолинейные, схемы расположения оборудования и др.). На принципиальной схеме отображаются как цепи управления, так и силовая часть.


Цепи управления (оперативные цепи) – это кнопки, предохранители, катушки пускателей или контакторов, контакты промежуточных и других реле, контакты пускателей и контакторов, реле контроля фаз (напряжения) а также связи между этими и другими элементами.

На силовой части изображаются автоматические выключатели, силовые контакты пускателей и контакторов, электродвигатели и т.д.

Кроме самого графического изображения каждый элемент схемы снабжается буквенно-цифровым обозначением. Например, автоматический выключатель в силовой цепи обозначается QF. Если автоматов несколько, каждому присваивается свой номер: QF1, QF2, QF3 и т.д. Катушка (обмотка) пускателя и контактора обозначается KM. Если их несколько, нумерация аналогичная нумерации автоматов: KM1, KM2, KM3 и т.д.

В каждой принципиальной схеме, если есть какое-либо реле, то обязательно используется минимум один блокировочный контакт этого реле. Если в схеме присутствует промежуточное реле KL1, два контакта которого используются в оперативных цепях, то каждый контакт получает свой номер. Номер всегда начинается с номера самого реле, а далее идёт порядковый номер контакта. В данном случае получается KL1.1 и KL1.2. Точно также выполняются обозначения блок-контактов других реле, пускателей, контакторов, автоматов и т.д.

В схемах электрических принципиальных кроме электрических элементов очень часто используются и электронные обозначения. Это резисторы, конденсаторы, диоды, светодиоды, транзисторы, тиристоры и другие элементы. Каждый электронный элемент на схеме также имеет своё буквенное и цифровое обозначение. Например, резистор – это R (R1, R2, R3…). Конденсатор – C (C1, C2, C3…) и так по каждому элементу.

Кроме графического и буквенно-цифрового обозначения на некоторых электрических элементах указываются технические характеристики. Например, для автоматического выключателя это номинальный ток в амперах, ток срабатывания отсечки тоже в амперах. Для электродвигателя указывается мощность в киловаттах.

Для правильного и корректного составления электрических схем любого вида необходимо знать обозначения используемых элементов, государственные стандарты, правила оформления документации.

aquagroup.ru

Вернутся в раздел: УЗО и Дифзащита Электрика

В данной статье рассмотрены несколько примеров подключения УЗО и Дифференциальных автоматов.

Основным условием при выборе УЗО и диф. автомата является соблюдение селективности (ПУЭ.РАЗДЕЛ 3 ):

В электротехнике под «селективностью» понимают совместную работу последовательно включенных аппаратов защиты электрических цепей (автоматические выключатели, УЗО, диф. автомат и т.п.) в случае возникновения аварийной ситуации. На рис. 1 привёден пример работы такой схемы, с учётом общего наминала автоматических выключателей 40 А (4шт. по 10А), вводный автомат 63 А.

Селективность используется при выборе номинала устройств защиты для отключения от общей системы питания только той ее части, где произошла авария. Это достигается за счет срабатывания только того автоматического выключателя, который защищает аварийную линию питания.

Во общем, для селективной работы автоматических выключателей при перегрузках нужно, чтобы номинальный ток (In) автоматического выключателя со стороны питания был больше In автоматического выключателя со стороны потребителей.

Условное обозначение УЗО и дифавтомата на электрических схемах:

Обозначение УЗО на принципиальных электрических схемах см. рис. 2. Слева – однофазное УЗО с током срабатывания 30 мА, справа – трехфазное УЗО на 100 мА. Сверху развернутое изображение, снизу однолинейное. Число полюсов при однолинейном представлении можно изображать и числом (вверху) и числом черточек. Условное обозначение Дифавтомата на принципиальных схемах см. рис. 3 и на однолинейных схемах рис. 4. Буквенное обозначение QF.

Рис. 4
Рис. 3

Схемы включения УЗО:

По конструкции УЗО различных производителей могут отличаться друг от друга не только параметрами, но и схемами подключения. На рис. 5 приведены наиболее распространенные схемы включения УЗО в различных вариантах:

Двухполюсные УЗО Рис. 5 (а).

Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен в фазное напряжение (Рис. 5 (б).

Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен на линейное напряжение (Рис. 5 (в).

При включении УЗО (дифавтомата) в любом случае смотрите схему, схема подключения приведена на лицевой или боковой поверхности корпуса УЗО, а также в паспорте технического устройства.

Ниже приведены монтажные схемы подключения УЗО (Рис. 6) и дифавтомата (Рис. 7).

  1. Вводный автомат.
  2. Прибор учёта (электросчетчик).
  3. УЗО или дифавтомат.
  4. Автоматический выключатель (освещения, как правило 6 ÷ 10 А, в зависимости от нагрузки светильников).
  5. Автоматический выключатель (розетки, как правило 16 ÷ 25 А, в зависимости от группы розеток).
  6. Автоматический выключатель (розетка «силовая», 16 ÷ 25 А, в зависимости от нагрузки электроплиты).
  7. Нулевая рабочая N — шина.
  8. Нулевая защитная РЕ — шина.

Более подробно про системы заземления и зануления см. в разделе

Вернутся в раздел: УЗО и Дифзащита Электрика

energetik.com.ru

Рабочий ток и быстродействие

Особенности конструкции дифавтоматов являются причиной того, что они обладают комбинированными характеристиками, используемыми при описании работы как АВ, так и УЗО. Основной рабочей характеристикой этих электротехнических изделий является номинальный рабочий ток, при котором прибор может оставаться включённым длительное время.

Данная характеристика прибора относится к строго стандартизированным показателям, вследствие чего ток может принимать лишь значения из определённого ряда (6, 10, 16, 25, 50 Ампер и так далее).

Помимо этого в обозначении устройств используется связанный с быстродействием токовый показатель, обозначаемый цифрами «B», «C» или «D», стоящими перед значением номинального тока.

Быстродействие – важная токовая и временная характеристика. Обозначение C16, например, соответствует дифавтомату с временной характеристикой «C», рассчитанный на номинальное значение 16 Ампер.

Ток отключения и напряжение

К группе технических характеристик дифавтомата относится ток отключения схемы (дифференциальный показатель), определяемый как «уставка по токовой утечке». Для большинства моделей допустимые значения этой характеристики укладываются в следующий ряд: 10, 30, 100, 300 и 500 миллиампер. На корпусе дифавтомата она обозначается значком «дельта» с числом соответствующим току утечки.

Ещё одной характеристикой эксплуатационных возможностей дифавтоматов является номинальное напряжение, при котором они способны работать длительное время (220 Вольт – для однофазной сети и 380 Вольт – для трехфазных цепей). Величина рабочего напряжения защитного дифференциального прибора может указываться под обозначением номинала с буквой или под клавишей выключателя.

Ток утечки и селективность

Следующая характеристика, по которой различаются все дифавтоматы – тип тока утечки. В соответствии с этим параметром любой из дифавтоматов может иметь следующие обозначения:

  • «A» – реагирующие на утечки синусоидального переменного (пульсирующего постоянного) тока;
  • «AC» – дифавтоматы, рассчитанные на срабатывания от утечек, содержащих постоянную составляющую;
  • «B» – комбинированное исполнение, предполагающее обе указанные ранее возможности.

Характеристика «тип встроенного УЗО» маркируется буквенным индексом или небольшим рисунком.

По аналогии с УЗО дифавтоматы могут работать по селективному принципу, предполагающему наличие задержки по времени срабатывания. Указанная возможность обеспечивает определённую выборочность отключения прибора от сети и электродинамическую устойчивость системы защиты. Согласно этой характеристике дифференциальные устройства обозначаются значком «S», что означает задержку порядка 200-300 миллисекунд, либо маркируются знаком «G» (60-80 миллисекунд).

Основные обозначения

Более подробно порядок маркировки дифавтомата (расположение его характеристик) рассмотрим на примере отечественного изделия марки «АВДТ32», используемого в цепях защиты промышленных и бытовых электросетей.

Для удобства систематизации излагаемой информации под графическим обозначением будет пониматься определённая маркировочная позиция.

На первой позиции указывается наименование и серия дифавтомата. Из этого обозначения следует, что он является АВ дифференциального типа со встроенной защитой от опасных токов утечки. Дифавтомат предназначен к использованию в электросетях однофазного переменного тока с номинальным напряжением 230 Вольт (50 Герц).

На месте, соответствующем позиции №3 (вверху), указывается такая характеристика, как значение номинального дифференциального тока короткого замыкания.

Обратите внимание! Иногда в этом месте можно увидеть значение предельной коммутационной способности прибора, свидетельствующей о величине максимального тока, при которой дифавтомат может отключаться многократно.

На той же позиции, но внизу приводится графическое обозначение типа встроенного автомата (в данном случае это тип «А», рассчитанный на работу с утечками пульсирующего постоянного и синусоидального переменного токов).

На месте 4-ой позиции можно увидеть модульную схему дифавтомата, на которой указываются входящие в его состав элементы, участвующие в реализации защитных функций. Для АВДТ32 на этой схеме условными знаками обозначаются следующие модули и узлы:

  • электромагнитные и тепловые расцепители, обеспечивающие защиту линий от токов КЗ и перегрузки соответственно;
  • специальная кнопка «Тест», необходимая для ручной проверки исправности автомата;
  • усилительный электронный модуль;
  • исполнительный узел (коммутирующее линию реле).

На позиции под номером семь на первом месте указывается связанная с быстродействием характеристика аварийного срабатывания электромагнитного расцепителя (для нашего примера – это «С»). Сразу за ним следует показатель номинального тока, означающего величину этого параметра в рабочем режиме (в течение длительного времени).

Минимальный ток отключения (срабатывания) расцепителя электромагнитного типа для дифавтомата с характеристикой «С» обычно берётся равным примерно пяти номинальным токам. При данной величине токовой характеристики тепловой расцепитель срабатывает примерно через 1,5 секунды.

На восьмой позиции обычно стоит значок «дельта» с показателем номинального тока утечки, который отключает дифференциальное устройство в случае опасности. Это все основные электрические характеристики.

Информационные знаки

На пятой позиции приводится температурная характеристика защитного устройства (от — 25 до + 40 градусов), а на шестой располагаются сразу два знака.
Один из них информирует пользователя о сертификате соответствия, то есть обозначает действующий отечественный ГОСТ на дифавтомат (ГОСТ Р129 – для данного случая).

Непосредственно под ним располагается закодированная в виде букв и цифр характеристика. Это обозначение организации, выдавшей сертификат.

Важно! Этот знак сообщает потребителю о законности происхождения товара и его качестве и при необходимости обеспечивает юридическую защищённость устройства.

Справа от него приводятся данные по сертификации и ГОСТу этой модели в отношении её пожарной безопасности.

И, наконец, на месте, соответствующем второй позиции, наносится логотип торговой марки компании-изготовителя (в данном случае – «ИЭК»).

Размеры и точки подключения

Основными габаритными характеристиками дифавтомата согласно ГОСТ являются его высота, ширина и толщина, а также размер по высоте и ширине выступающей с лицевой стороны полочки с клавишей управления. Помимо этого, приводятся размеры расположенных на тыльной стороне полочек, ограничивающих зазор для посадки прибора на фиксирующую его дин-рейку.

Современные модели дифавтомата могут иметь тот или иной размер, с каждым из которых можно ознакомиться в прилагаемой к этому изделию документации. Но в большинстве случаев габаритные характеристики схожи, что упрощает размещение в щитке.

Относительно контактных точек подключения данного прибора к защищаемой схеме необходимо отметить следующее. В однофазной сети устанавливаются дифференциальные устройства, имеющие по два вводных и два выводных контакта. Одна из этих групп служит для подключения так называемого «фазного» провода, а к другой подсоединяется «нулевая» жила питания. Как правило, все контакты (верхние и нижние) маркируются значками «L» и «N», обозначающими соответственно те места, куда подключаются фаза и ноль.

При включении устройства в электрическую цепь к верхним контактам подсоединяются фазный и нулевой провода, приходящие от вводно-распределительного устройства или электрического счётчика . Нижние его клеммы предназначаются для коммутации проводников, идущих непосредственно к защищаемой нагрузке (к потребителю).

Подключение дифференциального прибора в силовые цепи трёхфазного питания полностью аналогично рассмотренному ранее варианту. Отличие в данном случае состоит лишь в том, что к дифавтомату при этом подсоединяются сразу три фазы: «A», «B» и «C». По аналогии со случаем однофазной линии питания 220 Вольт клеммы трёхфазного дифавтомата также маркируются (с целью соблюдать фазировку) и обозначаются как «L1», «L2», «L3» и «N».

Грамотный выбор подходящего для заявленных целей прибора невозможен без внимательного изучения основных рабочих характеристик дифавтомата и соответствующей им маркировки. В связи с этим перед приобретением дифференциального прибора постарайтесь тщательно изучить весь изложенный в этой статье материал.

evosnab.ru

Назначение, технические характеристики и выбор

Дифавтомат или дифференциальный автомат защиты объединяет в себе функции автомата защиты и УЗО. То есть, одно это устройство защищает проводку от перегрузок, короткого замыкания и тока утечки. Ток утечки образуется при неисправности изоляции или при прикосновении к токоведущим элементам, то есть он еще защищает человека от поражения электричеством.

Дифавтоматы устанавливаются в электрические распределительные щитки, чаще всего на дин-рейки. Они ставятся вместо связки автомат+УЗО, физически занимают немного меньше места. Насколько конкретно — зависит от производителя и типа исполнения. И это — основной их плюс, который может быть востребован при модернизации сети, когда место в щитке ограничено, а необходимо подключить некоторое количество новых линий.

Второй положительный момент — экономия средств. Как правило, дифавтомат стоит меньше, чем пара автомат+УЗО с аналогичными характеристиками. Еще один положительный момент — необходимо определиться только с номиналом автомата защиты, а УЗО встроен по умолчанию с требующимися характеристиками.

Недостатки тоже имеются: при выходе и строя одной из частей дифавтомата менять придется все устройство, а это дороже. Также не все модели снабжены флажками, по которым можно определить, по какой причине сработало устройство — из-за перегрузки или тока утечки — что принципиально важно при выяснении причин.

Характеристики и выбор

Так как дифавтомат объединяет в себе два устройства, имеет он характеристики их обоих и при выборе надо учитывать все. Разберемся что обозначают эти характеристики и как выбирать дифференциальный автомат.

Номинальный ток

Это максимальный ток, который может длительное время выдерживать автомат без потери работоспособности. Обычно он указывается на лицевой панели. Номинальные токи стандартизованы и могут быть 6 А, 10 А, 16 А, 20 А, 25 А, 32 А, 40 А, 50 А, 63А.

Малые номиналы — 10 А и 16 А — ставят на линии освещения, средние — на мощных потребителей и розеточные группы, а мощные — 40 А и выше — в основном используют как вводный (общий) дифавтомат. Подбирается в зависимости от сечения кабеля, точно также, как при выборе номинала автомата защиты.

Время-токовая характеристика или тип электромагнитного расцепителя

Отображается рядом с номиналом, обозначается латинскими буквами B, C, D. Указывает на то, при каких перегрузках относительно номинала происходит отключение автомата (для игнорирования кратковременных стартовых токов).

Категория B — если ток превышен в 3-5 раз, C — при превышении номинала в 5-10 раз, тип D отключается при нагрузках, которые превышают номинал в 10-20 раз. В квартирах обычно ставят дифавтоматы типа C, в сельской местности можно ставить B, на предприятиях с мощным оборудованием и большими стартовыми токами — D.

Номинальное напряжение и частота сети

Для каких сетей предназначен аппарат — 220 В и 380 В, с частотой 50 Гц. Других в нашей торговой сети не бывает, но все равно, стоит проверить.

Дифференциальные автоматы могут иметь двойную маркировку — 230/400 V. Это говорит о том, что данное устройство может работать и в сети на 220 В и на 380 В. В трехфазных сетях подобные устройства ставят на розеточные группы или на отдельных потребителей, там где используется лишь одна из фаз.

В качестве водных дифавтоматов на трехфазные сети необходимы устройства с четырьмя вводами, а они значительно отличаются габаритами. Спутать их невозможно.

Номинальный отключающий дифференциальный ток или ток утечки (уставки)

Отображает чувствительность устройства к образующимся токам утечки и показывает, при каких условиях сработает защита. В быту используются только два номинала: 10 мА для установки на линии, в которых установлено только одно мощное устройство или потребитель, в котором сочетаются два опасных фактора — электричество и вода (проточный или накопительный электрический водонагреватель, варочная поверхность, духовой шкаф, посудомоечная машина и т.п.).

Для линий с группой розеток и наружного освещения ставят дифавтоматы с током утечки 30 мА, на линии освещения внутри дома их не обычно ставят — для экономии.

На устройстве может быть написан просто значение в миллиамперах (как на фото слева) или может быть нанесено буквенное обозначение тока уставки (на фото справа), после которого стоят цифры в амперах (при 10 мА стоит 0,01 А, при 30 мА цифра 0,03 А).

Класс дифференциальной защиты

Показывает от токов утечки какого типа защищает это устройство. Есть буквенное и графическое изображение. Обычно ставят значок, но может быть и буква (смотрите в таблице).

Буквенное обозначениеГрафическое обозначениеРасшифровкаОбласть применения
АСРеагирует на переменный синусоидальный токСтавят на линии, к которым подключена простая техника без электронного управления
АРеагирует на синусоидальный переменный ток и пульсирующий постоянныйПрименяется на линиях, от которых запитывается техника с электронным управлением
ВУлавливает переменный, импульсный, постоянный и сглаженный постоянный.В основном применяется на производстве с большим количеством разнообразной техники
SС выдержкой времени отключения 200-300 мсВ сложных схемах
GС выдержкой времени отключения60-80 мсВ сложных схемах

Выбор класса дифференциальной защиты дифавтомата происходит исходя из типа нагрузки. Если это техника с микропроцессорами, необходим класс А, на линии освещения или включения питания простых устройств подойдет класс AC. Класс В в частных домах и квартирах ставят редко — нет необходимости «отлавливать» все типы токов утечки. Подключение дифавтомата класса S и G имеет смысл в многоуровневых схемах защиты. Их ставят в качестве входных, если в схеме дальше есть другие дифференциальные устройства отключения. В этом случае при срабатывании одного из нижестоящих по току утечки, входной не отключится и исправные линии будут в работе.

Номинальная отключающая способность

Показывает, какой ток в состоянии дифавтомат отключить при возникновении КЗ и остаться при этом работоспособным. Есть несколько стандартных номиналов: 3000 А, 4500 А, 6000 А, 10 000 А.

Выбор дифавтомата по этому параметру зависит от типа сети и от дальности расположения подстанции. В квартирах и домах на достаточном удалении от подстанции используют дифавтоматы с отключающей способностью 6 000 А, близко к подстанциям ставят на 10 000 А. В сельской местности, при подводе электропитания по воздушке и в давно не модернизированных сетях достаточно 4 500 А.

На корпусе эта цифра указана в квадратной рамке. Местоположение надписи может быть разным — зависит от производителя.

Класс токоограничения

Чтобы ток короткого замыкания принял максимальное значение, должно пройти какое-то время. Чем быстрее будет отключено электропитание от поврежденной линии, тем меньше меньше вероятность получения повреждений. Класс токоограничения отображается цифрами от 1 до 3. Третий класс — отключает линию быстрее всего. Так что выбор дифавтомата по этому признаку прост — желательно использовать устройства третьего класса, но они дороги, зато дольше остаются работоспособными. Так что при наличии финансовой возможности, ставьте дифавтоматы этого класса.

На корпусе эта характеристика изображена в маленькой квадратной рамке рядом с номинальной отключающей способностью. Она может стоять справа (у Legranda) или снизу (у большинства других производителей). Если вы такой отметки не нашли ни на корпусе, ни в паспорте, значит этот автомат не имеет тоокограничения.

Температурный режим использования

Большинство дифференциальных защитных автоматов рассчитаны на работу в помещениях. Они могут эксплуатироваться при температурах от -5°C до + 35°C. В этом случае на корпусе ничего не ставят.

Иногда щитки стоят на улице и обычные защитные устройства не подойдут. Для таких случаев выпускаются дифавтоматы с более широким диапазоном температур — от -25°C до +40°C. В этом случае на корпусе ставят специальный знак, который немного похож на звездочку.

Наличие маркеров о причине сработки

Дифавтоматы не все электрики любят ставить, так как считают, что связка защитный автомат+УЗО более надежна. Вторая причина — если устройство сработает, невозможно определить, что стало тому причиной — перегрузка, и надо просто выключить какой-то прибор, или ток утечки, и надо искать где и что произошло.

Чтобы решить хотя бы вторую проблему, производители стали делать флажки, которые показывают причину сработки дифавтомата. В некоторых моделях это небольшая площадка, по положению которой определяется причина отключения.

Если отключение вызвала перегрузка, индикатор остается вровень с корпусом, как а фото справа. Если дифавтомат сработал при наличии тока утечки, флажок выступает на некоторое расстояние от корпуса.

Тип конструктивного исполнения

Есть диф автоматы двух типов: электромеханические или электронные. Электромеханические более надежны, так как они сохраняют работоспособность даже при пропадании питания. То есть, если пропадет фаза, они смогут сработать и отключить еще и ноль. Электронные же для работы требуют питания, которое берут с фазного провода и при пропадании фазы теряют работоспособность.

Производитель и цена

В электричестве не стоит экономить, тем более на устройствах, которые обеспечивают защиту проводки и жизни. Потому рекомендуют всегда покупать комплектующие известных производителей. Лидирует на рынке Legrand (Легранд) и Schneider (Шнайдер), Hager (Хагер) но их продукция дорога, да и много подделок. Не настолько высокие цены у IEK (ИЕК), ABB (АББ), но и проблем с нм бывает больше. С неизвестными производителями в данном случае лучше не связываться, так как они зачастую просто неработоспособны.

Выбор на самом деле не такой и маленький, даже если ограничиться только этими пятью фирмами. У каждого производителя есть несколько линеек, которые отличаются по цене, причем значительно. Чтобы понять в чем разница, надо внимательно смотреть на технические характеристики. На цену оказывает влияние каждая и них, так что внимательно изучайте все данные перед покупкой.

Как подключить дифавтомат

Начнем со способов монтажа и порядка подключения проводников. Все очень просто, никаких особых сложностей нет. В большинстве случаев монтируется он на динрейку. Для этого есть специальные выступы, которые удерживают устройство на месте.

Электрическое подключение

Подключение дифавтомата к электросети происходит проводами в изоляции. Сечение выбирается исходя из номинала. Обычно линия (подвод питания) подключается в верхние гнезда — они подписываются нечетными цифрами, нагрузка — в нижние — подписываются четными цифрами. Так как к дифференциальному автомату подключается и фаза и ноль, чтобы не перепутать, гнезда для «ноля» подписаны латинской буквой N.

В некоторых линейках подключать линию можно и в верхние, и в нижние гнезда. Пример такого устройства на фото выше (слева). В этом случае на схеме пишется нумерация через дробь — 1/2 вверху и 2/1 внизу, 3/4 вверху и 4/3 внизу. Это и обозначает, что не имеет значения сверху или снизу подключать линию.

Перед подключением линии с проводов снимают изоляцию примерно на расстоянии 8-10 мм от края. На нужной клемме слегка ослабляют крепежный винт, вставляют проводник, винт затягивают с достаточно большим усилием. ЗАтем провод несколько раз дергают, чтобы убедиться что контакт нормальный.

Проверка работоспособности

После того, как вы подключили дифавтомат, подали питание, необходимо проверить работоспособность системы и правильность установки. Для начала тестируем сам агрегат. Для этого есть специальная кнопка, подписанная «Test» или просто буквой T. После того, как перевели переключатели в рабочее состояние, нажимаем на эту кнопку. При этом устройство должно «выбить». Эта кнопка искусственно создает ток утечки, так что мы проверили работоспособность дифавтомата. Если сработки не было — надо проверить правильность подключения, если все верно, устройство неисправно

Дальнейшая проверка — подключение простой нагрузки к каждой розетке. Этим вы проверите правильность расключения розеточных групп. И последнее — поочередное включение бытовой техники, на которую заведены отдельные линии электропитания.

Схемы

При разработке схемы электропроводки в квартире или доме может быть много вариантов. Отличаться они могут удобством и надежностью эксплуатации, степенью защиты. Есть простые варианты, требующие минимума затрат. Они обычно реализуются в небольших сетях. Например, на дачах, в небольших квартирах с малым количеством бытовой техники. В большинстве случаев приходится ставить большое количество устройств, которые обеспечивают безопасность проводки и защищают от поражения током людей.

Простая схема

Не всегда имеет смысл устанавливать большое количество защитных устройств. Например, на даче сезонного посещения, где есть всего несколько розеток и освещение, достаточно поставить всего один дифавтомат на входе, от которого на группы потребителей — розетки и освещение — через автоматы пойдут отдельные линии.

Эта схема не потребует больших затрат, но при появлении тока утечки на любой из линий дифавтомат сработает, обесточив все. До выяснения и устранения причин света не будет.

Более надежная защита

Как уже говорили, отдельные дифавтоматы ставят на «мокрые» группы. К ним относятся кухня, ванная, наружное освещение, а также техника, использующая воду (кроме стиральной машинки). Такой способ построения системы дает более высокую степень безопасности и лучше защищает проводку, оборудование и человека.

Реализация этого способа устройства проводки потребует больших материальных затрат, но работать система будет более надежно и стабильно. Так как при сработке одного из защитных устройств, остальная часть останется работоспособной. Такое подключение дифавтомата применяется в большинстве квартир и в небольших домах.

Селективные схемы

В разветвленных сетях электроснабжения возникает необходимость сделать систему еще более сложной и дорогостоящей. В таком варианте после счетчика устанавливается входной дифференциальный автомат класса S или G. Далее, на каждую группу идет свой автомат, а при необходимости ставятся еще и на отдельных потребителей. Подключение дифавтомата для этого случая смотрите на фото ниже.

При таком построении системы при сработке одного из линейных устройств все остальные останутся в работе, так как входной автомат дифференциального отключения имеет задержку в срабатывании.

Основные ошибки подключения дифавтоматов

Иногда после подключения дифавтомата он не включается или вырубается при подключении любой нагрузки. Это значит, что что-то сделано не так. Есть несколько типичных ошибок, которые встречаются при самостоятельной сборке щитка:

  • Провода защитного нуля (земля) и рабочего нуля (нейтраль) где-то объединены. При такой ошибке дифавтомат вообще не включается — рычаги не фиксируются в верхнем положении. Придется искать где объединены или перепутаны «земля» и «ноль».
  • Иногда при подключении дифавтомата ноль на нагрузку или на ниже расположенные автоматы взят не с выхода устройства, а напрямую с нулевой шины. В таком случае рубильники становятся в рабочее положение, но при попытке подключить нагрузку, они моментально отключаются.
  • С выхода дифавтомата ноль подается не на нагрузку, а идет обратно на шину. Ноль на нагрузку тоже берется с шины. В этом случае рубильники становятся в рабочее положение, но кнопка «Тест» не работает и при попытке включить нагрузку происходит отключение.
  • Перепутано подключение ноля. С нулевой шины провод должен идти на соответствующий вход, обозначенный буквой N, который находится вверху, а не вниз. С нижней нулевой клеммы провод должен уходить на нагрузку. Симптомы аналогичны: рубильники включаются, «Тест» не работает, при подключении нагрузки происходит срабатывание.
  • При наличии в схеме двух дифавтоматов перепутаны нулевые провода. При такой ошибке оба устройства включаются, «Тест» работает на обоих устройствах, но при включении любой нагрузки выбивает сразу оба автомата.
  • При наличии двух дифавтоматов, идущие от них нули где-то дальше соединили. В этом случае оба автомата взводятся, но при нажатии на кнопку «тест» одного из них, вырубаются сразу два устройства. Аналогичная ситуация возникает при включении любой нагрузки.

Теперь вы не только можете выбрать и подключить дифференциальный автомат защиты, но и понять почему он выбивает, что именно пошло не так и самостоятельно исправить ситуацию.

stroychik.ru

Что нужно знать об УЗО

Перед тем, как углубиться в вопросы, касающиеся схемы установки УЗО, рассмотрим особенности этих устройств, а также основные требования к ним, на основе которых производится их выбор. В данной статье мы не коснёмся индексации, так как углубление в неё требует серьёзных знаний в области электротехники, а также эта надобность отпадает в связи с тем, что выбор защитного устройства будет совершен исключительно на основе исходных данных. Для этого необходимо выполнить несколько пунктов:

  • Продумать о необходимости подключения отдельного УЗО с автоматом или дифавтомата.
  • Определиться с номинальным током устройства. Для автомата актуально значение данного тока выбирать на одну ступень выше данных тока отсечки, в том же случае, если используется дифавтомат, то указываемое значение должно быть равно току отсечки.
  • С помощью простого расчёта вычислить значение отсечки по экстратоку (перегрузке). Для его расчёта необходимо знать максимально допустимый ток потребления, а затем умножить полученное значение на 1,25. Далее необходимо отталкиваться от таблицы значений стандартного ряда токов. Если результат отличен он указанных параметров, то он округляется в большую сторону.
  • Определить допустимый ток утечки. В обычных устройствах он равен 30 или 100 мА, но бывают и исключения. Выбор будет зависеть от типа проводки.

Если необходимо использование «пожарного» УЗО, то следует определиться с типом и расположением вторичных «жизненных» устройств.

Обозначение УЗО на однолинейной схеме

Говоря о схемах и проектах, очень важно уметь их правильно прочитать. Как правило, изображение УЗО на графической и проектной документации зачастую выполнено условно, наряду с другими элементами. Это несколько затрудняет понимание принципов работы схемы и отдельных её компонентов в частности. Условное изображение устройства защиты можно сравнить с изображением обычного выключателя, с той лишь разницей, что элемент на нелинейной схеме представлен в виде двух параллельно поставленных выключателей. На однолинейной схеме полюса, провода и элементы не прорисовываются визуально, а изображаются символически.

Этот момент подробно продемонстрирован на рисунке снизу. На нём изображено двухполюсное УЗО с током утечки 30 мА. На это указывает расположенная в верхней части цифра «2». Около неё можно увидеть пересекающую линию питания косую черту. Двухполюсность устройства дублируется и в нижней части схематического изображения элемента, в качестве двух косых чёрточек.

Разберём типовую схему «квартирного» подключения защитного устройства с учётом наличия счётчика на примере, приведённом на рисунке снизу. Ознакомившись более детально с принципом подключения, можно сделать вывод об оптимальном расположении УЗО, которое должно быть максимально приближенно к вводу. Это должно быть осуществлено таким образом, что бы между ними были расположены счётчик и главный автомат. Тем не менее, существует несколько ограничительных нюансов. Так, например, общее устройство защиты не может быть подключено к системе типа TN-C в связи с её принципиальными особенностями. Устаревший образец советских времён имеет защитный проводник, который напрямую соединён с нейтралью, что и становится причиной «несовместимости».

Устройство защитного отключения, представляющее собой устаревший образец советских времён с защитным проводником, соединённым с нейтралью, не представляет возможным подключить к ней общее устройство защиты.

Это лучший пример того, как подключить УЗО с заземлением. Схема также имеет желтые полосы, демонстрирующие принцип подключения дополнительных защитных аппаратов для групп потребителей, которые схематически должны быть расположены за соответствующими им автоматами. При этом номинальный ток каждого вторичного устройства на пару ступней превышает показатель назначенного ему автомата.

Но всё это характерно для современной электропроводки, с учётом наличия «земли».

Чтобы в дальнейшем более детально познакомиться с основами УЗО, обозначение на схеме необходимо выучить или по мере изучения статьи возвращаться к ней.

Подключение УЗО без заземления. Схема и особенности

Отсутствие контуров заземления в домах – ситуация распространённая, требующая больших усилий и знаний, ведь придётся вспомнить основы электродинамики, но она не является приговором. Главное следовать четырём обобщённым правилам:

  • Проводка типа TN-C не допускает установку дифавтомата или общего УЗО.
  • Следует определить потенциально опасных потребителей и защитить их дополнительным отдельным устройством.
  • Следует выбрать кратчайший «электрический» путь для защитных проводников розеток и розеточных групп на входную нулевую клемму УЗО.
  • Каскадное подключение защитных аппаратов допустимо при условии, что ближайшие к электровводу УЗО являются менее чувствительными, чем оконечные.

Многие, даже дипломированные, электрики, забыв или банально не зная принципы электродинамики, не задумываются о том, как подключить УЗО без заземления. Схема, предлагаемая ими, выглядит обычно так: ставится общее устройство защиты, а затем все PE (нулевые защитные проводники) заводятся на входной ноль УЗО. С одной стороны, здесь без сомнения видна разумная логическая цепочка, ведь на защитном проводнике не будет происходить коммутация. Но всё гораздо сложнее.

  • В обмотке может произойти кратковременный всплеск тока, компенсирующий разбаланс токов в фазе и нуле, называемый «Анти-дифференциальным» эффектом. Возникает он довольно редко.
  • Более распространённым вариантом является неконтролируемое усиление разбаланса токов, называемое «Супер-дифференциальным» эффектом. Возникновение подобной ситуации заставляет срабатывать устройство защиты без свойственной ему утечки. Тем не менее, это не вызовет серьёзных сбоев или поломок, а лишь принесёт определённый дискомфорт при постоянном «выбивании».

Сила «эффектов» зависит от длины РЕ. Если его длина превышает два метра, то вероятность несрабатывания УЗО достигает вероятности 1 к 10000. Числовой показатель довольно мал, тем не менее, теория вероятности вещь практически непредсказуемая.

Схема подключения УЗО в однофазной сети

Так как в квартирах зачастую используется однофазное подключение сети. В данном случае в качестве защиты оптимально выбирать однофазные двухполюсные УЗО. Существует несколько вариантов схемы подключения для данного устройства, но мы рассмотрим наиболее распространённую, показанную на рисунке ниже.

Подключение аппарата довольно простое. В паспорте и на приборе указана основная маркировка и точки подключения фазы (L) и нуля (N). На схеме изображены вторичные автоматы, но их установка не является обязательной. Они нужны для распределения подключаемых бытовых приборов и освещения по группам. Таким образом, проблемный участок никак не затронет остальные части или комнаты квартиры. При этом важно учитывать, что установка максимально допустимых токов на автоматах не должна превышать настроек УЗО. Это объясняется отсутствием в устройстве ограничения по току. Внимательно следует отнестись и к подключению фазы с нулём. Невнимательность может привести не только к отсутствию питания микросхемы, но и к поломке устройства защиты.

Схема включения УЗО в однофазной сети, по мнению специалистов, должна располагаться в непосредственной близости со счетчиком электрической энергии (рядом с источником электропитания)

Ошибки и их последствия при подключении УЗО

Как и любая электрическая схема, схематическое изображение подключения защитного устройства в общую сеть, должно быть составлено, как и прочитано в дальнейшем, без малейших изъянов. Даже самый скромный недочёт может привести к неисправной работе системы в целом или самого УЗО, в то время как серьёзные отклонения могут принести довольно серьёзный ущерб. Ошибки могут быть допущены самые разные, но среди них можно выделить ряд наиболее распространённых:

  • Нейтраль и заземление соединяются после УЗО. В данном случае можно неверно интерпретировать схему, соединив нулевой рабочий проводник, с открытой частью электроустановки или с нулевым защитным проводником. В обоих случаях итог будет идентичен.
  • УЗО может быть подключено неполнофазно. Допущение такой ошибки приведёт к ложному срабатыванию, возникающему, из-за того, что до УЗО нагрузка была подключена к нулевому рабочему проводнику.
  • Пренебрежение правилами соединения в розетках нулевого и заземляющего проводника. Проблема кроется в процессе установки розеток, в котором допускается соединение защитного и нулевого рабочего проводников. При этом устройство будет срабатывать даже тогда, когда в розетку ничего не подключено.
  • Объединение нулей в схеме с двумя устройствам защиты. Распространённой ошибкой является неправильное соединение в зоне защиты нулевых проводников обоих УЗО. Она допускается из-за невнимательности и неудобства электромонтажа внутри стеновой панели. Оплошность приведёт к неконтролируемым выключениям устройств.
  • Применение двух или более УЗО усложняют работу по подключению нулевых проводов. Последствия невнимательности могут быть довольно серьёзными. Не поможет и тестирование, так как при нём работа устройства не вызовет никаких нареканий. Но первое же подключение электроприборов может вызвать ошибку и срабатывание всех УЗО.
  • Невнимательность при подключении фазы и нуля, если они взяты с разных УЗО. Проблема возникает при соединении нагрузки с нулевым проводником, относящимся к другому устройству защиты.
  • Несоблюдение полярности подключения, что выражается в подключении фазы и нуля, соответственно сверху и снизу. Это спровоцирует движение токов в одном направлении, вследствие чего создаются условия для невозможности взаимокомпенсации магнитных потоков. Это говорит о том, что перед покупкой нового УЗО следует внимательно изучить принцип подключения старого, так как расположение клемм может быть отличным.
  • Пренебрежение деталями при подключении трехфазного УЗО. Распространённой ошибкой в подключении четырёхполюсного УЗО является использование клемм одноимённой фазы. Тем не менее, работа однофазных потребителей никак не повлияет на работу такого защитного устройства.

prokommunikacii.ru

Установка УЗО значительно повышает уровень безопасности при работе на электроустановках. Если УЗО обладает высокой чувствительностью (30 мА), то при этом обеспечивается защита от прямого контакта (прикосновения).

Тем не менее, установка УЗО не означает от выполнения обычных мер предосторожности при работе на электроустановках.

Кнопку тест необходимо нажимать регулярно, как минимум один раз в 6 месяцев. Если тест не срабатывает, то надо задуматься о замене УЗО, так как уровень электробезопасности снизился.

Установите УЗО на панели или корпусе. Подключите оборудование в точном соответствии со схемой. Включите все нагрузки, подключенные к защищаемой сети.

Срабатывает УЗО.

Если УЗО срабатывает, выясните, какое устройство является причиной срабатывания, путем последовательного отключения нагрузки (отключаем по очереди эл. оборудование и смотрим результат). При обнаружении такого устройства его необходимо отключить от сети и проверить. Если электрическая линия имеет очень большую длину, обычные токи утечки могут быть достаточно велики. В этом случае имеется вероятность ложных срабатываний. Чтобы избежать этого, необходимо разделить систему, по крайней мере, на два контура, каждый из которых будет защищен своим УЗО. Можно расчитать длинну электрической линии.

При невозможности определения документальным способом суммы токов утечки проводки и нагрузок, можно пользоваться примерным расчетом (в соответствии с СП 31-110-2003), принимая ток утечки нагрузки равным 0,4мА на 1А потребляемой нагрузкой мощности и ток утечки электросети равным 10мкА на один метр длины фазового провода электропроводки.

Пример расчета УЗО.

Для примера рассчитаем УЗО для электроплиты, мощностью 5 кВт, установленную на кухне малогабаритной квартиры.

Примерное расстояние от щитка до кухни может составлять 11 метров, соответственно расчетная утечка проводки составляет 0,11мА. Электроплита, на полной мощности, потребляет (приближенно) 22.7А и обладает расчетным током утечки 9,1мА. Таким образом, сумма токов утечки данной электроустановки составляет 9,21мА. Для защиты от токов утечки можно использовать УЗО с номиналом тока утечки 27,63мА, что округляется до ближайшего большего значения существующих номиналов по диф. току, а именно УЗО 30мА.

Следующим шагом, является определение рабочего тока УЗО. При указанном выше максимальном токе, потребляемым электроплитой, можно использовать номинал (с небольшим запасом) УЗО 25А, или с большим запасом — УЗО 32А.

Таким образом мы расчетно определили номинал УЗО, которое можно использовать для защиты электроплиты: УЗО 25А 30мА или УЗО 32А 30мА. (надо не забыть защитить УЗО автоматическим выключателем 25А для первого номинала УЗО и 25А или 32А для второго номинала).

Обозначение УЗО.

На схеме УЗО обозначается следующим образом рис. 1 однофазное УЗО, рис. 2 -трехфазное УЗО.

Схема подключения УЗО рассмотрим на примере. На фото. 1 показан фрагмент распределительного шкафа.

Фото. 1 Схема подключения трехфазного УЗО с автоматическим выключателем (на фото цифра1 УЗО, 2- автоматический выключатель) и однофазных УЗО (3).

УЗО не защищает от токов короткого замыкания, поэтому его устанавливают в паре с автоматическим выключателем. Что ставить раньше УЗО или автоматический выключатель в данном случае не принципиально. Номинал УЗО должен быть равным или немного больше наминала автоматическо выключателя. Например, автоматический выключатель 16 Ампер, значит, УЗО ставим 16 или 25 А.

Как видно на фото. 1 на трехфазное УЗО (цифра 1) подходят три фазных и нулевой проводник, а после УЗО подключен автоматический выключатель (цифра 2). Потребитель будет подключаться: фазные проводники (красные стрелки) с автоматического выключателя; нулевой проводник (синяя стрелка) — с УЗО.

Под цифрой 3 на фото показаны дифференциальные автоматы, соединенные сборной шиной, принцип работы диф. автомата такой же, как у УЗО, но он дополнительно защищает от токов короткого замыкания и не требует дополнительной защита от КЗ.

А подключение, что у УЗО, что у диф. автоматов одинаковое.

Подключаем к клемме L фазу, к N ноль (обозначения нанесены на корпусе УЗО). Потребители подключаются также.

www.mirpodelki.ru

Обозначение УЗО и дифференциального автомата.

На данный момент в ГОСТ нет каких либо рекомендаций относительно условных графических обозначений УЗО и дифференциальных автоматов. Изображения обозначений, которые используют в схемах отличаются друг от друга.

По этому, в данной статье, я хочу дать свои рекомендации и предложить вариант обозначений УЗО и дифференциального автомата, который по моему мнению, будет соответствовать функциональному назначению этих электрических аппаратов.

Функционально УЗО можно определить как быстродействующий выключатель, реагирующий на дифференциальный ток — ток утечки в проводниках, подводящих электроэнергию к защищаемой электроустановке. В качестве датчика дифференциального тока и основного функционального элемента УЗО используется трансформатор тока, который часто называют трансформатором тока нулевой последовательности (что не совсем правильно, но думаю приемлемо).

Из выше сказанного следует что изображение условного обозначения УЗО, должно состоять из обозначения выключателя и трансформатора тока нулевой последовательности, сигнал от которого (ток нулевой последовательности), воздействует на механизм отключения контактной группы аппарата.

Этому требованию подходят следующие обозначения:

Дифференциальный автомат, отличается от УЗО тем, что совмещает в одном электрическом аппарате два устройства, автоматический выключатель и устройство защитного отключения. По этому можно использовать следующее обозначение:

Буквенно-цифровое обозначение УЗО и дифференциальных автоматов, на мой взгляд, можно наносить на схеме следующим образом:


 

Где Q1 и QF1 обозначают функции выключателя и автоматического выключателя соответственно и порядковый номер аппарата в схеме. Значение дифференциального тока, обозначает функцию устройства защитного отключения

Второй вариант буквенно-цифрового обозначения, который часто применяется: QD1 для УЗО и QFD1 для дифференциального автомата. И хотя согласно ГОСТ 2.710 код буквы D обозначает схемы интегральные, более подходящего символа в данном ГОСТ нету. Будем считать, что D, от слова дифференциальный.

Данный вариант условных графических обозначений УЗО и дифференциальных автоматов, до момента публикации каких либо рекомендаций в нормативных документах, на мой взгляд является наиболее приемлемым. Поэтому, я решил включить трафареты рассмотренных выше электрических аппаратов в Комплект для черчения электрических схем.


Обозначение УЗО на однолинейной схеме

Электротехника не может существовать без сопутствующих ей специальных схем и проектов. Поэтому для специалиста является очень важным умение их правильно прочитать и использовать точно по назначению. Во многих случаях все элементы, в том числе и обозначение УЗО на однолинейной схеме, выполнены довольно условно, для того чтобы можно было представить себе полную картину всего графического проекта. Как правило условное изображение УЗО напоминает обычный выключатель, с полюсами, проводами и т.д., изображенными символически. Опытный электрик хорошо разбирается в таких схемах, уверенно читает их и не допускает ошибок во время работы.

УЗО на однолинейной схеме

Прежде чем выполнять какие-либо практические действия, каждый электрик должен предварительно ознакомиться с проектной документацией, разработанной для объекта. Она может составляться самостоятельно или заказываться в специализированной организации. Поэтому нередки случаи, когда графические изображения тех или иных элементов различаются между собой. Это касается многих элементов, в том числе и устройств защитного отключения. В связи с этим нужно знать, как на схеме обозначается УЗО в различных вариантах.

В первую очередь необходимо заранее изучить общепринятые правила графических обозначений и маркировки оборудования и других элементов, представляемых на электрических чертежах и план-схемах. Некоторые электрики считают, что им не нужен весь объем таких знаний, поскольку большинство информации на практике может не пригодиться. Однако такие рассуждения абсолютно неверны.

Каждый специалист-электротехник, уважающий свою профессию, должен не только освоить чтение электрических схем, но и основные графические изображения различных средств коммуникации, защитных устройств, приборов учета, розеток, выключателей, светильников и других элементов. Такие знания служат хорошим подспорьем в практической работе.

Основные виды маркировок, в том числе и обозначение УЗО на схеме, постоянно используются электриками при выполнении практических работ. Предварительное составление графиков и рабочих схем требует аккуратности и повышенного внимания, поскольку даже маленькая неточность или неправильно нанесенный значок, могут вызвать в дальнейшем серьезную ошибку.

Неверные данные могут быть неправильно истолкованы специалистами сторонних организаций, задействованными для выполнения электромонтажных работ. По этой причине часто возникают серьезные трудности во время прокладки электрических сетей.

Обозначение УЗО на схеме по госту

Все устройства защитного отключения наносятся на схемы с помощью графических и буквенных изображений. Данная символика определяется нормативными документами: ГОСТ 2.755-87 ЕСКД «Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения». Маркировка определяется согласно ГОСТ 2.710-81 ЕСКД «Обозначения буквенно-цифровые в электрических схемах».

Однако в целом данные документы не дают полной информации о том, каким именно должно быть обозначение УЗО на схеме однолинейного типа. То есть каких-либо особенных требований в данном случае не выдвигается. Поэтому многие электрики маркируют некоторые узлы и устройства собственноручно разработанными значениями и метками, немного отличающимися от привычных стандартных обозначений.

Иногда за основу берутся символы, нанесенные на корпус защитного устройства. Поэтому. исходя из предназначения УЗО, данный прибор на электрических схемах разделен на две составляющих – выключатель и датчик, реагирующий на дифференциальный ток и приводящий в действие механизм отключения контактов.

Условное обозначение дифференциального автомата на схеме

Обозначение дифференциального автомата на схеме

Условное обозначение узо на схеме

Ни один человек, каким бы талантливым и смекалистым он не был, не сможет научиться понимать электрические чертежи без предварительного знакомства с условными обозначениями, которые используются в электромонтаже практически на каждом шагу. Опытные специалисты утверждают, что шанс стать настоящим профессионалом своего дела может быть только у того электрика, которые досконально изучил и усвоил все общепринятые обозначения, используемые в проектной документации.

Приветствую всех друзья на сайте «Электрик в доме». Сегодня я бы хотел уделить внимание одному из первоначальным вопросов, с которым сталкиваются все электрики перед монтажом — это проектная документация объекта.

Кто то составляет ее сам, кому то предоставляет заказчик. Среди множества этой документации можно встретить экземпляры, в которых встречаются различия между условными обозначениями тех или иных элементов. Например в разных проектах один и тот же коммутационный аппарат графически может отображаться по разному. Встречалось такое?

Понятно, что обсудить обозначение всех элементов в пределах одной статьи невозможно, поэтому тема данного урока будет сужена, и сегодня обсудим и рассмотрим, как выполняется обозначение узо на схеме .

Каждый начинающий мастер обязан внимательно ознакомиться с общепринятыми ГОСТами и правилами маркировки электрических элементов и оборудования на план-схемах и чертежах. Многие пользователи могут со мной не согласится, аргументируя это тем, что зачем мне знать ГОСТ, я всего лишь занимаюсь установкой розеток и выключателей в квартирах. Схемы должны знать инженера проектировщики и профессора в университетах.

Уверяю вас это не так. Любой уважающий себя специалист обязан не только понимать и уметь читать электрические схемы. но и должен знать, как графически отображаются на схемах различные коммуникационные аппараты, защитные устройства, приборы учета, розетки и выключатели. В общем, активно применять проектную документацию в своей повседневной работе.

Обозначение узо на однолинейной схеме

Основные группы обозначений УЗО (графические и буквенные) используются электромонтерами очень часто. Работа по составлению рабочих схем, графиков и планов требует очень большой внимательности и аккуратности, так как одно-единственное неточное указание или пометка могу привести к серьезной ошибке в дальнейшей работе и стать причиной выхода из строя дорогостоящего оборудования.

Кроме того, неверные данные могут ввести в заблуждение сторонних специалистов, привлеченных для электромонтажа и стать причиной возникновения сложностей при монтаже электрических коммуникаций.

В настоящее время любое обозначение узо на схеме может быть представлено двумя способами: графическим и буквенным .

На какие нормативные документы следует ссылаться?

Из основных документов для электрических схем, которые ссылаются на графическое и буквенное обозначение коммутационных устройств можно выделить следующие:

  1. — ГОСТ 2.755-87 ЕСКД «Обозначения условные графические в электрических схемах устройства коммутационные и контактные соединения»;
  2. — ГОСТ 2.710-81 ЕСКД «Обозначения буквенно-цифровые в электрических схемах».

Графическое обозначение УЗО на схеме

Итак, выше я представил основные документы, по которым регулируется обозначения в электрических схемах. Что нам дают указанные ГОСТы по изучению нашего вопроса? Мне стыдно признаться, но абсолютно ничего. Дело в том, что на сегодняшний день в данных документах отсутствует информация о том, как должно выполняться обозначение узо на однолинейной схеме.

Действующий на сегодня ГОСТ никаких особых требований к правилам составления и использования графических обозначений УЗО не выдвигает. Именно поэтому некоторые электромонтеры предпочитают использовать для маркировки определенных узлов и устройств свои собственные наборы значений и меток, каждая из которых может несколько отличаться от привычных нашему взгляду значений.

Для примера давайте рассмотрим, какие обозначения наносятся на корпусе самих устройств. Устройство защитного отключения фирмы hager:

Или к примеру УЗО от Schneider Electric:

Чтобы избежать путаницы, предлагаю Вам совместно разработать универсальный вариант обозначений УЗО, которым можно руководствоваться практически в любой рабочей ситуации.

По своему функциональному назначению устройство защитного отключения можно описать так – это выключатель, который при нормальной работе способен включать/отключать свои контакты и автоматически размыкать контакты при появлении тока утечки. Ток утечки это дифференциальный ток, возникающий при ненормальной работе электроустановки. Какой орган реагирует на дифференциальный ток? Специальный датчик — трансформатор тока нулевой последовательности.

Если представить все вышеописанное в графической форме, то получается что условное обозначение УЗО на схеме можно представить в виде двух второстепенных обозначений — выключателя и датчика реагирующего на дифференциальный ток (трансформатора тока нулевой последовательности) который воздействует на механизм отключения контактов.

В этом случае графическое обозначение узо на однолинейной схеме будет выглядеть так.

Как обозначается дифавтомат на схеме?

По поводу обозначений дифавтоматов в ГОСТ на данный момент тоже нет данных. Но, исходя из вышеизложенной схемы, дифавтомат графически также можно представить в виде двух элементов — УЗО и автоматического выключателя. В этом случае графическое обозначение дифавтомата на схеме будет выглядеть так.

Буквенное обозначение узо на электрических схемах

Любому элементу на электрических схемах присваивается не только графическое обозначение, но и буквенное с указанием позиционного номера. Такой стандарт регулируется ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах» и обязателен для применения ко всем элементам в электрических схемах.

Так, например, согласно ГОСТ 2.710-81 автоматические выключатели принято обозначать путем специального буквенно-цифрового позиционного обозначения таким образом: QF1, QF2, QF3 и т.д. Рубильники (разъединители) обозначаются как QS1, QS2, QS3 и т.д. Предохранители на схемах обозначаются как FU с соответствующим порядковым номером.

Аналогично, как и с графическими обозначениями, в ГОСТ 2.710-81 нет конкретных данных, как выполнять буквенно-цифровое обозначение УЗО и дифференциальных автоматов на схемах .

Как быть в таком случае? В этом случае многие мастера используют два варианта обозначений.

Первый вариант воспользоваться самым удобным буквенно-цифровым обозначением Q1 (для УЗО) и QF1 (для АВДТ), которые обозначают функции выключателей и указывают на порядковый номер аппарата, находящегося в схеме.

То есть кодировка буквы Q означает – «выключатель или рубильник в силовых цепях», что вполне может быть применима к обозначению УЗО.

Кодовая комбинация QF расшифровывается как Q – «выключатель или рубильник в силовых цепях», F – «защитный», что вполне может быть применима не только к обычным автоматам, но и к диф.автоматам.

Второй вариант это использовать буквенно-цифровую комбинацию Q1D — для УЗО и комбинацию QF1D — для дифференциального автомата. По приложению 2 таблицы 1 ГОСТ 2.710 функциональное значение буквы D означает – « дифференцирующий ».

Я очень часто встречал на реальных схемах такое обозначение QD1 – для устройств защитного отключения, QFD1 – для дифференциальных автоматов.

Какие можно сделать выводы из вышеописанного?

Ввиду того что обозначение УЗО и дифференциальных автоматов по ГОСТ отсутствует, информация рассмотренная в данной статье, не относится к нормативным документам обязательным для исполнения, а является всего лишь РЕКОМЕНДАЦИЕЙ. Каждый проектировщик может изображать на схемах эти элементы по своему усмотрению. Для этого нужно всего лишь привести условно графические обозначения (УГО) элементов, их расшифровку и пояснения к схеме. Все эти действия предусматриваются в ГОСТ 2.702-2011.

Как обозначается узо на однолинейной схеме — пример реального проекта

Как говорится в известной пословице «лучше один раз увидеть, чем сто раз услышать», поэтому давайте рассмотрим на реальном примере.

Предположим, что перед нами находится однолинейная схема электроснабжения квартиры. Из всех этих графических обозначение можно выделить следующее:

Вводное устройство защитного отключения расположено сразу после счетчика. Кстати как вы могли заметить буквенное обозначение УЗО – QD. Еще один пример как обозначается узо:

Заметьте, что на схеме помимо УГО элементов также наносится их маркировка, то есть: тип устройства по роду тока (А, АС), номинальный ток, дифференциальный ток утечки, количество полюсов. Далее переходим к УГО и маркировке дифференциальных автоматов:

Розеточные линии на схеме подключаются через диф.автоматы. Буквенное обозначение дифавтомата на схеме QFD1, QFD2, QFD3 и т.д.

Еще один пример как обозначаются диф.автоматы на однолинейной схеме магазина.

Вот и все дорогие друзья. На этом наш сегодняшний урок подошел к концу. Надеюсь, данная статья была для вас полезной и Вы нашли здесь ответ на свой вопрос. Если остались вопросы задавайте их в комментариях, с удовольствием отвечу. Давайте делиться опытом, кто как обозначает УЗО и АВДТ на схемах. Буду признателен на репост в соц.сетях))).

В данной статье рассмотрены несколько примеров подключения УЗО и Дифференциальных автоматов.

Основным условием при выборе УЗО и диф. автомата является соблюдение селективности ( ПУЭ.РАЗДЕЛ 3 ):

В электротехнике под «селективностью» понимают совместную работу последовательно включенных аппаратов защиты электрических цепей (автоматические выключатели, УЗО, диф. автомат и т.п.) в случае возникновения аварийной ситуации. На рис. 1 привёден пример работы такой схемы, с учётом общего наминала автоматических выключателей 40 А (4шт. по 10А), вводный автомат 63 А.

Селективность используется при выборе номинала устройств защиты для отключения от общей системы питания только той ее части, где произошла авария. Это достигается за счет срабатывания только того автоматического выключателя, который защищает аварийную линию питания.

Во общем, для селективной работы автоматических выключателей при перегрузках нужно, чтобы номинальный ток (In) автоматического выключателя со стороны питания был больше In автоматического выключателя со стороны потребителей.

Условное обозначение УЗО и дифавтомата на электрических схемах:

Обозначение УЗО на принципиальных электрических схемах см. рис. 2. Слева – однофазное УЗО с током срабатывания 30 мА, справа – трехфазное УЗО на 100 мА. Сверху развернутое изображение, снизу однолинейное. Число полюсов при однолинейном представлении можно изображать и числом (вверху) и числом черточек. Условное обозначение Дифавтомата на принципиальных схемах см. рис. 3 и на однолинейных схемах рис. 4. Буквенное обозначение QF.

Схемы включения УЗО:

По конструкции УЗО различных производителей могут отличаться друг от друга не только параметрами, но и схемами подключения. На рис. 5 приведены наиболее распространенные схемы включения УЗО в различных вариантах:

Двухполюсные УЗО Рис. 5 (а).

Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен в фазное напряжение (Рис. 5 (б).

Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен на линейное напряжение (Рис. 5 (в).

При включении УЗО (дифавтомата) в любом случае смотрите схему, схема подключения приведена на лицевой или боковой поверхности корпуса УЗО, а также в паспорте технического устройства.

Ниже приведены монтажные схемы подключения УЗО (Рис. 6) и дифавтомата (Рис. 7).

  1. Вводный автомат.
  2. Прибор учёта (электросчетчик).
  3. УЗО или дифавтомат.
  4. Автоматический выключатель (освещения, как правило 6 ÷ 10 А, в зависимости от нагрузки светильников).
  5. Автоматический выключатель (розетки, как правило 16 ÷ 25 А, в зависимости от группы розеток).
  6. Автоматический выключатель (розетка «силовая», 16 ÷ 25 А, в зависимости от нагрузки электроплиты).
  7. Нулевая рабочая N — шина.
  8. Нулевая защитная РЕ — шина.

Более подробно про системы заземления и зануления см. в разделе

сайт энергетик, тоэ, формулы, электрика, заземление и т.д.

Сходство и различия УЗО и дифференциального автоматического выключателя

  • Одинаковый принцип контроля тока утечки – с использованием дифференциального трансформатора тока
  • Одинаковый способ защиты персонала – путем отключения от электрической сети всех рабочих проводников, подходящих к электроустановке с использованием высоконадежного механического расцепителя с мощной контактной группой и механизмом взвода отключающих пружин с индикатором положения.
  • Одинаковый способ проверки работоспособности – путем искусственно создаваемого дифференциального тока с использованием специальной электрической цепи тестирования.
  • Наличие только у УЗО ( дифференциального выключателя ) чувствительного элемента, который не имеет собственного потребления электроэнергии и поэтому всегда сохраняет работоспособность.

У дифференциального автомата этот чувствительный элемент представляет собой электронное пороговое устройство с источником питания, которое может потерять работоспособность при выходе из строя электронных компонентов, а также при обрыве фазного или нулевого проводника до места установки дифференциального автомата.

  • Наличие только у дифференциального автомата встроенной защиты от перегрузок и всех видов тока короткого замыкания в электрической сети и поэтому наличие у него более мощных силовых контактов с системой дугогашения.

В отличие от этого, последовательно с УЗО рекомендуется устанавливать автоматический выключатель с номинальным током расцепителя на ступень ниже, чем его номинальный ток, тем самым не допускается отключение токов однофазного короткого замыкания самим УЗО (на токи трехфазного и двухфазного короткого замыкания УЗО не реагирует).

  • Наличие только у дифференциального автомата электромагнита сброса, который надежно сдергивает защелку механизма независимого расцепления. Однако этот электромагнит также запитан от источника питания посредством электронного усилителя с пороговым устройством.

У УЗО воздействие на механизм свободного расцепления осуществляет магнитоэлектрическая защелка, которая не имеет специального источника питания и поэтому всегда сохраняет работоспособность.

Электрические схемы и условное графическое обозначение УЗО и дифференциального автомата

Рис. 1. Дифференциальный выключатель (УЗО): а) электрические схемы б) условное графическое обозначение

Рис. 2. Дифференциальный автомат: а) электрические схемы б) условное графическое обозначение

Обозначение автоматического выключателя на схеме

Для обустройства электроснабжения необходимы проекты чертежей. Чтобы разобраться в чертеже и прочитать его, нужно знать условные обозначения. Автоматический выключатель на схеме указывают по-разному, что часто приводит к недоразумениям, ошибкам при сборке электрощитов и монтаже проводки.

Условные обозначение электрических элементов и виды схем

Первоначальный вопрос, с которым обычно сталкивается каждый электрик, – проектная документация помещения или объекта, который необходимо электрифицировать. Прежде чем приступить к монтажу оборудования, квалифицированный специалист должен ознакомиться с сопровождающими документами.

Оборудование и элементы на схеме могут обозначаться как буквенным, так и графическим изображением. Чертежи разрабатываются в соответствии с ГОСТами и правилами маркировки оборудования и элементов на чертежах и планах. Подробное описание и требования к электрическим схемам приводятся в ГОСТе 2.702-2011 ЕСКД. Кроме графических и буквенных обозначений на схемах проставляют номинальные размеры.

Есть много типов различных схем. В электрике чаще всего используют три основных вида. Функциональные отображают основные узлы устройства, без подробной детализации. Они выглядят как набор отдельных блоков, связанных между собой определенным образом. Схема дает общее представление о работе объекта.

Принципиальная схема содержит подробные указания для каждого элемента, его контакты и связи. Она может описывать как отдельное устройство, так и электросеть. На однолинейных схемах указывают силовые цепи. Способ управления и контроль описывают на отдельном листке. Если устройство не сложное, все размещают на одном документе.

На монтажных схемах указывают элементы и точное их расположение. Если это проводка в квартире или доме, обозначают место установки выключателей, светильников, розеток. Также проставляют расстояния и номиналы. Указывают положение деталей, порядок и способ их соединения.

Устройство защитного отключения (УЗО) и дифавтомат на схеме не имеют определенного геометрического начертания. Для их графического выполнения используют изображение блоков и динамических блоков. Каждому устройству на схеме присваивают буквенную маркировку и указывают позиционный номер.

Кроме того, наносят параметры элементов, которые есть в чертеже. Расписывают основные данные об элементе, чтобы не ошибиться при монтаже и подобрать соответствующее устройство. Эти условные знаки применяют для составления чертежей электроснабжения, силового оборудования и электрического освещения. А также в принципиальной однолинейной схеме электрощитов.

Обозначение автоматического выключателя на схеме

Условное графическое обозначение автомата на схеме обусловлено ГОСТом 2.755-87 ЕСКД, буквенно-цифровое – ГОСТ 2.710-81 ЕСКД. Особых требований к маркировке нет, поэтому электромонтеры часто используют собственные значения и метки. Можно встретить документацию, когда определение коммутационного аппарата отличается в разных проектах.

Каждый проектировщик, выполняя схему, может изобразить УЗО на свое усмотрение. Достаточно в пояснениях к схеме указать УГО (условные графические обозначения) и их расшифровку.

В зависимости от характеристик устройства элементы имеют разные буквенные символы, а также следующие графические обозначения на электрических схемах.

Автоматические выключатели рекомендуется позиционировать как, QF1, QF2, QF3. Рубильники разъединители – QS1,QS2,QS3. Предохранители на схемах показывают как FU с порядковым номером, где кодировка буквы Q расшифровывается как выключатель или рубильник силовых цепей, а F – защитный. Эта комбинация вполне применима не только к обычным автоматам, но может быть обозначением диф автомата на схеме.

Для УЗО используют комбинацию QSD, обозначение дифференциального автомата на схеме выглядит как QFD.

Обозначение УЗО на однолинейной схеме

Это вид выключающего аппарата, в функции которого входит разъединение сети или ее части, когда произошло превышение определенной отметки дифференциального тока. Устройство способствует повышению электробезопасности, предотвращает возникновение чрезвычайных ситуаций, как в производственной сфере, так и дома. Схема подключения УЗО проста, но недочеты при монтаже могут привести к серьезным неприятностям.

Так можно обозначить УЗО на принципиальной схеме.

УЗО вместе с другими элементами в проектной документации чаще всего выполняют условно, что затрудняет расшифровку принципа работы как всей схемы, так и отдельно взятых элементов. Изображение защитного устройства может выглядеть как обычный выключатель. Но на нелинейной схеме он представляет собой два параллельно расположенных выключателя. На однолинейной – элементы, провода и полюса изображаются символически.

Любое схематическое изображение должно быть правильно составлено, а в дальнейшем прочитано. Самый маленький изъян может привести к неисправности УЗО или всей системы. Важно учитывать следующие часто встречающиеся ошибки:

  • Ноль и заземление соединяются после защитного устройства. Если схема неправильно интерпретирована, нейтраль может быть соединена с открытой частью электроустановки или с нулевым защитным проводником.
  • Если устройство подключено неполнофазно, возникает ложное срабатывание автомата.
  • Неправильное соединение проводников в розетках приводит к срабатыванию устройства, даже если в розетку ничего не включено.
  • Соединение нулевых проводников двух автоматов приводит к неконтролированным отключениям.
  • Распространенной ошибкой является ситуация, когда перепутаны фазы и нули, относящиеся к разным устройствам.
  • Несоблюдение полярности ведет к движению токов в одном направлении. Перед установкой следует внимательно ознакомиться с расположением клемм.

Всегда выполняется предварительная схема, с учетом возможных ошибок, происходящих в сети. Если документ составлен правильно, работа защитного устройства приносит эффект.

Важно помнить о технике безопасности. Необходимо периодически проводить осмотр проводов, в случае их повреждения УЗО срабатывает и прекращается подача электроэнергии. Поэтому с ремонтом лучше не медлить.

Пример реального проекта

Однолинейная принципиальная схема (ОПС) не что иное, как чертеж плана, например, квартиры. На нем должны быть указаны распределительные группы. Для этого необходимо измерить все стены и выполнить чертеж с соблюдением масштаба. Понадобится несколько копий, что бы на каждой изобразить отдельную группу.

Распределительные группы – это точки, которые будут подключены к одному автомату квартирного щитка. Всю проводку нельзя подключать к одной группе. В противном случае понадобится мощный кабель, который будет способен выдержать нагрузку всех приборов.

В зависимости от количества комнат и наличия энергопотребляющих устройств распределительные группы могут выглядеть следующим образом.

  • освещение комнаты, прихожей и кухни;
  • свет и розетки в туалете;
  • розетки в жилой комнате;
  • розетки в коридоре и кухне;
  • электрическая плита.

Помещения с повышенной влажностью рекомендуется подключать отдельной группой, для которой необходима установка УЗО. Если в квартире есть маленькие дети, защитное устройство подключают на каждую группу.

Принципиальная, или однолинейная схема необходима для правильного подключения щитовой и распределительных групп.

В данном примере отражено подключение к трехфазному питанию. Всю квартиру питает вводный кабель из 5 жил, сечением 10 мм2. Фазы пронумерованы, как L1, L2, L3, заземление – PE, которое замыкается с нолем. Вводный автомат (ВА) отключает все автоматы групп, которые маркируются таким же способом.

Количество фаз определяется по количеству черточек на схеме. Однофазная – , или трехфазная – \. Маркировка провода ВВГ НГ говорит о том, что он с негорящей изоляцией, трехжильный с сечением 1,5 мм2.

Чертеж дает возможность определиться с количеством и маркой нужных защитных устройств. Подсчитать число выключателей и розеток, а также, сколько метров кабеля потребуется.

Все соединения проводов должны находиться в распределительных коробках. Рекомендуется для каждого помещения отдельная коробка. Если, например, в кухне располагается газовый котел и другие электроприборы, потребуются две распределительные коробки.

Особых требований по установлению розеток и выключателей не существует. Их устанавливают так, чтобы было удобно. На кухне и на рабочем месте розетки размещают над столом.

Стационарную бытовую технику, бойлеры, вытяжки, сушилку для полотенец подключают сразу через клеммники. Интернет и телевизионные розетки можно объединять с электрическими.

Обозначение дифференциального автомата на схеме

Дифференциальный автомат совмещает в одном аппарате устройство защитного отключения и автоматический выключатель, чем и отличается от УЗО. В этом случае графическое изображение на схеме выглядит следующим образом.

Если для УЗО принимаются буквенно-цифровые обозначения Q1, то для АВДТ (автоматический выключатель дифференциального тока) – QF1. Буквы говорят о функциях аппарата, а цифры указывают на его порядковый номер в схеме. Другая буквенная комбинация QF1D, где D обозначает «дифференциальный».

Основной характеристикой таких устройств является номинальный рабочий ток, при котором автомат остается включенным продолжительное время. Эти показатели строго стандартизированы, а ток может иметь значения: 6 Ампер; 10; 16; 25; 50 и т.д.

Другая важная характеристика – это быстродействие. Токовый показатель обозначается буквами B, C, D, стоящими перед значением номинального тока. Например, комбинация C16, говорит, что автомат быстродействия C, рассчитан на номинальный ток в 16 Ампер.

Дифференциальный допустимый показатель укладывается в следующий ряд: 10; 30; 100; 500 миллиампер. На корпусе прибора обозначается знаком «дельта» с цифрой, соответствующей току утечки.

Эксплуатационные возможности автомата рассчитаны на номинальное напряжение в 220 Вольт для однофазной цепи и 380 для трехфазной.

Дифавтоматы различают по типам, в зависимости от тока утечки и маркируются такими буквенными индексами:

  • A – реагирующие на утечку переменного или постоянного пульсирующего тока;
  • AC – рассчитанные на срабатывание при утечке с постоянной составляющей;
  • B – тип устройства, включающий обе предыдущие возможности.

Эта характеристика может маркироваться небольшим рисунком, обозначающим вид тока.

Устройства работают по селективному признаку, обладают способностью задержки по времени срабатывания. Это обеспечивает выборочное отключение прибора от сети и устойчивость системы защиты. Такая характеристика обозначается буквой S и дает задержку в 200–300 миллисекунд. Маркировка G соответствует 60–80 миллисекундам.

Так как пусковые токи превышают рабочее значение, защита устроена так, что электромагнитный независимый расцепитель отключает устройство в том случае, когда ток в несколько раз превышает номинальный размер.

В нормативных документах содержится много специальных шифров и знаков. Большая их часть в быту практически не применяется. Для правильного чтения электрической схемы нужно знать основные обозначения и учитывать некоторые нюансы. Один из них – страна производитель оборудования, кабелей или проводки, так как существует разница в маркировке и условных обозначениях, что затрудняет правильную трактовку чертежа.

Обозначения в эл. схемах

Обозначение УЗО и дифференциального автомата.

На данный момент в ГОСТ нет каких либо рекомендаций относительно условных графических обозначений УЗО и дифференциальных автоматов. Изображения обозначений, которые используют в схемах отличаются друг от друга.

По этому, в данной статье, я хочу дать свои рекомендации и предложить вариант обозначений УЗО и дифференциального автомата, который по моему мнению, будет соответствовать функциональному назначению этих электрических аппаратов.

Функционально УЗО можно определить как быстродействующий выключатель, реагирующий на дифференциальный ток – ток утечки в проводниках, подводящих электроэнергию к защищаемой электроустановке. В качестве датчика дифференциального тока и основного функционального элемента УЗО используется трансформатор тока, который часто называют трансформатором тока нулевой последовательности (что не совсем правильно, но думаю приемлемо).

Из выше сказанного следует что изображение условного обозначения УЗО, должно состоять из обозначения выключателя и трансформатора тока нулевой последовательности, сигнал от которого (ток нулевой последовательности), воздействует на механизм отключения контактной группы аппарата.

Этому требованию подходят следующие обозначения:

Дифференциальный автомат, отличается от УЗО тем, что совмещает в одном электрическом аппарате два устройства, автоматический выключатель и устройство защитного отключения. По этому можно использовать следующее обозначение:

Буквенно-цифровое обозначение УЗО и дифференциальных автоматов, на мой взгляд, можно наносить на схеме следующим образом:

Где Q1 и QF1 обозначают функции выключателя и автоматического выключателя соответственно и порядковый номер аппарата в схеме. Значение дифференциального тока, обозначает функцию устройства защитного отключения

Второй вариант буквенно-цифрового обозначения, который часто применяется: QD1 для УЗО и QFD1 для дифференциального автомата. И хотя согласно ГОСТ 2.710 код буквы D обозначает схемы интегральные, более подходящего символа в данном ГОСТ нету. Будем считать, что D, от слова дифференциальный.

Данный вариант условных графических обозначений УЗО и дифференциальных автоматов, до момента публикации каких либо рекомендаций в нормативных документах, на мой взгляд является наиболее приемлемым. Поэтому, я решил включить трафареты рассмотренных выше электрических аппаратов в Комплект для черчения электрических схем.

Примеры подключения УЗО и Диф. автоматов

Вернутся в раздел: УЗО и ДифзащитаЭлектрика

В данной статье рассмотрены несколько примеров подключения УЗО и Дифференциальных автоматов.

Основным условием при выборе УЗО и диф. автомата является соблюдение селективности ( ПУЭ.РАЗДЕЛ 3 ):

В электротехнике под «селективностью» понимают совместную работу последовательно включенных аппаратов защиты электрических цепей (автоматические выключатели, УЗО, диф. автомат и т.п.) в случае возникновения аварийной ситуации. На рис. 1 привёден пример работы такой схемы, с учётом общего наминала автоматических выключателей 40 А (4шт. по 10А), вводный автомат 63 А.

Селективность используется при выборе номинала устройств защиты для отключения от общей системы питания только той ее части, где произошла авария. Это достигается за счет срабатывания только того автоматического выключателя, который защищает аварийную линию питания.

Во общем, для селективной работы автоматических выключателей при перегрузках нужно, чтобы номинальный ток (In) автоматического выключателя со стороны питания был больше In автоматического выключателя со стороны потребителей.

Условное обозначение УЗО и дифавтомата на электрических схемах:

Обозначение УЗО на принципиальных электрических схемах см. рис. 2. Слева – однофазное УЗО с током срабатывания 30 мА, справа – трехфазное УЗО на 100 мА. Сверху развернутое изображение, снизу однолинейное. Число полюсов при однолинейном представлении можно изображать и числом (вверху) и числом черточек. Условное обозначение Дифавтомата на принципиальных схемах см. рис. 3 и на однолинейных схемах рис. 4. Буквенное обозначение QF.

Схемы включения УЗО:

По конструкции УЗО различных производителей могут отличаться друг от друга не только параметрами, но и схемами подключения. На рис. 5 приведены наиболее распространенные схемы включения УЗО в различных вариантах:

Двухполюсные УЗО Рис. 5 (а).

Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен в фазное напряжение (Рис. 5 (б).

Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен на линейное напряжение (Рис. 5 (в).

При включении УЗО (дифавтомата) в любом случае смотрите схему, схема подключения приведена на лицевой или боковой поверхности корпуса УЗО, а также в паспорте технического устройства.

Ниже приведены монтажные схемы подключения УЗО (Рис. 6) и дифавтомата (Рис. 7).

  1. Вводный автомат.
  2. Прибор учёта (электросчетчик).
  3. УЗО или дифавтомат.
  4. Автоматический выключатель (освещения, как правило 6 ÷ 10 А, в зависимости от нагрузки светильников).
  5. Автоматический выключатель (розетки, как правило 16 ÷ 25 А, в зависимости от группы розеток).
  6. Автоматический выключатель (розетка «силовая», 16 ÷ 25 А, в зависимости от нагрузки электроплиты).
  7. Нулевая рабочая N — шина.
  8. Нулевая защитная РЕ — шина.

Более подробно про системы заземления и зануления см. в разделе

Вернутся в раздел: УЗО и ДифзащитаЭлектрика

Добавить комментарий

Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Условное обозначение УЗО на схеме

Ни один человек, каким бы талантливым и смекалистым он не был, не сможет научиться понимать электрические чертежи без предварительного знакомства с условными обозначениями, которые используются в электромонтаже практически на каждом шагу. Опытные специалисты утверждают, что шанс стать настоящим профессионалом своего дела может быть только у того электрика, которые досконально изучил и усвоил все общепринятые обозначения, используемые в проектной документации.

Приветствую всех друзья на сайте «Электрик в доме». Сегодня я бы хотел уделить внимание одному из первоначальным вопросов, с которым сталкиваются все электрики перед монтажом – это проектная документация объекта.

Кто то составляет ее сам, кому то предоставляет заказчик. Среди множества этой документации можно встретить экземпляры, в которых встречаются различия между условными обозначениями тех или иных элементов. Например в разных проектах один и тот же коммутационный аппарат графически может отображаться по разному. Встречалось такое?

Понятно, что обсудить обозначение всех элементов в пределах одной статьи невозможно, поэтому тема данного урока будет сужена, и сегодня обсудим и рассмотрим, как выполняется обозначение узо на схеме.

Каждый начинающий мастер обязан внимательно ознакомиться с общепринятыми ГОСТами и правилами маркировки электрических элементов и оборудования на план-схемах и чертежах. Многие пользователи могут со мной не согласится, аргументируя это тем, что зачем мне знать ГОСТ, я всего лишь занимаюсь установкой розеток и выключателей в квартирах. Схемы должны знать инженера проектировщики и профессора в университетах.

Уверяю вас это не так. Любой уважающий себя специалист обязан не только понимать и уметь читать электрические схемы, но и должен знать, как графически отображаются на схемах различные коммуникационные аппараты, защитные устройства, приборы учета, розетки и выключатели. В общем, активно применять проектную документацию в своей повседневной работе.

Обозначение УЗО на однолинейной схеме

Основные группы обозначений УЗО (графические и буквенные) используются электромонтерами очень часто. Работа по составлению рабочих схем, графиков и планов требует очень большой внимательности и аккуратности, так как одно-единственное неточное указание или пометка могу привести к серьезной ошибке в дальнейшей работе и стать причиной выхода из строя дорогостоящего оборудования.

Кроме того, неверные данные могут ввести в заблуждение сторонних специалистов, привлеченных для электромонтажа и стать причиной возникновения сложностей при монтаже электрических коммуникаций.

В настоящее время любое обозначение узо на схеме может быть представлено двумя способами: графическим и буквенным .

На какие нормативные документы следует ссылаться?

Из основных документов для электрических схем, которые ссылаются на графическое и буквенное обозначение коммутационных устройств можно выделить следующие:

  1. – ГОСТ 2.755-87 ЕСКД “Обозначения условные графические в электрических схемах устройства коммутационные и контактные соединения”;
  2. – ГОСТ 2.710-81 ЕСКД “Обозначения буквенно-цифровые в электрических схемах”.

Графическое обозначение УЗО на схеме

Итак, выше я представил основные документы, по которым регулируется обозначения в электрических схемах. Что нам дают указанные ГОСТы по изучению нашего вопроса? Мне стыдно признаться, но абсолютно ничего. Дело в том, что на сегодняшний день в данных документах отсутствует информация о том, как должно выполняться обозначение узо на однолинейной схеме.

Действующий на сегодня ГОСТ никаких особых требований к правилам составления и использования графических обозначений УЗО не выдвигает. Именно поэтому некоторые электромонтеры предпочитают использовать для маркировки определенных узлов и устройств свои собственные наборы значений и меток, каждая из которых может несколько отличаться от привычных нашему взгляду значений.

Для примера давайте рассмотрим, какие обозначения наносятся на корпусе самих устройств. Устройство защитного отключения фирмы hager:

Или к примеру УЗО от Schneider Electric:

Чтобы избежать путаницы, предлагаю Вам совместно разработать универсальный вариант обозначений УЗО, которым можно руководствоваться практически в любой рабочей ситуации.

По своему функциональному назначению устройство защитного отключения можно описать так – это выключатель, который при нормальной работе способен включать/отключать свои контакты и автоматически размыкать контакты при появлении тока утечки. Ток утечки это дифференциальный ток, возникающий при ненормальной работе электроустановки. Какой орган реагирует на дифференциальный ток? Специальный датчик – трансформатор тока нулевой последовательности.

Если представить все вышеописанное в графической форме, то получается что условное обозначение УЗО на схеме можно представить в виде двух второстепенных обозначений – выключателя и датчика реагирующего на дифференциальный ток (трансформатора тока нулевой последовательности) который воздействует на механизм отключения контактов.

В этом случае графическое обозначение узо на однолинейной схеме будет выглядеть так.

Как обозначается дифавтомат на схеме?

По поводу обозначений дифавтоматов в ГОСТ на данный момент тоже нет данных. Но, исходя из вышеизложенной схемы, дифавтомат графически также можно представить в виде двух элементов – УЗО и автоматического выключателя. В этом случае графическое обозначение дифавтомата на схеме будет выглядеть так.

Буквенное обозначение УЗО на электрических схемах

Любому элементу на электрических схемах присваивается не только графическое обозначение, но и буквенное с указанием позиционного номера. Такой стандарт регулируется ГОСТ 2.710-81 “Обозначения буквенно-цифровые в электрических схемах” и обязателен для применения ко всем элементам в электрических схемах.

Так, например, согласно ГОСТ 2.710-81 автоматические выключатели принято обозначать путем специального буквенно-цифрового позиционного обозначения таким образом: QF1, QF2, QF3 и т.д. Рубильники (разъединители) обозначаются как QS1, QS2, QS3 и т.д. Предохранители на схемах обозначаются как FU с соответствующим порядковым номером.

Аналогично, как и с графическими обозначениями, в ГОСТ 2.710-81 нет конкретных данных, как выполнять буквенно-цифровое обозначение УЗО и дифференциальных автоматов на схемах.

Как быть в таком случае? В этом случае многие мастера используют два варианта обозначений.

Первый вариант воспользоваться самым удобным буквенно-цифровым обозначением Q1 (для УЗО) и QF1 (для АВДТ), которые обозначают функции выключателей и указывают на порядковый номер аппарата, находящегося в схеме.

То есть кодировка буквы Q означает – «выключатель или рубильник в силовых цепях», что вполне может быть применима к обозначению УЗО.

Кодовая комбинация QF расшифровывается как Q – «выключатель или рубильник в силовых цепях», F – «защитный», что вполне может быть применима не только к обычным автоматам, но и к диф.автоматам.

Второй вариант это использовать буквенно-цифровую комбинацию Q1D – для УЗО и комбинацию QF1D – для дифференциального автомата. По приложению 2 таблицы 1 ГОСТ 2.710 функциональное значение буквы D означает – « дифференцирующий ».

Я очень часто встречал на реальных схемах такое обозначение QD1 – для устройств защитного отключения, QFD1 – для дифференциальных автоматов.

Какие можно сделать выводы из вышеописанного?

Ввиду того что обозначение УЗО и дифференциальных автоматов по ГОСТ отсутствует, информация рассмотренная в данной статье, не относится к нормативным документам обязательным для исполнения, а является всего лишь РЕКОМЕНДАЦИЕЙ. Каждый проектировщик может изображать на схемах эти элементы по своему усмотрению. Для этого нужно всего лишь привести условно графические обозначения (УГО) элементов, их расшифровку и пояснения к схеме. Все эти действия предусматриваются в ГОСТ 2.702-2011.

Как обозначается УЗО на однолинейной схеме – пример реального проекта

Как говорится в известной пословице «лучше один раз увидеть, чем сто раз услышать», поэтому давайте рассмотрим на реальном примере.

Предположим, что перед нами находится однолинейная схема электроснабжения квартиры. Из всех этих графических обозначение можно выделить следующее:

Вводное устройство защитного отключения расположено сразу после счетчика. Кстати как вы могли заметить буквенное обозначение УЗО – QD. Еще один пример как обозначается узо:

Заметьте, что на схеме помимо УГО элементов также наносится их маркировка, то есть: тип устройства по роду тока (А, АС), номинальный ток, дифференциальный ток утечки, количество полюсов. Далее переходим к УГО и маркировке дифференциальных автоматов:

Розеточные линии на схеме подключаются через диф.автоматы. Буквенное обозначение дифавтомата на схеме QFD1, QFD2, QFD3 и т.д.

Еще один пример как обозначаются диф.автоматы на однолинейной схеме магазина.

Вот и все дорогие друзья. На этом наш сегодняшний урок подошел к концу. Надеюсь, данная статья была для вас полезной и Вы нашли здесь ответ на свой вопрос. Если остались вопросы задавайте их в комментариях, с удовольствием отвечу. Давайте делиться опытом, кто как обозначает УЗО и АВДТ на схемах. Буду признателен на репост в соц.сетях))).

Актуальные буквенные и графические обозначения на электрических схемах

Если для обычного человека восприятие информации происходит при чтении слов и букв, то для слесарей и монтажников их заменяют буквенные, цифровые или графические обозначения. Сложность в том, что пока электрик закончит обучение, устроится на работу, научится чему-то на практике, как появляются новые СНиПы и ГОСТы, согласно которым вносятся коррективы. Поэтому не стоит пытаться выучить всю документацию и сразу же. Достаточно почерпнуть базовые познания, а по ходу трудовых будней добавлять актуальные данные.

Введение

Для конструкторов цепей, слесарей КИПиА, электромонтеров, умение прочитать электросхему – ключевое качество и показатель квалификации. Без специальных знаний сходу разобраться в тонкостях проектирования приборов, цепей и способах соединения электроузлов невозможно.

Условные обозначения можно считать особым криптографическим кодом, поясняющим работу и принцип действия конкретной схемы. В Японии, США и Европе значки существенно отличаются от отечественной маркировки, что необходимо учитывать.

Виды и типы электрических схем

Перед тем, как начать изучать существующие обозначения электрооборудования и его соединения, необходимо разобраться с типологией схем. На территории нашей страны введена стандартизация по ГОСТ 2.701-2008 от 1.07.2009 года, согласно «ЕСКД. Схемы. Типы и виды. Общие требования».

  1. Объединенные.
  2. Расположенные.
  3. Общие.
  4. Подключения.
  5. Монтажные соединений.
  6. Полные принципиальные.
  7. Функциональные.
  8. Структурные.

Среди существующих 10 видов, указанных в данном документе, выделяют:

  1. Комбинированные.
  2. Деления.
  3. Энергетические.
  4. Оптические.
  5. Вакуумные.
  6. Кинематические.
  7. Газовые.
  8. Пневматические.
  9. Гидравлические.
  10. Электрические.

Для электриков представляет наибольший интерес среди всех вышеперечисленных типов и видов схем, а также самая востребованная и часто используемая в работе – электрическая схема.

Последний ГОСТ, который вышел, дополнен многими новыми обознвачениями, актуальный на сегодня с шифром 2.702-2011 от 1.01.2012 года. Называется документ «ЕСКД. Правила выполнения электрических схем», ссылается на другие ГОСТы, среди которых упомянутый выше.

В тексте норматива изложены четкие требования в подробностях к электросхемам всех видов. Поэтому руководствоваться при монтажных работах с электрическими схемами следует именно данным документом. Определение понятия электрической схемы, согласно ГОСТ 2.702-2011 следующее:

«Под электрической схемой следует понимать документ, содержащий условные обозначения частей изделия и/или отдельных деталей с описанием взаимосвязи между ними, принципов действия от электрической энергии».

После определения в документе содержатся правила реализации на бумаге и в программных средах обозначений контактных соединений, маркировки проводов, буквенных обозначений и графического изображения электрических элементов.

Следует заметить, что чаще в домашней практике используются всего три типа электросхем:

  • Монтажные – для прибора изображается печатная плата с расположением элементов при четком указании места, номинала, принципа крепления и подведения к другим деталям. В схемах электропроводки для жилых помещений указывается количество, место расположения, номинал, способ подключения и другие точные указания для монтажа проводов, выключателей, светильников, розеток и т.п.
  • Принципиальные – на них указываются подробно связи, контакты и характеристика каждого элемента для сетей или приборов. Различают полные и линейные принципиальные схемы. В первом случае изображается контроль, управление элементами и сама силовая цепь; в линейной схеме ограничиваются только цепью с изображением остальных элементов на отдельных листах.
  • Функциональные – здесь без детализации физических габаритов и других параметров указывается основные узлы прибора или цепи. Любая деталь может изображаться в виде блока с буквенным обозначением, дополненного связями с другими элементами устройства.

Графические обозначения в электрических схемах

  • 2.755-87 – графические условные обозначения контактных и коммутационных соединений.
  • 2.721-74 – графические условные обозначения деталей и узлов общего применения.
  • 2.709-89 – графические условные обозначения в электросхемах участков цепей, оборудования, контактных соединений проводов, электроэлементов.

В нормативе с шифром 2.755-87 применяется для схем однолинейных электрощитов, условные графические изображения (УГО) тепловых реле, контакторов, рубильников, автоматических выключателей, иного коммутационного оборудования. Отсутствует обозначение в нормативах дифавтоматов и УЗО.

На страницах ГОСТ 2.702-2011 допускается изображение этих элементов в произвольном порядке, с приведением пояснений, расшифровки УГО и самой схемы дифавтоматов и УЗО.
В ГОСТ 2.721-74 содержатся УГО, применяемые для вторичных электрических цепей.

ВАЖНО: Для обозначения коммутационного оборудования существует:

4 базовых изображения УГО

УГОНаименование
Замыкающий
Размыкающий
Переключающий
Переключающий с наличием нейтрального положения

9 функциональных признаков УГО

ВАЖНО: Обозначения 1 – 3 и 6 – 9 наносятся на неподвижные контакты, 4 и 5 – помещаются на подвижные контакты.

Основные УГО для однолинейных схем электрощитов

УГОНаименование
Тепловое реле
Контакт контактора
Рубильник – выключатель нагрузки
Автомат – автоматический выключатель
Предохранитель
Дифференциальный автоматический выключатель
УЗО
Трансформатор напряжения
Трансформатор тока
Рубильник (выключатель нагрузки) с предохранителем
Автомат для защиты двигателя (со встроенным тепловым реле)
Частотный преобразователь
Электросчетчик
Замыкающий контакт с кнопкой «сброс» или другим нажимным кнопочным выключателем, с возвратом и размыканием посредством специального привода элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством втягивания кнопки элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством повторного нажатия на кнопку элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием автоматически элемента управления
Замыкающий контакт с замедленным действием, который инициируется при возврате и срабатывании
Замыкающий контакт с замедленным действием, который срабатывает только при возврате
Замыкающий контакт с замедленным действием, который инициируется только при срабатывании
Замыкающий контакт с замедленным действием, который приводится в работу при возврате и срабатывании
Замыкающий контакт с замедленным действием, который срабатывает только при возврате
Замыкающий контакт с замедленным действием, который включается только при срабатывании
Катушка временного реле
Катушка фотореле
Катушка реле импульсного
Общее обозначение катушки реле или катушки контактора
Лампочка индикационная (световая), осветительная
Мотор-привод
Клемма (разборное соединение)
Варистор, ОПН (ограничитель перенапряжения)
Разрядник
Розетка (разъемное соединение):
Нагревательный элемент

Обозначение измерительных электроприборов для характеристики параметров цепи

УГОНаименование
PFЧастотомер
PWВаттметр
PVВольтметр
PAАмперметр

ГОСТ 2.271-74 приняты следующие обозначения в электрощитах для шин и проводов:

Буквенные обозначения в электрических схемах

Нормативы буквенного обозначения элементов на электрических схемах описываются в нормативе ГОСТ 2.710-81 с названием текста «ЕСКД. Буквенно-цифровые обозначения в электрических схемах». Здесь не указывается отметка для дифавтоматов и УЗО, что в п. 2.2.12 этого норматива прописывается, как обозначение многобуквенными кодами. Для основных элементов электрощитов приняты следующие буквенные кодировки:

НаименованиеОбозначение
Выключатель автоматический в силовой цепиQF
Выключатель автоматический в управляющей цепиSF
Выключатель автоматический с дифференциальной защитой или дифавтоматQFD
Рубильник или выключатель нагрузкиQS
УЗО (устройство защитного отключения)QSD
КонтакторKM
Реле тепловоеF, KK
Временное релеKT
Реле напряженияKV
Импульсное релеKI
ФоторелеKL
ОПН, разрядникFV
Предохранитель плавкийFU
Трансформатор напряженияTV
Трансформатор токаTA
Частотный преобразовательUZ
АмперметрPA
ВаттметрPW
ЧастотомерPF
ВольтметрPV
Счетчик энергии активнойPI
Счетчик энергии реактивнойPK
Элемент нагреванияEK
ФотоэлементBL
Осветительная лампаEL
Лампочка или прибор индикации световойHL
Разъем штепсельный или розеткаXS
Переключатель или выключатель в управляющих цепяхSA
Кнопочный выключатель в управляющих цепяхSB
КлеммыXT

Изображение электрооборудования на планах

Несмотря на то, что ГОСТ 2.702-2011 и ГОСТ 2.701-2008 учитывает такой вид электросхемы как «схема расположения» для проектирования сооружений и зданий, при этом нужно руководствоваться нормативами ГОСТ 21.210-2014, в которых указывается «СПДС.

Изображения на планах условных графических проводок и электрооборудования». В документе установлено УГО на планах прокладки электросетей электрооборудования (светильников, выключателей, розеток, электрощитов, трансформаторов), кабельных линий, шинопроводов, шин.

Применение этих условных обозначений используется для составления чертежей электрического освещения, силового электрооборудования, электроснабжения и других планов. Использование данных обозначений применяется также в принципиальных однолинейных схемах электрощитов.

Условные графические изображения электрооборудования, электротехнических устройств и электроприемников

Контуры всех изображаемых устройств, в зависимости от информационной насыщенности и сложности конфигурации, принимаются согласно ГОСТ 2.302 в масштабе чертежа по фактическим габаритам.

Условные графические обозначения линий проводок и токопроводов

Условные графические изображения шин и шинопроводов

ВАЖНО: Проектное положение шинопровода должно точно совпадать на схеме с местом его крепления.

Условные графические изображения коробок, шкафов, щитов и пультов

Условные графические обозначения выключателей, переключателей

На страницах документации ГОСТ 21.210-2014 для кнопочных выключателей, диммеров (светорегуляторов) отдельно отведенного обозначения не предусмотрено. В некоторых схемах, согласно п. 4.7. нормативного акта используются произвольные обозначения.

Условные графические обозначения штепсельных розеток

Условные графические обозначения светильников и прожекторов

Обновленная версия ГОСТ содержит изображения светильников с лампами люминесцентными и светодиодными.

Условные графические обозначения аппаратов контроля и управления

Заключение

Приведенные графические и буквенные изображения электродеталей и электрических цепей являются не полным списком, поскольку в нормативах содержится много специальных знаков и шифров, которые в быту практически не применяются. Для чтения электрических схем потребуется учитывать много факторов, прежде всего – страну производителя прибора или электрооборудования, проводки и кабелей. Существует разница в маркировке и условном обозначении на схемах, что может изрядно сбить с толку.

Во-вторых, следует внимательно рассматривать такие участки, как пересечение или отсутствие общей сети для расположенных с накладкой проводов. На зарубежных схемах при отсутствии у шины или кабеля общего питания с пересекающими объектами, рисуется полукруговое продолжение в месте соприкосновения. В отечественных схемах это не используется.

Если схема изображается без соблюдения установленных ГОСТами нормативов, то ее называют эскизом. Но для этой категории также есть определенные требования, согласно которым по приведенному эскизу должно составляться примерное понимание будущей электропроводки или конструкции прибора. Рисунки могут использоваться для составления по ним более точных чертежей и схем, с нужными обозначениями, маркировкой и соблюдением масштабов.

Автоматический выключатель на схеме: буквенное обозначение по ГОСТу

На чтение 9 мин Просмотров 4.2к. Опубликовано Обновлено

Для обустройства электроснабжения необходимы проекты чертежей. Чтобы разобраться в чертеже и прочитать его, нужно знать условные обозначения. Автоматический выключатель на схеме указывают по-разному, что часто приводит к недоразумениям, ошибкам при сборке электрощитов и монтаже проводки.

Условные обозначение электрических элементов и виды схем

Выключатель автомат

Первоначальный вопрос, с которым обычно сталкивается каждый электрик, — проектная документация помещения или объекта, который необходимо электрифицировать. Прежде чем приступить к монтажу оборудования, квалифицированный специалист должен ознакомиться с сопровождающими документами.

Оборудование и элементы на схеме могут обозначаться как буквенным, так и графическим изображением. Чертежи разрабатываются в соответствии с ГОСТами и правилами маркировки оборудования и элементов на чертежах и планах. Подробное описание и требования к электрическим схемам приводятся в ГОСТе 2.702-2011 ЕСКД. Кроме графических и буквенных обозначений на схемах проставляют номинальные размеры.

Принципиальная схема квартирного электрощитка

Есть много типов различных схем. В электрике чаще всего используют три основных вида. Функциональные отображают основные узлы устройства, без подробной детализации. Они выглядят как набор отдельных блоков, связанных между собой определенным образом. Схема дает общее представление о работе объекта.

Принципиальная схема содержит подробные указания для каждого элемента, его контакты и связи. Она может описывать как отдельное устройство, так и электросеть. На однолинейных схемах указывают силовые цепи. Способ управления и контроль описывают на отдельном листке. Если устройство не сложное, все размещают на одном документе.

На монтажных схемах указывают элементы и точное их расположение. Если это проводка в квартире или доме, обозначают место установки выключателей, светильников, розеток. Также проставляют расстояния и номиналы. Указывают положение деталей, порядок и способ их соединения.

Устройство защитного отключения (УЗО) и дифавтомат на схеме не имеют определенного геометрического начертания. Для их графического выполнения используют изображение блоков и динамических блоков. Каждому устройству на схеме присваивают буквенную маркировку и указывают позиционный номер.

Кроме того, наносят параметры элементов, которые есть в чертеже. Расписывают основные данные об элементе, чтобы не ошибиться при монтаже и подобрать соответствующее устройство. Эти условные знаки применяют для составления чертежей электроснабжения, силового оборудования и электрического освещения. А также в принципиальной однолинейной схеме электрощитов.

Обозначение автоматического выключателя на схеме

Трехполюсной автоматический выключатель

Условное графическое обозначение автомата на схеме обусловлено ГОСТом 2.755-87 ЕСКД, буквенно-цифровое – ГОСТ 2.710-81 ЕСКД. Особых требований к маркировке нет, поэтому электромонтеры часто используют собственные значения и метки. Можно встретить документацию, когда определение коммутационного аппарата отличается в разных проектах.

Каждый проектировщик, выполняя схему, может изобразить УЗО на свое усмотрение. Достаточно в пояснениях к схеме указать УГО (условные графические обозначения) и их расшифровку.

В зависимости от характеристик устройства элементы имеют разные буквенные символы, а также следующие графические обозначения на электрических схемах.

Автоматические выключатели рекомендуется позиционировать как, QF1, QF2, QF3. Рубильники разъединители – QS1,QS2,QS3. Предохранители на схемах показывают как FU с порядковым номером, где кодировка буквы Q расшифровывается как выключатель или рубильник силовых цепей, а F – защитный. Эта комбинация вполне применима не только к обычным автоматам, но может быть обозначением диф автомата на схеме.

Для УЗО используют комбинацию QSD, обозначение дифференциального автомата на схеме выглядит как QFD.

Обозначение УЗО на однолинейной схеме

Это вид выключающего аппарата, в функции которого входит разъединение сети или ее части, когда произошло превышение определенной отметки дифференциального тока. Устройство способствует повышению электробезопасности, предотвращает возникновение чрезвычайных ситуаций, как в производственной сфере, так и дома. Схема подключения УЗО проста, но недочеты при монтаже могут привести к серьезным неприятностям.

Так можно обозначить УЗО на принципиальной схеме.

УЗО вместе с другими элементами в проектной документации чаще всего выполняют условно, что затрудняет расшифровку принципа работы как всей схемы, так и отдельно взятых элементов. Изображение защитного устройства может выглядеть как обычный выключатель. Но на нелинейной схеме он представляет собой два параллельно расположенных выключателя. На однолинейной –  элементы, провода и полюса изображаются символически.

Подключение нулевого и заземляющего провода после УЗО

Любое схематическое изображение должно быть правильно составлено, а в дальнейшем прочитано. Самый маленький изъян может привести к неисправности УЗО или всей системы. Важно учитывать следующие часто встречающиеся ошибки:

  • Ноль и заземление соединяются после защитного устройства. Если схема неправильно интерпретирована, нейтраль может быть соединена с открытой частью электроустановки или с нулевым защитным проводником.
  • Если устройство подключено неполнофазно, возникает ложное срабатывание автомата.
  • Неправильное соединение проводников в розетках приводит к срабатыванию устройства, даже если в розетку ничего не включено.
  • Соединение нулевых проводников двух автоматов приводит к неконтролированным отключениям.
  • Распространенной ошибкой является ситуация, когда перепутаны фазы и нули, относящиеся к разным устройствам.
  • Несоблюдение полярности ведет к движению токов в одном направлении. Перед установкой следует внимательно ознакомиться с расположением клемм.

Всегда выполняется предварительная схема, с учетом возможных ошибок, происходящих в сети. Если документ составлен правильно, работа защитного устройства приносит эффект.

Важно помнить о технике безопасности. Необходимо периодически проводить осмотр проводов, в случае их повреждения УЗО срабатывает и прекращается подача электроэнергии. Поэтому с ремонтом лучше не медлить.

Пример реального проекта

Трехфазное устройство защитного отключения (УЗО)

Однолинейная принципиальная схема (ОПС) не что иное, как чертеж плана, например, квартиры. На нем должны быть указаны распределительные группы. Для этого необходимо измерить все стены и выполнить чертеж с соблюдением масштаба. Понадобится несколько копий, что бы на каждой изобразить отдельную группу.

Распределительные группы – это точки, которые будут подключены к одному автомату квартирного щитка. Всю проводку нельзя подключать к одной группе. В противном случае понадобится мощный кабель, который будет способен выдержать нагрузку всех приборов.

В зависимости от количества комнат и наличия энергопотребляющих устройств распределительные группы могут выглядеть следующим образом.

  • освещение комнаты, прихожей и кухни;
  • свет и розетки в туалете;
  • розетки в жилой комнате;
  • розетки в коридоре и кухне;
  • электрическая плита.

Помещения с повышенной влажностью рекомендуется подключать отдельной группой, для которой необходима установка УЗО. Если в квартире есть маленькие дети, защитное устройство подключают на каждую группу.

Принципиальная, или однолинейная схема необходима для правильного подключения щитовой и распределительных групп.

В данном примере отражено подключение к трехфазному питанию. Всю квартиру питает вводный кабель из 5 жил, сечением 10 мм2. Фазы пронумерованы, как L1, L2, L3, заземление – PE, которое замыкается с нолем. Вводный автомат (ВА) отключает все автоматы групп, которые маркируются таким же способом.

Количество фаз определяется по количеству черточек на схеме. Однофазная – \,  или трехфазная – \\\. Маркировка провода ВВГ НГ говорит о том, что он с негорящей изоляцией, трехжильный с сечением 1,5 мм2.

Чертеж дает возможность определиться с количеством и маркой нужных защитных устройств. Подсчитать число выключателей и розеток, а также, сколько метров кабеля потребуется.

Все соединения проводов должны находиться в распределительных коробках. Рекомендуется для каждого помещения отдельная коробка. Если, например, в кухне располагается газовый котел и другие электроприборы, потребуются две распределительные коробки.

Особых требований по установлению розеток и выключателей не существует. Их устанавливают так, чтобы было удобно. На кухне и на рабочем месте розетки размещают над столом.

Стационарную бытовую технику, бойлеры, вытяжки, сушилку для полотенец подключают сразу через клеммники. Интернет и телевизионные розетки можно объединять с электрическими.

Обозначение дифференциального автомата на схеме

Дифференциальный автомат совмещает в одном аппарате устройство защитного отключения и автоматический выключатель, чем и отличается от УЗО. В этом случае графическое изображение на схеме выглядит следующим образом.

Если для УЗО принимаются буквенно-цифровые обозначения Q1, то для АВДТ (автоматический выключатель дифференциального тока) – QF1. Буквы говорят о функциях аппарата, а цифры указывают на его порядковый номер в схеме. Другая буквенная комбинация QF1D, где D обозначает «дифференциальный».

Обозначения УЗО

Основной характеристикой таких устройств является номинальный рабочий ток, при котором автомат остается включенным продолжительное время. Эти показатели строго стандартизированы, а ток может иметь значения: 6 Ампер; 10; 16; 25; 50 и т.д.

Другая важная характеристика – это быстродействие. Токовый показатель обозначается буквами B, C, D, стоящими перед значением номинального тока. Например, комбинация C16, говорит, что автомат быстродействия C, рассчитан на номинальный ток в 16 Ампер.

Дифференциальный допустимый показатель укладывается в следующий ряд: 10; 30; 100; 500 миллиампер. На корпусе прибора обозначается знаком «дельта» с цифрой, соответствующей току утечки.

Эксплуатационные возможности автомата рассчитаны на номинальное напряжение в 220 Вольт для однофазной цепи и 380 для трехфазной.

Дифавтоматы различают по типам, в зависимости от тока утечки и маркируются такими буквенными индексами:

  • A – реагирующие на утечку переменного или постоянного пульсирующего тока;
  • AC – рассчитанные на срабатывание при утечке с постоянной составляющей;
  • B – тип устройства, включающий обе предыдущие возможности.

Эта характеристика может маркироваться небольшим рисунком, обозначающим вид тока.

Устройства работают по селективному признаку, обладают способностью задержки по времени срабатывания. Это обеспечивает выборочное отключение прибора от сети и устойчивость системы защиты. Такая характеристика обозначается буквой S и дает задержку в 200–300 миллисекунд. Маркировка G соответствует 60–80 миллисекундам.

Так как пусковые токи превышают рабочее значение, защита устроена так, что электромагнитный независимый расцепитель отключает устройство в том случае, когда ток в несколько раз превышает номинальный размер.

В нормативных документах содержится много специальных шифров и знаков. Большая их часть в быту практически не применяется. Для правильного чтения электрической схемы нужно знать основные обозначения и учитывать некоторые нюансы. Один из них — страна производитель оборудования, кабелей или проводки, так как существует разница в маркировке и условных обозначениях, что затрудняет правильную трактовку чертежа.

Причин срабатывания автоматов узо и почему они отключены но бояре, насосы

Первичная защита организма человека от опасного воздействия напряжений и токов в бытовых электрических сетях и — установка защитных устройств. Кроме того, УЗО используются для защиты электроприборов от аварийных работ в бытовых электросетях и синусоидального тока постоянного и переменного тока. Но срабатывает очень часто, и отечественного потребителя интересует, почему отключено УЗО на УЗО или постоянно сработало.

Принцип действия и работа УЗО

Рис.1 Работа УЗО

Сумма токов, которые входят в секцию, должна равняться токам, которые идут. Это основной принцип работы данного блока выключателя. Причина срабатывания УЗО в блоке питания — это то, что токи, исходящие от участка электрической сети, не равны токам, которые входят в эту сеть. Эта разница представляет собой величину тока утечки или дифференциального тока. Векторная сумма токов в фазных проводниках ( I1 ) должна быть равна токам в нейтральном проводе ( I2 ).Они идентичны по размеру, но направления разнонаправлены и, таким образом, взаимно компенсируют друг друга, а ЭДС (электродвижущая сила) отсутствует. Если эти токи не равны, значит, разница между ними и есть ток утечки. Он в свою очередь создает ЭДС, а она, в свою очередь, через соленоид воздействует на запорный механизм и УЗО отключается.

Мотивация растений УЗО. Опасный для человека электрический ток

На Рис.1 Нормальный режим I 1 = I 2. Когда человек касается оголенных проводов, возникает дифференциальный ток I∆n . Если посчитать ток, который пройдет через человека, получим I = 230/ R no , НО, где 230 Ток от бытовой сети, R no — сопротивление человека . Хотя у каждого человека эта характеристика индивидуальна, но она считается порядка 1 кОм (1000 Ом). В итоге получаем 230/1000 = 23 мА. Следует отметить, что порог чувствительности у человека начинается с 0.6 — 1,5 мА. При этом нынешнее ощутимое раздражение у человека. При токе в 10 — 15 мА у человека возникает мышечный спазм, и этот ток называют неотпускающего. В этом случае человек не может самостоятельно освободить оголенный провод, если взял его. при токе 90 — 100 мА возникает фибрилляционного тока. При таком токе сердечная мышца хаотично сокращается, а через несколько секунд происходит остановка сердца. Безопасным для человека считается ток 2 мА, когда он превышает 10 с, а если больше 120 с, то безопасный ток 6 мА.эти токи, а также время отключения необходимо учитывать при выборе остаточного тока УЗО, чтобы понимать, что будет с вами, если вы попадете под опасное напряжение. По этим причинам помните: если обогреватель выключен УЗО, это избавит вас от минимального дискомфорта.

Выбор УЗО в зависимости от токов утечки

согласно СП31-110-2003 pA4.15 , при питании ванной от отдельной линии необходимо предусмотреть УЗО 10 мА, если линия используется совместно с кухней и коридор, необходимо установить УЗО током до 30 мА.Для обычных бытовых ЛЭП (розетки, освещение) защитное устройство выбирается на максимальный ток 30 мА ( ПУЭ п.7.1.79.). УЗО на дифференциальные токи 100 и 500 мА, как видно выше, не защищают организм человека от опасного напряжения, и основная цель этой противопожарной защиты. При установке автоматических выключателей необходимо понимать, что они не защищают от длительных перегрузок, максимальных токов или высоких напряжений. По этим причинам эта установка должна быть соединена с автоматическим выключателем с электромагнитным и тепловым расцепителем, а для защиты от перенапряжения должны быть установлены реле или ограничители перенапряжения (Устройство защиты от перенапряжения).По этим причинам, если ТЕРМЕКС отключает УЗО, а автомат не работает, то причиной неисправности является ток утечки.

Если УЗО выключается одновременно с автоматическим выключателем, причиной неисправности может быть как дифференциальный ток, так и максимальные токи, возникающие при коротком замыкании.

Причины утечки тока

Необходимо хорошо понимать, что наличие тока утечки — это аварийный режим или неисправность в электрических сетях бытового назначения или неисправности в электроприборах.Причины появления этого тока довольно распространены. Основные причины утечки тока — это прикосновение человека к оголенным проводам, его протекание через деформированную изоляцию кабеля или через токопроводящий элемент. Например, причиной срабатывания УЗО в водонагревателе может быть утечка тока через воду. Изоляция кабеля повреждена, влага проникла в оголенный провод и через него прошел ток. ток, которого просто не хватает, если бы разница входящего и выходящего токов равнялась 0 (нулю), и защита отключает аварийную секцию.Если это водонагреватель ТЕРМЕКС, отключено УЗО прибора.Вода это тоже может быть причиной, почему отключено УЗО на насосе, перекачивающем различные жидкости.

Типы и УЗО; визуально-техническое обозначение

рис. 2 Внешний вид и обозначение защитных устройств

Форумы RCD

  • Напряжение бытовое и сеть 220/380 В.
  • По количеству полюсов. При однофазной нагрузке в сети питания УЗО необходимо устанавливать двухполюсным, при трехфазной нагрузке — четырехполюсным.
  • Номинальный рабочий ток. Величина номинального (рабочего) тока УЗО такая же, как у автоматических выключателей, это 16, 25, 32, 40, 63, 80 А.
  • Остаточный ток (ток утечки), величиной которого руководит устройство УЗО 10, 30, 100, 300, 500 мА.

По типу тока утечки, который в свою очередь делится на:

  1. Переменный электрический пульсирующий ток синусоидальной формы и. Тип УЗО для текущей « AS». Пульсация тока присутствует в регулируемых лампах, в стиральных машинах с регулируемой скоростью вращения.
  2. Электроимпульсный переменный и постоянный ток типа УЗО « НО». Этот тип защитных устройств рекомендуется использовать там, где есть бытовая электроника, микроволновая печь, компьютер, телевизор и т. Д.
  3. Постоянный электрический и переменного тока типа УЗО «АТ». Этот тип защиты обычно устанавливают, где есть выпрямленный ток. В бытовых электрических сетях этот тип не используется.
  4. Для УЗО с выдержкой времени срабатывания УЗО этого типа «S» применяется селективность, которая наблюдается при установке 2 или более устройств защиты в домашних сетях и при подаче электроэнергии. Этот тип УЗО применяется в сетях, где используется АВР (Автоматический ввод резерва), и типа « G » в той же сети, но имеет меньшее время воздействия.

срабатывание УЗО, причины первичного и вторичного

Наиболее частые причины срабатывания УЗО в котле или водонагревателе Electrolux, это недобросовестный производитель или разного рода проблемы в электрической сети. Если на водонагревателе , отключено УЗО, нужно его снова включить.Если прибор исправен и не выключает УЗО, то произошла короткая утечка тока. Далее вам необходимо воспользоваться кнопкой «Тест». Имитирует аварийный режим.

  1. Необходимо отключить автомат, включенный в сеть вместе с УЗО и определить, почему отключено УЗО. При этом отключаем нулевой провод. После этого, как они отключаются, включаем УЗО. Если он не выключен, значит, нажмите кнопку «Тест». Если после нажатия кнопки «Тест» УЗО сработало, значит, исправно.Следует отметить, что работоспособность тестового УЗО необходимо проверять не реже 1 раза в месяц, нажимая кнопку «Тест».
  2. Если при подключении УЗО срабатывает без нагрузки, означает, что оно вышло из строя или в месте его установки есть токи утечки. Если он исправен, необходимо понимать, почему срабатывает УЗО без нагрузки. В этом случае, если у него несколько машин, то они сразу все отключаются. Затем мы определяем, зачем отключать УЗО, а в свою очередь включаем автоматические выключатели и определяем аварийный участок электрической сети.

Основные виды подключения УЗО

рис. 3. Одно УЗО и один потребитель

Подключить УЗО может любой электрик, имеющий не менее 3-х разрядных электриков. Схема подключения написана на устройстве, и в этом нет ничего сложного. Единственное, что нужно сделать перед установкой, это учесть нюансы при включении сети и выбрать нужное количество выключенных машин на одно УЗО. Можно установить одно охранное устройство на всю квартиру в панели пола, если кондоминиум, как показано на рис.3. Его можно установить отдельно на розетку сети и освещение, если у вас достаточно места для установки. Подойдет для квартиры. При установке и выборе УЗО следует учитывать номинальный (рабочий) ток, который должен быть на одну ступень выше номинального тока машины, который идет после защитного устройства. Например, если автомат на 25 НО, перед этим необходимо установить УЗО с рабочим током на 32 А и т. Д. Если это частный дом, лучше рассмотреть следующие позиции, одно УЗО и одно автоматическое, Если автомат имеет немного.

Одно устройство безопасности и несколько автоматических выключателей

рис. 4 Подраздел схемы OUZO

Если, например, в доме стоит много машин (одна машина = одна комната, = одна машина), то в этом случае размер электрического щита может быть огромным. По этим причинам распределительный щит лучше скомплектовать так, чтобы под одно УЗО устанавливать несколько автоматов, но не более 5. В этом случае необходимо правильно рассчитать номинальный ток защитного устройства относительно выхлопных автоматов, чтобы их сумма не превышала устройства защиты рабочего тока.Например, для выхлопных машин ВА1 16 НО, ВА2 16 НО, ВА3 32 НО, сумма 16 + 16 + 32 = А. Значит, УЗО должен иметь номинальный ток не менее 64 А, а зная оптимальный диапазон номинальных значений тока, вариант устройства выключатель номинальный ток на 63 А.

Как показано на рисунке. 4 ничего сложного, когда нет подключения, но в некоторых случаях будет интересно узнать, почему срабатывает УЗО на водонагревателе Ariston, если домашняя сеть и предохранительные устройства исправны и. При срабатывании УЗО причины могут быть в его неправильном подключении.

Основные виды неправильного подключения УЗО, нулевого смещения защитного проводника и

  • Невозможно соединить нейтраль ( N ) и фазный провод, пропущенный через УЗО, другие нулевые и фазные проводники после УЗО.
  • Нельзя производить подключение нулевого провода (N) после электрического разомкнутого УЗО, а также его нельзя подключать к защитному проводнику (ВКЛ) .
  • Категорически нельзя подключать к нулевой розетке и защитному проводнику.
  • Если в электрической сети установлены два устройства защиты, объединение нейтрального проводника приведет к дополнительному току утечки и, как следствие, срабатыванию обоих.
  • Если в электрощите установлено много УЗО, следует перепроверить проводку, чтобы не было соединения фазного провода и земли, работающей с различными устройствами защиты.

Только правильно подобранные и правильно подключенные защитные устройства защищают человека в случае аварии от опасного воздействия электрического тока.

Видео:

Конвертер шерсти

, онлайн калькулятор

Экологическая оценка производства узо в Греции: подход к оценке жизненного цикла

Основные моменты

Подход к оценке жизненного цикла производства узо в Греции.

Количественная оценка выбросов в окружающую среду в результате производства узо.

«горячие точки» производства узо, оказывающие негативное воздействие на окружающую среду.

Мощное предоставление данных производственной системы узо для сравнения с аналогичными продуктами.

Реферат

В этом исследовании изучается влияние производства узо на окружающую среду. Его новизна заключается в том, что это первое исследование, посвященное последствиям производства анисовых напитков для окружающей среды. Для проведения исследования использовалась оценка жизненного цикла (LCA), и были исследованы пятнадцать подсистем общего производства.В качестве категорий воздействия были выбраны глобальное потепление, подкисление, эвтрофикация и фотохимическое окисление. Производственный процесс существенно влияет на все четыре явления (с процентными долями 63,58%, 43,53%, 10,09% и 17,31% соответственно) и аналогичным образом влияет на подсистему выращивания винограда (с процентами 8,88%, 22,84%, 27,12% и 30,82% соответственно) . Другая подсистема, серьезно влияющая на эти явления, — это производство / транспортировка стеклянных бутылок (с процентами 18,05%, 15.13%, 7,61% и 41,55% соответственно). Более того, интересным результатом является то, что процесс производства узо оказывает более сильное воздействие на окружающую среду, чем процесс производства вина, поскольку они проходят схожие стадии своего жизненного цикла. Необходимо принять определенные меры. Первоначально использование возобновляемых источников энергии, таких как солнечная энергия. Кроме того, переработка стеклянных бутылок и использование бутылок из других материалов. Также возможно использование альтернативных методов выращивания, таких как биодинамические и органические.Эти меры будут эффективными, если будут сочетаться с «зеленой» политикой обслуживания, проводимой компаниями. Результаты этого исследования могут быть полезным инструментом для промышленности, чтобы сосредоточить внимание на этапах с наибольшим вкладом в загрязнение окружающей среды и минимизировать его.

Ключевые слова

Воздействие на окружающую среду

Сельскохозяйственная продукция

Виноградарство

Виноград

Анисовые напитки

Рекомендуемые статьиЦитирующие статьи (0)

© 2021 Авторы.Опубликовано Elsevier Ltd.

Рекомендуемые статьи

Цитирующие статьи

Произошла ошибка при настройке вашего пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie.Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie.Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Схема предохранителей

Тойота Королла. Электрооборудование toyota corolla

Расположение узлов в блоке двигателя (под капотом) праворукого японца

Расшифровка:

1 — Блок реле VSC

2 — Модулятор ABS (VSC)

3 — монтажный блок в моторном отсеке, блок реле в моторном отсеке

4 — релейный блок №2

5 — датчик SRS передний левый

6 — датчик SRS передний правый

Расположение комплектующих в салоне «праворукого» японца

Расшифровка:

1 — реле отопителя

2 — монтажный блок под приборную панель

3 — монтажные блоки No.10, № 12

4 — блок управления электроусилителем руля

5 — зуммер системы VSC

6 — монтажные блоки №7, №11

7 — реле-прерыватель указателей поворота

8 — релейный блок дополнительного оборудования

9 — Блок управления SRS

10 — блок управления двигателем и АКПП

11 — блок управления ABS, TRC, VSC, VA

Чтобы попасть к блоку предохранителей в салоне праворуких автомобилей необходимо:

1.Откручиваем винт, освобождаем фиксаторы и снимаем бардачок.

2. Затем снимите черную крышку блока предохранителей

.

3. На крышке

нанесена схема обозначений предохранителей.

Расшифровка ( «Правые» предохранители в салоне ):

Блок тот же, подробнее

Реле

Расшифровка:

И Реле зажигания
В Реле обогрева заднего стекла
ИЗ Реле топливного насоса
D Реле стеклоподъемника
E Реле стартера
и POWER (30A)
  • электрические стеклоподъемники
  • люк с электроприводом
б DEFOG (30A) — обогреватель заднего стекла
из ОБОГРЕВАТЕЛЬ (40А)
1 WASH (15A) — дворники и омыватели
2 ECU-KZ (10A) -ABS
  • вентиляторы радиатора и конденсатора
3 ДАТЧИК (10А)
  • Комбинация приборов
  • Указатели поворота и аварийная сигнализация
  • Ремень безопасности и система предупреждения о забытом ключе
  • центральный замок
  • Управление двигателем
  • управление АКПП
  • Освещение салона
  • Люк с электроприводом — ABS
  • кондиционер
4 резервная цепь
5 резервная цепь
6 резервная цепь
7 WIPER (25A) — дворники и омыватели
8 ТА1Ц15А)
  • габариты и освещение
  • Фонарь задний противотуманный
  • Корректор фар
9 СТОП (15А)
  • стоп-сигналы
  • Управление двигателем
  • индикаторы АКПП -ABS
10
  • центральный замок
  • Освещение салона
  • система предупреждения
  • Беспроводное управление центральным замком
11 P / W (20A) — электрические стеклоподъемники
12 запасной
13 АМ1 (25А) — цепь АМ1 замка зажигания
14 ЭБУ-В (7.5А)
  • противотуманные фары
  • Управление двигателем и АКПП
15 FOG (15A) — противотуманные фары передние
16 ST (7.5A)
  • комбинация приборов
  • Управление двигателем
  • Пусковая система
17 A / C (25A) — кондиционер
18 IG2 (15A)
  • электроусилитель руля
  • Управление двигателем
  • зажигание
19 DEF I-UP (10A)
  • Управление двигателем
  • Обогрев заднего стекла
20 запасной
21 CIG (15A)
  • прикуриватель
  • магнитола
  • навигационная система
  • Регулировка зеркал

Внутренние схемы



Блок реле дополнительного оборудования находится в салоне автомобиля.

Расшифровка:

А — Реле управления ч / холостой ход

B — Реле противотуманных фар

У левшей (европеец) блок крепления реле и предохранителей находится слева под рулем.


Снимите крышку …


А вот и блок предохранителей:


Схема расположения предохранителей в основном монтажном блоке под капотом (европейский)

Расшифровка ( «Левосторонние» предохранители в салоне и в моторном отсеке ):

Предохранители (тип A)
1.ЗАПАСНОЙ 15 А: Запасной предохранитель
2. ЗАПАСНОЙ 10 А: Запасной предохранитель
3. ЗАПАСНОЙ 5 А: Запасной предохранитель
4. AM2 30 А: Система стартера, многоточечная система впрыска топлива / система последовательного многоточечного впрыска топлива, предохранители «ST» и «IG2»
5. DOME 15 A: Аудиосистема, навигационная система, внутреннее освещение, личное освещение, освещение багажного отделения, освещение багажника, система дистанционного радиоуправления, датчики и счетчики
6.EFI 15A: Многоканальный система впрыска топлива / система последовательного многоканального впрыска топлива, часы, круиз-контроль
7.ETCS 10 A: многоточечная система впрыска топлива / последовательная многоточечная система впрыска топлива
8. ALT-S 5 A: система зарядки
9. ОПАСНОСТЬ 10 ​​A: указатели поворота, аварийные мигающие огни
10.NORN 10 A: Звуковой сигнал
11. HEAD LH 15 A: Левая фара
12. HEAD RH 15 A: Правая фара
13.LO RH 10 A: Правая фара (ближний свет)
14. LO LH 10 A: Левая передняя фара (ближний свет)
15. HI RH 10 A: Правая фара (дальний свет)
16. HI LH 10 A: Левая передняя фара (дальний свет)
17.FUEL HTR 25 A: подогреватель топлива
18.CIG 15 A: прикуриватель, аудиосистема, часы, органы управления зеркалами с электроприводом
19. IG2 15 A: датчики и счетчики, система подушек безопасности SRS, многоканальная система впрыска топлива / последовательный мульти -канальная система впрыска топлива, система стартера, система зарядки
20. M-HTR / DEF I-UP 10 A: антизапотевание наружных зеркал заднего вида, многоканальная система впрыска топлива / последовательная многоканальная система впрыска топлива
21. СТ 7,5 А: Многоканальная система впрыска топлива / последовательная многоканальная система впрыска топлива, датчики и счетчики
22.ECU-B 10A: система кондиционирования воздуха, антиблокировочная тормозная система, система стабилизации автомобиля, задний противотуманный фонарь
23. AM1 25 A: предохранитель «CIG»
24. TAIL 15 A: задние фонари, фонари освещения номерного знака, габаритные огни. , система управления светом фар, освещение панели приборов, часы, очиститель фар, передние противотуманные фары, обогреватели сидений, многоканальная система впрыска топлива / последовательная многоканальная система впрыска топлива
25. P / V 20 A: Электрический стеклоподъемник
26. STOP 15 A: стоп-сигналы, стоп-сигнал высокой уставки, система управления блокировкой коробки передач, многоканальная система впрыска топлива / система последовательного многоканального впрыска топлива, антиблокировочная тормозная система, система контроля устойчивости автомобиля
27.FOG 15 A: Передние противотуманные фары
28. ДВЕРЬ 25 A: Электрическая система запирания дверей
29. А / С 10 А: Кондиционер
30. ОВD 7.5 А: Бортовая система диагностики
31. ДАТЧИК 10 A: Датчики и счетчиков, кондиционер, электрические стеклоподъемники, сигналы заднего хода, система дневного света, обогреватель заднего стекла, система повышения передачи автоматической коробки передач, система блокировки дверей с электроприводом, система зарядки, аварийные мигающие огни, автоматическое антибликовое внутреннее зеркало заднего вида, система подушек безопасности SRS, напоминающая контрольная лампа непристегнутого ремня безопасности переднего пассажира
32.S-НТR 15 А: Обогрев сидений
33. WASH 15 A: Стеклоочистители и омыватель ветрового стекла
34. ECU-IG 10 A: Система подушек безопасности SRS, электровентилятор охлаждения, антиблокировочная тормозная система, система управления блокировкой коробки передач, электрическое рулевое управление. система, очиститель фар
35. WIPER 25 A: Стеклоочистители и омыватель, дворники и омыватель заднего стекла
36. DOOR DL / S-HTR INV 15 A: сиденья с подогревом
37. R-POINT 15A: отключено от цепи
38 . P / V 30 A: Электрический стеклоподъемник
39. DEF I / UP M-HTR 10 A: Антизапотевающие наружные зеркала заднего вида, многоканальная система впрыска топлива / последовательная многоканальная система впрыска топлива

Предохранители (тип B)

40.ABS №2 30 A: антиблокировочная тормозная система, система контроля устойчивости автомобиля
41. ABS №1 50 A: антиблокировочная тормозная система, система контроля устойчивости автомобиля
42. RDI FAN 40 A: электрический вентилятор охлаждения
43 . Н-LP CLN 30 А: Очиститель фар
44. A / PUMR 50 A: Воздушный насос
45. HEAD MAIN 40 A: предохранители «LO LH», «LO RH», «HI LH» и «HI RH»
46. ​​EMPS 50 A: Электроусилитель руля
47. DEFOG 40 A: Обогрев заднего стекла, предохранитель «M-HTR / DEF I-UP»
48. POWER 30 A: Электрический стеклоподъемник, люк с электроприводом
49.ОБОГРЕВАТЕЛЬ 40 A: Система кондиционирования, предохранитель «A / C»
50. DEFOG 30 A: Обогрев заднего стекла, предохранитель «DEF I / UP M-HTR»

Предохранители (тип C)

51. ALT 100 A: Система зарядки, предохранители «ABS NO.1», «ABS NO.2», «RDI FAN ‘,« H-LP CLN »,« GAUGE »,« ECU-IG »,« WIPER » , «WASH», «AM1 (25 A)», «DEFOG», «HEATER», «3-HTR», «POWER», «P / W», «DOOR», «ECU-B», «TAIL» , «СТОП», «ТУМАН» и «БД»

Монтажный блок для реле и предохранителей Toyota Corolla E12, 120, Fielder, Runx, Allex под капотом ( японский )

Расшифровка:

Факс Реле вентилятора радиатора №1
и EMPS (50A) — электроусилитель руля
б HEAD MAIN (40A) — фары
из A / PUMP (50A) — управление двигателем (2ZZ-GE)
д ALT (100A)
  • система зарядки
  • обогреватель заднего стекла
e H-LP CLN (30A) — омыватель фар
из RDI FAN (30A) — вентиляторы радиатора и конденсатора
г АБС №1 (30A) или VSC No. 1 (40A) — ABS
ч ABS № 2 (40A) или VSC № 2 (40A) — ABS
1 HEAD RH (15A) — передняя правая фара
2 HEAD LH (15A) — передняя левая фара
3 HORN (10A) — звуковой сигнал
4 HAZARD (10A) — указатели поворота и аварийная сигнализация
5 ALT-S (5A) — система зарядки
б запасной
7 EFI (15A)
  • Управление двигателем
  • Указатели режима работы АКПП
  • Освещение салона
  • кондиционер автоматический
  • магнитола
  • система световой сигнализации
  • пульт центрального замка
  • АБС (VSC)
КУПОЛЬ (15A)
9 AM2 (30A) — цепь AM2 замка зажигания
10 резервная цепь
11 резервная цепь
12 резервная цепь
12 резервная цепь

Блок реле VSC

Расшифровка:

Блок реле No.2

Расшифровка:

1 — Реле №1 вентилятора радиатора

2 — Реле №3 вентилятора радиатора

3 — Реле №2 вентилятора радиатора


base-ex .com

Все электрические цепи автомобиля защищены предохранителями, их еще называют защитными устройствами или защитными вставками, а также автоматическими выключателями, которые устанавливаются в два блока. Эти агрегаты устанавливаются в разных местах автомобиля Тойота Королла. Если какая-то вставка перегорела, требуется ее замена.Сделать его можно самостоятельно, если знать, где находится блок предохранителей, его номер, а также место установки вышедшего из строя.


Центральный блок находится под приборной панелью автомобиля. Он находится на стене. Он закрывается легко съемной декоративной панелью … Второй блок находится в моторном отсеке. У моделей Toyota с кондиционером его расположение немного другое, он находится рядом с аккумулятором.

Что указывает на неисправность предохранителя

В автомобилях Toyota Corolla предусмотрена защита электрооборудования от токов короткого замыкания.В случае неисправности в электрической цепи, особенно при коротком замыкании, ток защищаемой цепи многократно увеличивается. Перегорает предохранитель, тем самым защищая провода от возгорания.

Все защитные устройства имеют собственное обозначение на панели, где они установлены. Они нужны для того, чтобы их можно было быстро обнаружить, а затем заменить. Предохранители оснащены ножевыми контактами, легко вынимаются из гнезд и заменяются.Замена их не требует специального оборудования, а осуществляется вручную.

Если какой-либо элемент электрической цепи или всего электронного устройства выходит из строя, первым делом необходимо проверить защиту этого устройства.

Сделать это несложно, так как блок предохранителей сделан из прозрачного пластика и если присмотреться, то визуально можно увидеть перегоревшую резьбу. Также для проверки можно использовать омметр или тестер. Бывают случаи, когда корпус устройства может начать плавиться.

О типах плавких вставок

Плавкие вставки, устанавливаемые на автомобили Тойота Королла, бывают трех типов. Их условно обозначают тип A, тип B, тип C. Все они имеют разную конструкцию, поэтому выход из строя каждого из них имеет свою особенность. Так в приборе типа А неисправность в виде перегоревшей нити можно увидеть только при снятии самого прибора. Сбоку, между контактами, можно увидеть перегоревшую резьбу, тем самым узнав, нужно ли ее менять или нет.

Плавкие вставки типа В устроены несколько иначе. Состояние токопроводящей резьбы можно увидеть, а также проверить целостность, не вынимая ее из розетки. В этом можно убедиться, если посмотреть на вставку сверху. То же можно сказать и об устройствах типа С, они различаются только типами плавких вставок.

Инструкции по замене предохранителя

Если при диагностике электрооборудования Тойота Королла обнаружена перегоревшая защитная вставка, ее необходимо заменить.Перед заменой всех потребителей необходимо отключить электрический ток и только после этого приступить к замене. Для этих целей специалисты используют в своей работе различные пинцеты. С их помощью легко снять, а затем вставить любое тестируемое устройство. В новых автомобилях Toyota есть пинцет под крышкой блока, который устанавливается под капотом. Блоки сделаны таким образом, что не всегда удается выполнить эту операцию пальцами.

Устанавливайте новый предохранитель только в соответствии с инструкциями по эксплуатации Toyota Corolla.При установке с более низким номинальным током он снова сгорит при включении оборудования, а при большом — может выйти из строя электронный блок или может возгораться проводка.

Если вновь установленное устройство выходит из строя сразу после замены, необходимо проверить все электрические цепи, которые оно защищает. Возможно, в цепи имеется короткое замыкание. Номинальный ток плавкой вставки указывается маркировкой на ее корпусе. Вставки одинаковой мощности имеют свой цвет и перепутать их при замене довольно сложно.

автомобилей Toyota Corolla E120-E130 имеют 5 узлов с защитными устройствами и реле в электрических цепях. Два блока расположены в салоне автомобиля, а три — в моторном отсеке. В кабине есть блоки под номерами 2 и 5. Чтобы получить доступ к блоку №2, снимите крышку мини-бокса; он расположен на панели возле левой ноги водителя. №5 находится за решеткой воздуховода на торпеде с правой стороны Toyota Corolla.

В моторном отсеке Toyota три блока расположены следующим образом.№1 расположен с левой стороны по ходу движения ближе к лобовому стеклу, №4 установлен с правой стороны возле стойки передней подвески. №3 находится возле радиатора системы охлаждения двигателя. Все они закрыты пластиковыми крышками, на обратной стороне которых нанесена нумерация предохранителей и обозначение защищаемых цепей.

В моделях Toyota Corolla 2008 года электрическая защита расположена всего в двух узлах. Они расположены следующим образом. Один находится в салоне у ног водителя, у нижнего основания двери, а второй — в моторном отсеке, рядом с воздушным фильтром.







Узел в моторном отсеке обслуживает всех потребителей больших токов и токовых реле. Блок с защитными вставками, который находится в салоне, обслуживает все электрические устройства с небольшой токовой нагрузкой. Эти сборки имеют схожую конструкцию и состоят из нескольких частей. Это релейная часть, блок с защитными вставками и розетки с запасными вставками.

Современные автомобили Тойота Королла имеют сложную электрическую схему. Поэтому серьезно подумайте о возможных вариантах, прежде чем приступать к устранению неполадок.

Электрооборудование автомобиля Тойота Королла требует регулярного обслуживания и ремонта. Это также относится к цепям, защищающим оборудование от повреждений и перенапряжения. Теперь вы можете узнать, где в автомобиле Тойота Королла находятся предохранители, за работу каких устройств они отвечают и как заменить блоки.

Где находится?

Предохранители

Toyota Corolla расположены в монтажных блоках. Но в этой модели не один блок, а несколько, соответственно схемы для них будут разными. Один из блоков питания расположен в салоне автомобиля, второй — в моторном отсеке. Для большей наглядности ознакомьтесь со схемами электроснабжения, установленных в салоне и под капотом.

БП в моторном отсеке

Чтобы увидеть этот блок предохранителей, вам потребуется доступ к моторному отсеку.Он расположен с правой стороны, если смотреть на капюшон. Со стороны подкрылка напротив водительского сиденья видна пластиковая крышка, за которой спрятано само устройство. Открывая крышку, на обратной стороне печатается схема элементов. Также ниже представлена ​​схема компонентов устройства.

Цифрами выше обозначены все компоненты блока предохранителей Toyota Corolla. Чтобы вам было понятнее, за что они несут ответственность, ознакомьтесь с их обозначениями ниже.

БП в салоне

Что касается устройства салона, то оно, как нетрудно догадаться, находится в салоне вашей Toyota Corolla. В частности, он находится с левой стороны, когда вы сидите на сиденье водителя, под панелью приборов. Чтобы добраться до него, нужно открыть пластиковую защитную крышку устройства. Есть как реле, так и непосредственно предохранители, схема которых приведена ниже.

Если с блок-схемой все понятно, то переходите к обозначениям, которые приведены ниже.

Процедура снятия и замены

Если по каким-либо причинам вам необходимо заменить блок питания в салоне или в моторном отсеке, то мы поможем вам в этом.

Демонтаж прибора в салоне

  1. Сначала откройте капот и отключите аккумулятор от блока питания, для этого можно сбросить клеммы с него.
  2. Затем снимите защитную накладку устройства, находящуюся слева под рулевым колесом.Подцепите крышку отверткой и отложите в сторону, а затем открутите саморезы, на которых крепится сам БП.
  3. Выньте прибор с места установки. Он будет прилипать только к проводам. Следует заранее разметить все накладки, чтобы не забыть расположение элементов. Затем по очереди отсоедините все провода и полностью снимите блок предохранителей.
  4. Установите новый блок, соединив все ремни по одному, чтобы не запутаться. Когда все провода будут подключены, затяните крепящие его саморезы и закройте накладку накладки.Чтобы проверить работоспособность, снова вставьте клемму в аккумулятор.

Демонтаж устройства в моторном отсеке

  1. В принципе, процедура мало чем отличается от описанной выше. Единственное отличие состоит в том, что устройство находится в моторном отсеке Toyota Corolla 2008 года выпуска или другого автомобиля. Итак, отсоединяем аккумулятор.
  2. Как только вы откроете моторный отсек, вы уже знаете, где находится прибор. Снимите лицевую панель, за которой находится устройство.
  3. Сам БП крепится на четырех болтах (или двух, в зависимости от года выпуска и комплектации). Все болты Тойота Королла 2008 года следует открутить и отложить в сторону, чтобы не потерять.
  4. С помощью отвертки подденьте устройство и вытащите его. Все провода следует промаркировать, чтобы не перепутать при переустановке.
  5. Демонтировать блок и заменить его другим. Вставьте все колодки с проводами по очереди, правильно их соединив. Не забывайте аккумулятор.

Немного об эксплуатации

Ниже приведены несколько советов по использованию блока питания.Чтобы прибор работал дольше, следуйте приведенным ниже инструкциям. Это несложно, к тому же поможет увеличить срок службы.

  1. Самодельные предохранители не устанавливаются в ваш БП. Регулярное использование таких элементов со временем может привести к коротким замыканиям, которые вам явно не нужны. Чтобы из подручных средств не пришлось делать плавкую резьбу в дороге, всегда носите с собой дополнительный комплект деталей.
  2. Если определенная розетка питания поддерживает установку звеньев одного номинала, то просто сделайте это.Установка деталей неподходящего номинала может не только вызвать короткое замыкание, но и привести к выходу оборудования из строя. А замена того же магнитофона или ремонт обогревателя заднего стекла всегда будет дороже, чем установка детали с требуемым номиналом.
  3. Всегда содержите блок питания в чистоте. Если грязь попадет в щели, некоторые элементы могут выйти из строя. Кроме того, прибор всегда должен быть сухим и обезвоженным. Если это произошло, то необходимо срочно устранить причину появления воды в блоке питания.

Видео «Замена блока питания на примере ВАЗ»

В этом видео вы можете посмотреть процедуру замены блока питания на ВАЗ, для Toyota Corolla процесс будет аналогичным.

Здесь обозначение и расшифровка блоков предохранителей для различных моделей автомобилей Toyota — Toyota Supra, Toyota Avensis, Toyota Corona Premio, Toyota Corolla, Toyota Auris, Toyota RAV4, Toyota Estima, Toyota Camry и некоторых других. Вы можете посмотреть указанные автомобили в другом разделе.Каждый предохранитель защищает свою цепь, а на панели предохранителей есть обозначение цепи, защищаемой этим предохранителем. Конечно, никогда не заменяйте предохранители на провода, даже в качестве временного средства. Это может вызвать серьезное повреждение проводки или даже пожар. Номинал предохранителя указан на самом предохранителе. Если новый предохранитель сразу перегорает, необходимо выяснить причину перед установкой нового предохранителя. Если у вас нет предохранителя с номиналом, вы должны использовать предохранитель с более низким номиналом, максимально приближенным к номинальному.Наиболее вероятная причина сгорания предохранителя — короткое замыкание из-за обрыва или износа провода. …

Блок предохранителей Toyota Corolla и Auris

Реле и предохранители в монтажном блоке в автомобиле





Обозначение предохранителей и реле в монтажном блоке в моторном отсеке




Предохранители на Toyota RAV4 с 2005 года

Монтажный блок в салоне — на левой стороне панели приборов внизу под пластиковой крышкой



Блок крепления правый — моторный отсек Toyota RAV4



Левый монтажный блок — обозначения предохранителей и реле



1990-1999 Toyota Estima, Предохранители Estima Lucida

Блок предохранителей в салоне



Блок предохранителей в моторном отсеке


Схема предохранителей и реле Toyota Corolla, Marino, Ceres, Trueno

Блок предохранителей Toyota Camry

Блок предохранителей в моторном отсеке


Блок предохранителей под панелью Toyota Camry


Это должен знать каждый автовладелец:

Автовладельцу, даже если он с детства не интересовался устройством и диагностикой электрических цепей, невольно время от времени приходится сталкиваться с необходимостью найти вышедший из строя защитный вкладыш и заменить его.Чтобы это не стало очень неприятным сюрпризом для посетителей нашего сайта, мы разберемся, где находится 2008 год и как искать и заменять перегоревший предохранитель.

Часто бывает, что выходит из строя отдельный блок электрооборудования, и хозяин начинает упорно просматривать все имеющиеся у него предохранители по очереди в поисках перегоревшего. Это не совсем правильный подход к делу. Вернее было бы в самом начале определить расположение предохранителя вышедшего из строя электрооборудования, а затем вытащить его для тщательного осмотра и проверки.

2008 Toyota Corolla Расположение предохранителей

Электроэнергия подается в электрическую систему автомобиля от аккумуляторной батареи, когда двигатель не работает, и от генератора, когда двигатель работает. Все потребители электрического тока автомобиля запитаны через предохранители. Это защищает электрические компоненты от плавления, а весь автомобиль — от пожара.

Плавкие защитные вставки в автомобиле Королла 2008 расположены в двух узлах. Один из них находится под капотом рядом с воздушным фильтром, а другой — в салоне у нижнего основания водительской двери.

Блок электрической защиты под капотом обслуживает цепи с большими токами и токовые реле. Блок, расположенный в салоне, предназначен для защиты электрических цепей с слаботочной нагрузкой.

Рассмотрим сначала комплект предохранителей Toyota Corolla 2008 года под капотом. Он состоит из нескольких отдельных частей:

  • релейной части;
  • предохранительные блоки 2 шт;
  • розетки с запасными вставками.

Фото 1. Блок блока защиты под капотом

На фото 1 показан блок защиты Toyota Corolla 2008 под капотом, где 1 — блок реле, 2, 3 — запасные вставки.

Обозначение и назначение плавких вставок моторного отсека Короллы 2008

КУПОЛ — плюсовой провод для питания часов и мафона. Служит для работы дежурного режима мафона и питания штатных часов.
HAZ-HORN — предохранитель звукового сигнала.
ALT-S — предохранитель в цепи автоматического регулятора напряжения бортового генератора.
FAN 30A — предохранитель вентилятора охлаждения радиатора.
АМ1 40А — предохранитель питания замка зажигания и пускового реле стартера.
EFI. F-HTR — защита цепи питания блока управления двигателем.
АМ2 30А — предохранитель замка зажигания. Он также защищает цепи форсунок, реле впрыска топлива.

Корпус надежно защищен от влаги и пыли. Эту герметичность нельзя нарушать при открытии крышки.

2008 Toyota Corolla Cabin Block Предохранители

CIG & RADIO 20 A — цифровой дисплей часов, прикуриватель, кондиционер, магнитола, электропривод зеркал заднего вида.
IGN 10 A — система впрыска топлива.
TAIL 15 A — задние габаритные фонари, освещение приборов, габаритные огни, освещение салона, задние противотуманные фары.
STOP 15 A — стоп-сигналы.
ECU-IG 15 A — запуск двигателя.
TURN 10 A — сигналы аварийной остановки, указатели поворота.
DEFOG 30 A — система обогрева стекла заднего вида.
WIPER 20 A — стеклоомыватель и дворники.
GAUGE 10 A — контрольные лампы контрольных индикаторов, индикаторов и самих счетчиков (кроме сигнальной лампы разряда аккумулятора и сигнализации незакрытых внутренних дверей), фонари заднего хода.

Фото 2. Салонный блок Toyota Corolla 2008 (вид снизу)

В других модификациях Toyota Corolla очень часто меняют обозначение и порядок вставок. Самым надежным проводником в «лесу предохранителей» станет собственная инструкция по эксплуатации автомобиля.

Правила замены и отдельные моменты

При работе с электриком Toyota Corolla 2008 необходимо придерживаться определенных правил. В первую очередь следует снимать вставки с розеток не руками или другими инструментами, а специальной пластиковой вилкой, которая находится в самом блоке.Определение пригодности вставок производится при свете. Хорошо видна перегоревшая или неповрежденная плавкая катушка внутри корпуса.

Не заменяйте перегоревшую вставку на другую с другим номинальным током.
Сам процесс замены вставок в салоне довольно неудобен. Чтобы снять крышку блока защиты, нужно успеть лечь на дно кабины с поднятой головой, имея в наличии фонарик.

Мы часто сами себе создаем проблемы.Например, подключая различные устройства и навороты к гнезду прикуривателя, мы часто отключаем не только его защиту, но и саму розетку. Дело в том, что эти разъемы производятся всеми, кому не лень, зачастую совершенно игнорируя стандарты японских производителей.

Лучше сделать отдельный разъем для дополнительных устройств. Любые действия с электротехникой нужно выполнять терпеливо и осторожно, без нервозности.


Дифференциальный автомат — установка и обозначение.Перечень важнейших характеристик дифавтоматов

Действующие государственные стандарты (ГОСТ) не регламентируют графическое и буквенное обозначение УЗО (устройств защитного отключения), отсутствуют дополнительные графические обозначения, позволяющие более точно описать основные функции и свойства штатного оборудования.

УЗО является одним из основных элементов однолинейных электрических схем, поэтому производителями модульного оборудования и конструкторами принято следующее условное обозначение:

Такое схематическое изображение УЗО наиболее точно показывает принцип его действия. и отличает его от другого модульного оборудования, если вы знаете, что такое УЗО и как оно работает.

При этом, поскольку государственные стандарты не регламентируют тип УЗО, на схемах и планах в обязательном порядке следует отображать блок с условными графическими обозначениями (УГО), в котором давать расшифровку и пояснения к графическим элементам. , даже если будет решено использовать форму, отличную от представленной. Возможность самостоятельно разрабатывать символы, если их нет в стандартах, указывается в ГОСТ 2.702-2011.

Буквенная маркировка УЗО — QF, если использовать правила их формирования по ГОСТ 2.710-81 ЕСКД «Буквенно-цифровые обозначения в электрических схемах». Это полностью соответствует обозначению автоматического выключателя и некоторых других модульных устройств, что делает однолинейные схемы менее читаемыми и понятными.

Многие люди вводят собственные буквенные обозначения: Q, QFD, QDF и т. Д., Которые, если полагаться на действующие стандарты, неверны, не раскрывают функции УЗО, но помогают отличить их от других элементов защитной автоматики на однолинейные схемы.

Это может быть важно, особенно если в цепи одновременно есть УЗО и дифавтоматы.Их графические обозначения схожи, и отличить их друг от друга не всегда легко. Учитывая, что проектировщики электроустановок часто максимально упрощают используемые графические символы, опуская важные детали.

Рассмотрим условное обозначение дифференциального автомата на однолинейной схеме и сравним с УЗО.

rozetkaonline.ru

Если вы решили заменить проводку в квартире, то для начала нужно составить подробную схему.Чтобы правильно составить схему подключения, необходимо знать, как все ее основные элементы должны отображаться на схеме. Кроме того, в данной статье будут рассмотрены некоторые типовые схемы электропроводки в квартире.

Разновидности схем электропроводки

При замене проводки в квартире своими руками потребуется два варианта схемы — электрическая и принципиальная.

Схема, на которой показаны основные электрические соединения, существующие между всеми элементами, которые изображены с использованием специальных традиционных графических и буквенно-цифровых обозначений, называется схематической диаграммой.Принципиальная схема чаще всего изображается в виде одной линии.

Однолинейная схема — это схема, на которой все фазные провода отображаются только одной линией, а нейтральный провод не отображается, а защитные устройства и нагрузки показаны схематично без указания схемы их подключения.

На схеме подключения все обозначения нанесены на план квартиры, который изображен в масштабе. На схеме подключения должно быть указано точное прохождение всех линий, расположение квартирного щита, выключателей, распределительных коробок, освещения и розеток.

Условные обозначения, используемые на электросхемах квартиры

Для правильного составления электросхемы необходимо знать обозначения различных элементов. Все эти обозначения стандартизированы ГОСТами и называются условными графическими обозначениями.

Вот два ГОСТа, которые стоит изучить перед составлением схемы подключения: ГОСТ 2.710-81 «Буквенно-цифровые обозначения в электрических схемах» и ГОСТ 21.614-88 «Условные графические изображения электрооборудования и электропроводки на схемах.«

Обозначения, используемые в принципиальных схемах

Выключатель автоматический или автоматический (ГОСТ 2.755-87). Обозначается буквами QF.

УЗО, дифавтомат. Обозначается буквами QF.

Счетчик электроэнергии активной мощности (ГОСТ 2.729-68). Обозначается буквами PI.

Щит силовой (ГОСТ21.614-88).

Лампа накаливания (ГОСТ 2.732-68). Обозначается буквами EL.

Обозначения, используемые на схемах подключения

Все данные об этих обозначениях можно найти в ГОСТ 21.614-88.

Розетка для накладного монтажа с защитным контактом.

Розетка для скрытого монтажа с защитным контактом.

Примеры схем подключения в квартире

Первая из предложенных схем является простейшей однолинейной схемой для однокомнатной или двухкомнатной квартиры. Квартира запитана от одной фазы через доску пола. Кроме того, в квартиру подведено защитное и рабочее заземление из доски пола. После этого есть двухполюсный автоматический выключатель на входе, который отключает ноль и фазу.По правилам (п. 1.5.36 ПУЭ) автомат должен быть установлен перед счетчиком электроэнергии — «Чтобы можно было безопасно установить и при необходимости заменить счетчики в сетях с напряжением до 380 В, он необходимо предусмотреть возможность отключения счетчика от использования предохранителей или коммутационных устройств, установленных перед ним на расстоянии не более 10 метров. Должна быть предусмотрена возможность снятия напряжения со всех фаз, подключенных к счетчику. «

За счетчиком должна быть установлена ​​шина, к которой подключаются осветительные машины и печи, а также розетки через дифавтомат (УЗО).

Вторая схема несколько более сложная и предназначена для двух- и трехкомнатных квартир. Эта схема отличается тем, что розетки запитываются через два двухполюсных дифавтомата (УЗО). Это создает отдельную линию электропередачи для комнат и отдельную линию для кухни, туалета, коридора и ванной комнаты. На этой схеме электроплита запитывается через двухполюсный дифавтомат (УЗО). Это не обязательно, но желательно, так как это повысит безопасность от так называемого косвенного стресса.

Выше приведена схема, которая сделана с обозначением рабочего и защитного заземления. Эта диаграмма представляет собой более подробную версию предыдущей диаграммы.

postroy-sam.com

Электросхема в квартире | Все для вашего дома

Первым делом при смене электропроводки в квартире является составление схемы. Чтобы составить схему, необходимо ознакомиться с тем, как на схеме отображаются основные элементы. Также в этой статье будет несколько типовых схем электропроводки в квартире.

Виды схем электропроводки в квартире

При самостоятельной замене электропроводки в квартире потребуются схемы двух типов: принципиальная и схема электропроводки.

Принципиальная схема — на этой схеме показаны основные электрические соединения между элементами, ферментированными с использованием специальных буквенно-цифровых и условных графических символов (UGO). Обычно принципиальная схема изображается в виде одной линии.

Однолинейная схема — это схема, на которой фазные провода показаны одной линией, нейтральный провод не отображается, а нагрузки и защитные устройства показаны схематично без схемы их подключения.

Схема электропроводки — на такой схеме все обозначения нанесены на план квартиры, который в свою очередь выполнен в масштабе. Обычно на схеме подключения показано точное размещение квартирного щита, распределительных коробок, выключателей, розеток, освещения и прохождение всех линий.

Условные обозначения на схемах электропроводки квартиры

Чтобы правильно составить схему, нужно знать, как обозначаются различные элементы. Эти обозначения называются условными графическими обозначениями (УГО) и стандартизированы ГОСТами.

Один из них — ГОСТ 21.614-88 «Условные графические изображения электрооборудования и электропроводки на схемах». Также стоит изучить ГОСТ 2.710-81 «Буквенно-цифровые обозначения в электрических схемах».

Ниже представлены УГО основных элементов, которые вам понадобятся при составлении схемы электропроводки в квартире.

Обозначения, используемые в принципиальных схемах

Выключатель автоматический автомат (ГОСТ 2.755-87). Буквенное обозначение — QF.

Дифавтомат, УЗО.Буквенное обозначение — QF.

Счетчик электрической активной мощности (ГОСТ 2.729-68). Буквенное обозначение — ПИ.

Щит силовой (ГОСТ 21.614-88).

Лампа накаливания (ГОСТ 2.732-68). Буквенное обозначение — EL.

Обозначения на принципиальных схемах

Все обозначения взяты из ГОСТ 21.614-88.

Распределительная коробка, коробка осветительная.

Переключатель счета.

Выключатель для скрытого монтажа.

Розетка для накладного монтажа с защитным контактом.

Розетка для скрытого монтажа с защитным контактом.

Пример типовых схем квартирной разводки

Первая из представленных схем — простейшая однолинейная схема для одно- или двухкомнатной квартиры. Электроснабжение осуществляется через напольный щит от одной фазы, а также рабочее и защитное заземление от напольного щита в квартиру. Затем следует вводный двухполюсный автоматический выключатель, отключающий фазу и ноль. Перед щеткой электроэнергию устанавливают вводную машину в соответствии с п.1.5.36. ПУЭ, в котором написано:

«Для безопасной установки и замены счетчиков в сетях напряжением до 380 В должна быть предусмотрена возможность отключения счетчика с помощью коммутационного устройства или предохранителей, установленных на расстоянии не более 10 м. Сброс напряжения должен обеспечиваться на всех фазах, подключенных к счетчику. «

За счетчиком находится шина, к которой подключаются печка и осветительные приборы, а также розетки через УЗО (дифавтомат).

Следующая схема немного сложнее и больше подходит для двоих — и трехкомнатные квартиры.Эта схема отличается тем, что розетки запитываются через два двухполюсных УЗО (дифавтоматов), обеспечивая тем самым отдельную линию питания для комнат и отдельную для ванной, туалета, кухни и коридора. Электроплита на этой схеме питается от двухполюсного УЗО (дифавтомата), это не обязательно, но все же желательно, чтобы обеспечить повышенную безопасность от попадания косвенного напряжения.

В этой статье вы найдете 15 схем установки УЗО (устройства защитного отключения).При проектировании электропроводки УЗО располагаются в зонах защиты электрических цепей потребителей, с наибольшей вероятностью попадания на них малых токов. Эти условия распространяются на всю контактирующую с водой бытовую технику, находящуюся во влажных и сырых помещениях, а также в детских комнатах для повышения безопасности.

При проектировании (установке) УЗО учитывается степень опасности, и в различных схемах количество УЗО, равное планируемому помещению, может варьироваться.От наиболее опасных с точки зрения поражения электрическим током бытовая техника защищена УЗО отдельно.

В каких цепях установлено УЗО

По своему основному назначению УЗО защищает человека от малых токов, короткого замыкания фазных проводов на токопроводящие приборные корпуса. Второе назначение УЗО — косвенный контроль состояния проводки и плотности жил проводов. Это позволяет использовать его в качестве защитного средства от пожаров.

15 схем установки УЗО, устройств защитного отключения

Для начала разберемся, как обозначены УЗО на принципиальных схемах.УЗО и дифференциальные автоматические выключатели обозначаются следующим образом.

Буквенно-цифровое обозначение УЗО, согласно, выглядит так.

УЗО и групповые цепи

Согласно нормам УЗО размещают в групповых цепях (функциональных группах) розеток, осветительного, силового оборудования, а также в электрических цепях одиночных установок (устройств).

Схема 3, подключение УЗО 380 В, 11 кВт

На этой схеме УЗО подключаются к электрической сети на 380 В и с расчетной нагрузкой до 11 кВт.Это может быть частный дом или квартира. По схеме УЗО общего противопожарного (25 А / 100 мА) устанавливается вместе со счетчиком в УЭРМ (Многоярусное распределительное устройство — современный этажный щит). Электрическая сеть помещения разделена на 5 групп, три из которых защищены УЗО на 16 А / 30 мА, а цепь ванной комнаты — УЗО на 25 А / 10 мА.

Схема 4, 8 групповых цепей

На схеме 4 УЗО подключаются к электрической сети 380 Вольт, и с расчетной нагрузкой до 11 кВт.В этой схеме предусмотрено 8 групповых цепей, 6 из которых защищены УЗО. (4 узо 16 А / 30 мА и 1 узо 25 А / 10 мА)

Примечание. Согласно нормам УЗО устанавливают в распределительных щитах, квартирных щитах и ​​других электрошкафах. Открытая установка УЗО запрещена.

Схема 5, подключение УЗО в частном доме

Установка УЗО в частном доме с. Напряжение питания 220 Вольт.

На вводе силового кабеля в ЩКВ (встроенный квартирный щит со стеклом) вместе со счетчиком устанавливается противопожарное УЗО (32А / 100мА).Вполне возможно, что щит ЩКВ может быть заменен щитом ЩКН (настенным квартирным щитом) или щитом ЩВУ (вводно-учетным щитом).

Схема электрических соединений для большой квартиры или дома. Перед счетчиком установлено вводное защитное устройство, вопрос — зачем? Если речь идет об установке УЗО как такового, то такая установка УЗО перед счетчиком некорректна. Перед счетчиком можно установить защитное устройство, если это дифференциальный выключатель, но здесь уже есть выключатель.

Примечание. Номинал УЗО, установленного после автоматического выключателя, должен иметь номинал на одну ступень больше, чем номинал автоматического выключателя.

Схема 7, УЗО в сети ТН-с

Устройство защитного отключения в квартире, без устройства противопожарной защиты, в сети ТН-с.

Примечание: Тип сети TN-S предполагает разделение нейтрального проводника (N) и защитного провода (PE).

Если рассматривать данную схему как схему только квартиры, то вполне допустимо, чтобы провод PEN был разделен на проводники PE и N в плате пола, а сама сеть была типа: tn-c-s.

Схемы 9 и 10, правильное и неправильное подключение ouzo

Это простые схемы правильного и неправильного подключения УЗО. Стоит обратить внимание на неправильное подключение УЗО.

Примечание: К сожалению, на принципиальных схемах не показаны особенности подключения нескольких узо для разных групповых схем. Здесь важно, что для каждой группы, на которую устанавливается УЗО, нужно установить свою независимую шину заземления и подключать розетки этой группы только к этой шине.

На схеме 10

  • (1) это соединение дифференциальной машины,
  • (2) и (3) соединение УЗО с автоматическими выключателями.

Схема 11 и Схема 12, узо на принципиальных схемах

Простые принципиальные схемы, 220 вольт. Прекрасно и правильно показывают подключение УЗО в сборке: вводный автоматический прибор учета-учета-УЗО пожаротушения.

Схема 13, Схема подключения коммунальной квартиры

Схема подключения коммунальной квартиры.УЗО пожаротушения (50А / 100мА) в панели пола и общее УЗО в квартирной панели (40А / 30мА). Название говорит само за себя, схема экономичная.

Схема 14, Схема подключения минимальной квартиры

В одной из наших статей мы уже рассказывали об УЗО, о назначении и о его подключении.«Схемы подключения УЗО, виды, принцип работы» В этой статье мы затронем тему маркировки УЗО. Именно по маркировке можно определить правильный выбор УЗО.

Маркировка УЗО

Каждое устройство защитного отключения (УЗО) должно иметь постоянную маркировку, которая включает следующие данные:

1. Название или торговая марка производителя.
2. Обозначение типа УЗО и УЗО, каталожный или серийный номер.
3. Одно или несколько значений номинального напряжения Un ВДТ и АВДТ.
4.Номинальный ток In для УЗО. Для АВДТ укажите номинальный ток In в амперах без указания единиц измерения, с предшествующим обозначением типа мгновенного расцепителя (B, C или D). Например, B16: тип расцепителя мгновенного действия — B, номинальный ток — 16А.
5. Номинальная частота, если ВДТ рассчитан на частоту, отличную от 50 и / или 60 Гц, а АВДТ рассчитан на работу только на одной частоте.
6.Номинальный отключающий дифференциальный ток I∆n ВДТ и АВДТ.
7. Значения дифференциального тока отключения, если ВДТ и АВДТ имеют несколько таких значений.
8. Номинальная включающая и отключающая способность Im 1 VDT.
9. Номинальная отключающая способность при коротком замыкании Icn АВДТ в амперах.
10.Номинальная дифференциальная включающая и отключающая способность I∆m, если она отличается от номинальной включающей и отключающей способности ВДТ. Номинальная включающая и отключающая способность IΔm, если она отличается от номинальной отключающей способности АВДТ при коротком замыкании.
11. Степень защиты, если она отличается от IP20.
12. Рабочее положение, если необходимо.
13 Символ для ВДТ и АВДТ типа S.
14. Указание на то, что ВДТ и АВДТ функционально зависят от напряжения, если применимо.
15. Обозначение органа управления устройства управления VDT и RCBO буквой «Т».
16. Схема подключения ВДТ и АВДТ.
17.Рабочая характеристика при наличии дифференциальных токов с постоянными составляющими: ◦VDT и RCBO типа AC обозначены символом; ~
◦VDT и АВДТ типа A обозначены символом.~ —

18. Контрольная температура калибровки АВДТ, если она отличается от 30 ° C.

Маркировка должна быть четко видна после установки ВДТ и АВДТ. Если размеры устройств не позволяют уместить всю перечисленную информацию, то данные, указанные в пунктах 4, 6 и 151 для VDT и в пунктах 4, 6 и 13 для АВДТ, должны быть видны после установки. Характеристики указаны в пп. 1-3, 10, 12 и 16 для ВДТ, в пп. 1-3, 9 и 16 для АВДТ могут наноситься на боковые и задние поверхности устройств и быть видимыми только до их установки в низковольтное распределительное устройство.Остальная информация должна быть приведена в эксплуатационной документации на изделие или в каталогах производителя.

Раздел 6 «Маркировка и другая информация о продукте» ГОСТ Р 51326.1 и соответствующий шестой раздел IEC 61008-1 не требуют маркировки продукта или иного представления следующих характеристик ВДТ:

Номинальный условный ток короткого замыкания Inc;
номинальный условный остаточный ток короткого замыкания I∆c.

Для устройства защитного отключения, помимо маркировки, указанной в пп.1–3, 5–7, 10–13 и 15 укажите значение максимального номинального тока автоматического выключателя, с которым может быть собран UDT, например — «63 A max», а также специальный символ:

После сборки УЗО с автоматическим выключателем данные, приведенные в пп. 3 и 11, а также значение максимального номинального тока выключателя, с которым можно собрать УЗО. Устройства защитного отключения и автоматические выключатели, предназначенные для сборки, должны иметь одно и то же название или товарный знак производителя.Изготовитель должен предоставить приемлемые для ВДТ значения характеристики I2t и пикового тока Ip. В противном случае применяются минимальные значения, приведенные в таблице 15 ГОСТ Р 51236.1. В каталоге или эксплуатационной документации на изделие производитель также должен указать информацию хотя бы об одном устройстве защиты от короткого замыкания, подходящем для защиты ВДТ. Разомкнутое (отключенное) положение устройства защитного отключения, управляемого перемещаемым вверх и вниз (вперед и назад) управляющим элементом, должно обозначаться знаком О (кружок), его замкнутое (включенное) положение — знаком I (вертикальное бар).Эти обозначения должны быть хорошо видны после установки УЗО. Допускаются также дополнительные символы для обозначения включенного и выключенного положения УЗО. Если необходимо различать входные и выходные клеммы, они должны быть четко обозначены, например, словами «линия» и «нагрузка», расположенными рядом с соответствующими клеммами, или стрелками, указывающими направление потока электроэнергии.
Клеммы устройства защитного отключения, предназначенные только для подключения нейтрального проводника, должны быть помечены буквой N.
Клеммы устройства защитного отключения, которые используются исключительно для подключения защитного провода, помечены символом заземления:

В статье использованы материалы из «Книг модульных защитных средств производства ABB

».

УЗО с маркировкой ABB

Электротехника не может существовать без сопутствующих специальных схем и проектов. Поэтому для специалиста очень важно уметь их правильно читать и использовать именно по назначению.Во многих случаях все элементы, включая обозначение УЗО на однолинейной схеме, выполняются достаточно условно, чтобы можно было наглядно представить полную картину всего графического проекта. Как правило, условное изображение УЗО напоминает обычный выключатель с символическим изображением полюсов, проводов и других деталей. хорошо разбирается в таких схемах, уверенно их читает и не ошибается при работе.

УЗО на однолинейной схеме

Перед выполнением каких-либо практических действий каждый электрик должен предварительно ознакомиться с проектной документацией, разработанной для объекта.Его можно составить самостоятельно или заказать в специализированной организации. Поэтому нередки случаи, когда графические изображения тех или иных элементов отличаются друг от друга. Это относится ко многим элементам, включая устройства защитного отключения. В связи с этим нужно знать, как на схеме указывается УЗО в различных вариантах исполнения.

Прежде всего, необходимо заранее изучить общепринятые правила и маркировку оборудования и других элементов, представленных на электрических чертежах и т. Д.Некоторые электрики считают, что им не нужны все эти знания, поскольку большая часть информации может оказаться бесполезной на практике. Однако такое рассуждение совершенно неверно.

Каждый уважающий свою профессию электротехник должен владеть не только считыванием электрических цепей, но и основными графическими изображениями различных средств связи, защитных устройств, приборов учета, розеток, выключателей, ламп и других элементов. Такие знания — хорошее подспорье в практической работе.

Основные виды маркировки, в том числе обозначение УЗО на схеме, постоянно используются электриками при выполнении практических работ. Предварительное планирование и рабочие диаграммы требуют внимательности и внимательности, так как даже небольшая неточность или неправильно нанесенная иконка может стать причиной серьезных ошибок в будущем.

Неправильные данные могут быть неверно истолкованы сторонними специалистами, выполняющими электромонтажные работы. По этой причине при прокладке электрических сетей часто возникают серьезные трудности.

Обозначение

УЗО на схеме по ГОСТ

Все устройства защитного отключения применяются в цепях с использованием графических и буквенных изображений. Эта символика определена нормативными документами: ГОСТ 2.755-87 ЕСКД «Графика в электрических схемах. Коммутационные аппараты и контактные соединения ». Маркировка определяется в соответствии с ГОСТ 2.710-81 ЕСКД« Обозначения буквенно-цифровые в электрических цепях ».

Однако в целом эти документы не дают полной информации о том, каким именно должно быть обозначение УЗО на однолинейной схеме.То есть особых требований в данном случае нет. Поэтому многие электрики маркируют некоторые компоненты и устройства собственными разработанными значениями и этикетками, незначительно отличающимися от обычных стандартных обозначений.

Иногда за основу берут символы, нанесенные на корпусе защитного устройства. Следовательно. Исходя из назначения УЗО, это устройство по электрическим цепям разделено на два компонента — переключатель и датчик, который реагирует на дифференциальный ток и активирует механизм размыкания контактов.

Ни один человек, каким бы талантливым и сообразительным он ни был, не сможет научиться понимать электрические чертежи, не ознакомившись предварительно с символами, которые используются при электромонтаже почти на каждом этапе. Опытные специалисты утверждают, что только электрик, досконально изучивший и усвоивший все общепринятые обозначения, используемые в конструкторской документации, может иметь шанс стать настоящим профессионалом своего дела.

Приветствую всех друзей на сайте «Электрик в доме». Сегодня хотелось бы обратить внимание на один из исходных вопросов, с которым сталкиваются все электрики перед установкой — это проектная документация объекта.

Кто-то делает сам, кто-то предоставляет заказчик. Среди большого количества этой документации вы можете найти примеры, в которых есть различия между соглашениями определенными элементами. Например, в разных проектах одно и то же коммутационное устройство может отображаться графически по-разному.Вы видели это?

Понятно, что обсудить обозначение всех элементов в рамках одной статьи невозможно, поэтому тема этого урока будет сужена, и сегодня мы обсудим и рассмотрим, как это делается.

Каждый начинающий мастер обязан внимательно ознакомиться с общепринятыми ГОСТами и правилами маркировки электрических элементов и оборудования на планах и чертежах. Многие пользователи могут со мной не согласиться, аргументируя это тем, что зачем мне знать ГОСТ, я просто устанавливаю розетки и выключатели в квартирах.Схемы должны быть известны инженерам-конструкторам и профессорам университетов.

Уверяю вас, что это не так. Любой уважающий себя специалист должен не только понимать и уметь читать электрические схемы , но и должен знать, как на схемах графически отображаются различные устройства связи, защитные устройства, приборы учета, розетки и выключатели. В общем, активно применяйте проектную документацию в своей повседневной работе.

Обозначение узо на однолинейной схеме

Основные группы обозначений УЗО (графические и буквенные) очень часто используются электриками.Работа по составлению рабочих схем, графиков и планов требует очень большой внимательности и аккуратности, так как единичное неточное указание или отметка может привести к серьезной ошибке в дальнейшей работе и вызвать повреждение дорогостоящего оборудования.

Кроме того, неверные данные могут ввести в заблуждение сторонних специалистов, занимающихся электромонтажом, и вызвать трудности при установке электрических коммуникаций.

В настоящее время любое обозначение узо на схеме может быть представлено двумя способами: графическим и буквенным.

На какие нормативные документы следует ссылаться?

Из основных документов на электрические схемы, относящиеся к графическому и буквенному обозначению коммутационных аппаратов, можно выделить следующие:

  1. — ГОСТ 2.755-87 ЕСКД «Условные графические обозначения в электрических схемах устройства, коммутационные и контактные соединения»;
  2. — ГОСТ 2.710-81 ЕСКД «Буквенно-цифровые обозначения в электрических схемах».

Графическое обозначение УЗО на схеме

Итак, выше я представил основные документы, которыми регламентируются обозначения в электрических схемах.Что дают нам эти ГОСТы для изучения нашего вопроса? Стыдно признаться, но абсолютно ничего. Дело в том, что сегодня в этих документах нет информации о том, как должно выполняться обозначение узо на однолинейной схеме.

В действующем ГОСТе никаких особых требований к правилам составления и использования графических символов УЗО не выдвигает. Именно поэтому некоторые электрики предпочитают использовать собственные наборы значений и меток для обозначения определенных узлов и устройств, каждое из которых может незначительно отличаться от значений, к которым мы привыкли.

Для примера давайте разберемся, какие обозначения нанесены на корпус самих устройств. Устройство защитного отключения Hager:

Или, например, УЗО от Schneider Electric:

Во избежание недоразумений предлагаю вам совместно разработать универсальный вариант обозначений УЗО, которому можно следовать практически в любой рабочей ситуации.

По своему функциональному назначению устройство защитного отключения можно описать следующим образом — это выключатель, который при нормальной работе может включать / выключать свои контакты и автоматически размыкать контакты при появлении тока утечки.Ток утечки — это дифференциальный ток, возникающий при неисправности электроустановки. Какой орган реагирует на дифференциальный ток? Специальный датчик — трансформатор тока нулевой последовательности.

Если представить все вышеперечисленное в графическом виде, то окажется, что символ УЗО на схеме можно представить в виде двух вторичных обозначений — переключателя и датчика, реагирующего на дифференциальный ток (трансформатор тока нулевой последовательности. ), который действует на механизм размыкания контактов.

В данном случае графическое обозначение узо на однолинейной схеме будет выглядеть так.

Как на схеме обозначен дифавтомат?

Около символов для дифавтоматов по ГОСТ на данный момент данных нет. Но, исходя из вышеприведенной схемы, дифавтомат также можно графически представить в виде двух элементов — УЗО и автоматического выключателя. В этом случае графическое обозначение дифавтомата на схеме будет выглядеть так.

Обозначение узо на электрических схемах

Любому элементу на электрических схемах присваивается не только графическое обозначение, но и буквенное обозначение с указанием номера позиции. Такой стандарт регламентируется ГОСТ 2.710-81 «Буквенно-цифровые обозначения в электрических цепях» и является обязательным для применения ко всем элементам электрических цепей.

Так, например, согласно ГОСТ 2.710-81, выключатели принято обозначать специальным буквенно-цифровым условным обозначением таким образом: QF1, QF2, QF3 и т. Д.Выключатели (разъединители) обозначены как QS1, QS2, QS3 и т. Д. Предохранители на схемах обозначены как FU с соответствующим серийным номером.

Аналогично, как и с графическими обозначениями, в ГОСТ 2.710-81 нет конкретных данных о том, как выполнять буквенно-цифровое обозначение УЗО и дифференциальных машин на схемах .

Что делать в этом случае? При этом многие мастера используют два варианта обозначений.

Первый вариант — использовать наиболее удобные буквенно-цифровые обозначения Q1 (для УЗО) и QF1 (для АВДТ), которые обозначают функции переключателей и указывают серийный номер аппарата, находящегося на схеме.

То есть кодировка буквы Q означает «переключатель или переключатель в силовых цепях», что вполне может быть применимо к обозначению УЗО.

Кодовая комбинация QF расшифровывается как Q — «переключатель в силовых цепях», F — «защитный», что вполне может быть применимо не только к обычным машинам, но и к дифференциальным машинам.

Второй вариант — использовать буквенно-цифровую комбинацию Q1D для УЗО и комбинацию QF1D для дифференциальной машины.Согласно приложению 2 к таблице 1 ГОСТ 2.710, функциональное значение буквы D означает «дифференцирующий».

Очень часто встречал на реальных схемах такое обозначение QD1 — для устройств защитного отключения, QFD1 — для дифференциальных выключателей.

Какие выводы можно сделать из вышеизложенного?

electricvdome.ru

Основное назначение однолинейной схемы — графическое отображение системы электроснабжения (электроснабжение объекта, распределение электроэнергии в квартире и т. Д.)). Проще говоря, однолинейная схема изображает силовую часть электроустановки. Название подсказывает, что однолинейная схема выполнена в виде одной линии. Те. Электроснабжение (как однофазное, так и трехфазное), подаваемое на каждого потребителя, указывается одной линией.


Для обозначения количества фаз на графической линии используются специальные засечки. Одна метка указывает, что источник питания однофазный, три метки указывают, что питание трехфазное.

Кроме однострочного, используются обозначения защитных и коммутационных аппаратов. К первым устройствам относятся высоковольтные выключатели (масляные, воздушные, SF6, вакуумные), автоматические выключатели, устройства защитного отключения, дифференциальные выключатели, предохранители, выключатели нагрузки. Ко второму относятся разъединители, контакторы, магнитные пускатели.

Высоковольтные выключатели на однолинейных схемах изображены в виде маленьких квадратов. Что касается автоматических выключателей, УЗО, дифференциальных выключателей, контакторов, пускателей и другого защитного и коммутационного оборудования, то они изображены в виде контактов и некоторых пояснительных графических дополнений в зависимости от устройства.

Электросхема (схема подключения, подключение, расположение) используется для непосредственного производства электромонтажных работ. Те. это рабочие чертежи, по которым выполняется монтаж и подключение электрооборудования. Также отдельные электрические устройства (электрические шкафы, электрические щиты, пульты управления и т. Д.) Собираются по электросхемам.


На электрических схемах показаны все электрические соединения как между отдельными устройствами (автоматические выключатели, пускатели и т. Д.).), а также между различными типами электрооборудования (электрические шкафы, щиты и т. д.). Для правильного выполнения соединений электропроводки на схеме электропроводки показаны электрические клеммные колодки, выводы электрических устройств, марка и сечение электрических кабелей, нумерация и буквенное обозначение отдельных проводов.

Принципиальная электрическая схема — наиболее полная схема со всеми электрическими элементами, соединениями, буквенными обозначениями, техническими характеристиками аппаратов и оборудования.По принципиальной схеме выполняются другие электрические схемы (монтажные, однолинейные, схемы расположения оборудования и т. Д.). На принципиальной схеме показаны как цепи управления, так и силовая часть.


Цепи управления (рабочие цепи) — это кнопки, предохранители, катушки пускателя или контактора, контакты промежуточных и других реле, контакты пускателей и контакторов, реле контроля фазы (напряжения), а также соединения между этими и другими элементами.

В силовой части представлены выключатели, силовые контакты пускателей и контакторов, электродвигатели и т. Д.

Помимо самого графического изображения, каждый элемент схемы снабжен буквенно-цифровым обозначением. Например, автоматический выключатель в силовой цепи обозначается QF. Если машин несколько, каждой присваивается свой номер: QF1, QF2, QF3, и т. Д. Катушка (обмотка) пускателя и контактора обозначается КМ. Если их несколько, то нумерация аналогична нумерации машин: КМ1, КМ2, КМ3 и т. Д.

В каждой принципиальной схеме, если есть какое-либо реле, то обязательно используется хотя бы один блокирующий контакт этого реле.Если в цепи присутствует промежуточное реле KL1, два контакта которого используются в рабочих цепях, то каждому контакту присваивается свой номер. Номер всегда начинается с номера самого реле, а затем идет серийный номер контакта. В этом случае мы получаем KL1.1 и KL1.2. Обозначения вспомогательных контактов других реле, пускателей, контакторов, автоматов и др. Выполняются аналогично.

В принципиальных электрических схемах, помимо электрических элементов, очень часто используются электронные обозначения.Это резисторы, конденсаторы, диоды, светодиоды, транзисторы, тиристоры и другие элементы. Каждый электронный элемент на схеме также имеет свое буквенное и цифровое обозначение. Например, резистор R (R1, R2, R3 …). Конденсатор — C (C1, C2, C3 …) и так далее для каждого элемента.

На некоторых электрических элементах, помимо графических и буквенно-цифровых обозначений, указаны технические характеристики. Например, для автоматического выключателя это номинальный ток в амперах, ток отключения также в амперах.Для электродвигателя мощность указывается в киловаттах.

Для правильного и правильного составления электрических схем любого вида необходимо знать обозначения используемых элементов, ГОСТы, правила оформления документации.

aquagroup.ru

Вернуться в раздел: УЗО и дифференциальная защита Электрик

В данной статье рассмотрено несколько примеров подключения УЗО и Дифференциальных автоматов.

Главное условие выбора УЗО и дифференциала. машина должна соблюдать избирательность (ПУЭ РАЗДЕЛ 3 ):

В электротехнике под селективностью понимается совместная работа последовательно соединенных устройств для защиты электрических цепей (автоматические выключатели, УЗО, дифференциальные автоматические устройства и т. Д.) В случае возникновения аварийной ситуации. На рис. 1 приведен пример работы такой схемы с учетом суммарных выключателей 40 А (4 шт.По 10А), вводный автомат 63А.

Селективность используется при выборе номинала устройств защиты для отключения от общей энергосистемы только той ее части, где произошла авария. Это достигается отключением только автоматического выключателя, защищающего линию аварийного питания.

Как правило, для избирательного срабатывания автоматических выключателей в случае перегрузок номинальный ток (In) автоматического выключателя на стороне питания должен быть больше, чем In автоматического выключателя на стороне потребителя.

Условное обозначение УЗО и дифавтомата на электрических цепях:

Обозначение УЗО на принципиальных электрических схемах см. Рис. 2. Слева — однофазное УЗО с током отключения 30 мА, справа — трехфазное УЗО 100 мА. Увеличенное изображение вверху, однострочное внизу. Количество полюсов в однолинейном представлении может быть представлено как числом (вверху), так и количеством тире. Условные обозначения Дифавтомата на принципиальных схемах, см. Рис.3 и в однолинейных схемах на рис. 4. Буквенное обозначение QF.

Рисунок: четыре
Рисунок: 3

Цепи переключения УЗО:

По конструкции УЗО разных производителей могут отличаться друг от друга не только параметрами, но и схемами подключения. На рис. 5 показаны наиболее распространенные схемы включения УЗО в различных исполнениях:

Двухполюсные УЗО Рис. 5 (а).

Четырехполюсные УЗО, в которых к фазному напряжению подключен резистор, имитирующий дифференциальный ток (рис.5 (б).

Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен к линейному напряжению (рис. 5 (c).

При включении УЗО (дифавтомата) в любом случае смотрите схему, схема подключения указана на лицевой или боковой поверхности корпуса УЗО, а также в паспорте технического устройства.

Ниже приведены схемы подключения УЗО (рис. 6) и дифавтомата (рис. 7).

  1. Вводная машина.
  2. Прибор учета (электросчетчик).
  3. УЗО или дифавтомат.
  4. Выключатель автоматический (освещение, обычно 6 ÷ 10 А, в зависимости от нагрузки светильников).
  5. Автоматический выключатель (розетки, обычно 16 ÷ 25 А, в зависимости от группы розеток).
  6. Выключатель автоматический (розетка, 16 ÷ 25 А, в зависимости от нагрузки электроплиты).
  7. Нулевой рабочий Н — шина.
  8. Нулевой защитный PE — шина.

Подробнее о заземлении см. В разделе

Вернуться в раздел: УЗО и дифференциальная защита Электрик

энергетик.com.ru

Рабочий ток и частота вращения

Конструктивные особенности дифавтоматов являются причиной того, что они имеют комбинированные характеристики, используемые для описания работы как АВ, так и УЗО. Основная рабочая характеристика этих электрических изделий — это номинальный рабочий ток, при котором устройство может оставаться включенным в течение длительного времени.

Данная характеристика устройства относится к строго стандартизированным показателям, в результате чего ток может принимать значения только из определенного диапазона (6, 10, 16, 25, 50 Ампер и так далее).

Кроме того, в обозначении устройств используется индикатор тока, зависящий от скорости, который обозначается цифрами «B», «C» или «D» перед значением номинального тока.

Скорость — важная токовая и временная характеристика. Обозначение C16, например, соответствует дифавтомату с синхронизацией «C», рассчитанному на номинальное значение 16 Ампер.

Ток и напряжение отключения

В группу технических характеристик дифавтомата входит ток отключения (дифференциальный индикатор), который определяется как «уставка утечки тока».Для большинства моделей допустимые значения этой характеристики находятся в следующем диапазоне: 10, 30, 100, 300 и 500 миллиампер. На корпусе дифавтомата он обозначен значком «дельта» с номером, соответствующим току утечки.

Еще одной характеристикой эксплуатационных возможностей дифавтоматов является номинальное напряжение, при котором они способны работать длительное время (220 Вольт для однофазной сети и 380 Вольт для трехфазных цепей).Величина рабочего напряжения защитного дифференциального устройства может указываться под обозначением номинала буквой или под ключом переключателя.

Ток утечки и селективность

Следующая характеристика, по которой различаются все дифавтоматы, — это тип тока утечки. В соответствии с этим параметром любой из дифавтоматов может иметь следующие обозначения:

  • «А» — переменный синусоидальный ток (постоянный пульсирующий), реагирующий на утечку;
  • «АС» — дифавтоматы, предназначенные для работы от протечек, содержащие постоянную составляющую;
  • «В» — комбинированный вариант, предполагающий обе вышеперечисленные возможности.

Признак «тип встроенного УЗО» обозначается буквенным индексом или маленькой цифрой.

По аналогии с УЗО, дифавтоматы могут работать по избирательному принципу, предполагающему задержку во времени срабатывания. Такая возможность обеспечивает определенную избирательность отключения устройства от сети и электродинамическую устойчивость системы защиты. В соответствии с этой характеристикой дифференциальные устройства обозначаются буквой «S», что означает задержка порядка 200-300 миллисекунд, или буквой «G» (60-80 миллисекунд).

Основные обозначения

Рассмотрим подробнее порядок маркировки дифавтомата (расположение его характеристик) на примере отечественного изделия марки АВДТ32, применяемого в схемах защиты промышленных и бытовых электрических сетей.

Для удобства систематизации представленной информации графическое обозначение будет означать определенную позицию маркировки.

Первая позиция указывает наименование и серию дифавтомата.Из этого обозначения следует, что это AV дифференциального типа со встроенной защитой от опасных токов утечки. Дифавтомат предназначен для использования в однофазных электрических сетях переменного тока с номинальным напряжением 230 В (50 Гц).

В месте, соответствующем позиции № 3 (верх), указывается такая характеристика, как значение номинального остаточного тока короткого замыкания.

Примечание! Иногда в этом месте можно увидеть значение предельной коммутационной способности устройства с указанием значения максимального тока, при котором дифавтомат может быть повторно выключен.

На том же месте, но ниже графическое обозначение типа встроенной машины (в данном случае это тип «А», предназначенный для работы с пульсирующими утечками постоянного и синусоидального переменного тока).

На месте 4-й позиции видна модульная схема дифавтомата, на которой указаны входящие в него элементы, участвующие в реализации защитных функций. Для RCBO32 на этой схеме условными обозначениями обозначены следующие модули и блоки:

  • расцепители электромагнитные и тепловые, обеспечивающие защиту линий от токов короткого замыкания и перегрузки соответственно;
  • специальная кнопка «Тест», необходимая для ручной проверки исправности станка;
  • Усилительный электронный модуль
  • ;
  • исполнительный блок (коммутационное реле линии).

В позиции номер семь на первом месте находится скоростная характеристика аварийного срабатывания электромагнитного расцепителя (для нашего примера это «C»). Сразу за ним следует номинальный ток, означающий значение этого параметра в эксплуатации (длительное время).

Минимальный ток отключения (срабатывания) электромагнитного расцепителя для дифавтомата с характеристикой «С» обычно принимается примерно равным пяти номинальным токам.При этом значении токовой характеристики тепловой расцепитель срабатывает примерно через 1,5 секунды.

В восьмой позиции обычно стоит символ «дельта» с указанием номинального тока утечки, отключающий дифференциальное устройство в случае опасности. Это все основные электрические характеристики.

Знаки информационные

Пятая позиция показывает температурную характеристику защитного устройства (от — 25 до + 40 градусов), а шестая — сразу два знака.
Один из них информирует пользователя о наличии сертификата соответствия, то есть указывает действующий отечественный ГОСТ на дифавтомат (ГОСТ Р129 — в данном случае).

Непосредственно под ним находится характеристика, закодированная в виде букв и цифр. Это наименование организации, выдавшей сертификат.

Важно! Этот знак информирует потребителя о законности происхождения товара и его качестве и при необходимости обеспечивает правовую защиту устройства.

Справа — данные о сертификации и ГОСТ данной модели в части ее пожарной безопасности.

И, наконец, в месте, соответствующем второй позиции, наносится логотип торговой марки производителя (в данном случае IEK).

Размеры и точки подключения

Основными габаритными характеристиками дифавтомата по ГОСТу являются его высота, ширина и толщина, а также высота и ширина полки с выступающей с лицевой стороны клавишей управления.Кроме того, указаны размеры полок, расположенных на тыльной стороне, ограничивающие зазор для установки устройства на фиксирующую DIN-рейку.

Современные модели дифавтоматов могут иметь тот или иной размер, каждый из которых можно найти в документации, прилагаемой к данному изделию. Но в большинстве случаев общие характеристики схожи, что упрощает размещение на приборной панели.

Касательно точек контакта для подключения этого устройства к защищаемой цепи, следует отметить следующее.В однофазной сети устанавливаются дифференциальные устройства с двумя входными и двумя выходными контактами. Одна из этих групп используется для подключения так называемого «фазного» провода, а другая подключается к «нулевому» силовому проводу. Как правило, все контакты (верхний и нижний) обозначаются символами «L» и «N» соответственно, обозначающими места подключения фазы и нуля.

При включении прибора в электрическую цепь фазный и нейтральный провода подключаются к верхним контактам, идущим от вводного распределительного устройства или электросчетчика.Его нижние выводы предназначены для коммутации проводов, идущих непосредственно к защищаемой нагрузке (к потребителю).

Подключение дифференциального устройства к трехфазным цепям питания полностью аналогично рассмотренному ранее варианту. Единственное отличие в этом случае состоит в том, что к дифавтомату подключаются сразу три фазы: «А», «В» и «С». По аналогии с однофазной линией питания 220 В, выводы трехфазного дифавтомата также маркируются (для сохранения фазировки) и обозначаются как «L1», «L2», «L3» и « N «.

Грамотный выбор устройства, подходящего для заявленных целей, невозможен без внимательного изучения основных рабочих характеристик дифавтомата и соответствующей маркировки. В связи с этим перед приобретением дифференциального устройства постарайтесь внимательно изучить весь материал этой статьи.

евоснаб.ру

Назначение, технические характеристики и выбор

Difautomat или дифференциальный автоматический выключатель совмещает в себе функции автоматического выключателя и УЗО.То есть это одно устройство защищает проводку от перегрузок, коротких замыканий и токов утечки. Ток утечки образуется при неисправности изоляции или при прикосновении к токоведущим элементам, то есть по-прежнему защищает человека от поражения электрическим током.

Дифавтоматы устанавливаются в распределительные щиты, чаще всего на DIN-рейку. Устанавливаются вместо связки автомат + УЗО, физически занимают чуть меньше места. Насколько зависит от производителя и типа исполнения.И это их главный плюс, который может быть востребован при обновлении сети, когда место в дашборде ограничено, и необходимо подключить ряд новых линий.

Второй положительный момент — это экономия средств. Как правило, дифавтомат стоит дешевле пары автоматов + УЗО с аналогичными характеристиками. Еще один положительный момент — необходимо определить только номинал автоматического выключателя, а УЗО встраивается по умолчанию с требуемыми характеристиками.

Есть и минусы: при выходе из строя одной из частей дифавтомата придется менять все устройство, а это дороже. Также не все модели оснащены флажками, по которым можно определить причину срабатывания устройства — из-за перегрузки или тока утечки — что принципиально важно при выяснении причин.

Характеристики и выбор

Так как дифавтомат совмещает в себе два устройства, он имеет характеристики обоих, и при выборе нужно все учитывать.Разберемся, что означают эти характеристики и как выбрать дифференциальную машину.

Номинальный ток

Это максимальный ток, который машина может выдерживать в течение длительного времени без потери производительности. Обычно он указывается на передней панели. Номинальные токи стандартизированы и могут составлять 6 А, 10 А, 16 А, 20 А, 25 А, 32 А, 40 А, 50 А, 63 А.

Малые номиналы — 10 А и 16 А — ставятся на линию освещения, средние — на мощных потребителей и розеточные группы, а мощные — 40 А и выше — в основном используются как вводный (общий) дифавтомат.Его выбирают в зависимости от сечения кабеля, так же, как и при выборе номинала автоматического выключателя.

Время-токовая характеристика или тип электромагнитного расцепителя

Отображается рядом с номиналом, обозначается латинскими буквами B, C, D. Указывает, при каких перегрузках относительно номинала машина отключается (для игнорирования кратковременных пусковых токов).

Категория B — при превышении тока в 3-5 раз, C — при превышении номинала в 5-10 раз, тип D отключается при нагрузках, превышающих номинал в 10-20 раз.В квартирах обычно устанавливают дифавтоматы типа С, в сельской местности могут быть установлены В, на предприятиях с мощным оборудованием и большими пусковыми токами — D.

Номинальное напряжение и частота сети

Для каких сетей предназначено устройство — 220 В и 380 В, частотой 50 Гц. Других в нашей розничной сети нет, но все равно стоит проверить.

Дифференциальные машины могут иметь двойную маркировку — 230/400 В. Это говорит о том, что данное устройство может работать как в сетях 220 В, так и 380 В.В трехфазных сетях такие устройства устанавливаются на группы розеток или на отдельных потребителей, где используется только одна из фаз.

В качестве водяных дифавтоматов для трехфазных сетей требуются устройства с четырьмя вводами, которые существенно различаются по размерам. Их невозможно спутать.

Номинальный остаточный ток отключения или ток утечки (настройки)

Отображает чувствительность устройства к генерируемым токам утечки и показывает, при каких условиях сработает защита.В быту используются всего два номинала: 10 мА для установки на линию, в которой установлено только одно мощное устройство или потребитель, в котором сочетаются два опасных фактора — электричество и вода (проточный или накопительный электрический водонагреватель, варочная поверхность, духовка. , посудомоечная машина и т. д.).

Для линий с группой розеток и наружного освещения устанавливают дифавтоматы с током утечки 30 мА, на линии освещения внутри дома их обычно не устанавливают — в целях экономии.

В приборе можно просто написать значение в миллиамперах (как на фото слева) или нанести буквенное обозначение устанавливаемого тока (на фото справа), после чего идут цифры в амперах (при 10 мА стоит 0,01 А, при 30 мА цифра 0,03 А).

Класс дифференциальной защиты

Показывает, какой тип токов утечки защищает это устройство. Есть буквенные и графические изображения. Обычно ставят иконку, но может быть и буква (см. Таблицу).

Буквенное обозначение Графическое обозначение Расшифровка Область применения
AS Реагирует на переменный синусоидальный ток Они размещаются на линии, к которой подключается простое оборудование без электронного управления
И Реагирует на синусоидальный переменный ток и пульсирующий постоянный ток Применяется на линиях, от которых запитана аппаратура с электронным управлением
IN Захватывает переменную, импульсную, постоянную и сглаженную постоянную. В основном используется в производстве с широким спектром оборудования
S С выдержкой времени отключения 200-300 мс В сложных схемах
G С выдержкой времени отключения 60-80 мс В сложных схемах

Выбор класса дифференциальной защиты дифавтомата зависит от типа нагрузки. Если это техника с микропроцессорами, требуется класс A, класс AC подходит для освещения или переключения питания простых устройств.Класс В в частных домах и квартирах ставится редко — нет необходимости «ловить» все виды токов утечки. Подключение дифавтомата класса S и G имеет смысл в многоуровневых схемах защиты. Они вводятся в качестве входных, если в цепи есть другие дифференциальные расцепители. В этом случае при срабатывании одной из утечек ниже по потоку вход не отключится, и исправные линии будут работать.

Номинальная отключающая способность

Показывает, какой ток способен отключать дифавтомат в случае короткого замыкания и оставаться в рабочем состоянии.Есть несколько стандартных номиналов: 3000 A, 4500 A, 6000 A, 10 000 A.

Выбор дифавтомата по этому параметру зависит от типа сети и дальности действия подстанции. В квартирах и домах на достаточном удалении от подстанции используются дифавтоматы с отключающей способностью 6000 А, рядом с подстанциями — 10000 А. В сельской местности при электроснабжении по воздуху и в сетях, которые не были отключены. давно модернизированный, 4500 А.

На корпусе этот номер указан в квадратной рамке.Расположение надписи может быть разным — это зависит от производителя.

Класс ограничения тока

Требуется некоторое время, чтобы ток короткого замыкания достиг своего максимального значения. Чем раньше будет отключено питание от поврежденной линии, тем меньше вероятность повреждения. Текущий класс ограничения отображается цифрами от 1 до 3. Третий класс — отключает линию быстрее всех. Так что выбор дифавтомата по этому признаку прост — желательно использовать устройства третьего класса, но они дорогие, но дольше служат.Итак, если у вас есть финансовые возможности, установите дифавтоматы этого класса.

Эта характеристика отображается на корпусе в маленькой квадратной рамке рядом с номинальной отключающей способностью. Он может быть справа (для Legranda) или ниже (для большинства других производителей). Если вы не нашли такой отметки ни на корпусе, ни в паспорте, значит у данного аппарата нет ограничения по току.

Температурный режим использования

Большинство дифференциальных автоматических выключателей предназначены для использования внутри помещений.Они могут работать при температуре от -5 ° C до + 35 ° C. При этом на корпус ничего не ставится.

Иногда экраны находятся снаружи, и обычные защитные устройства не работают. Для таких случаев дифавтоматы выпускаются с более широким температурным диапазоном — от -25 ° С до + 40 ° С. При этом на корпусе ставится специальный знак, немного напоминающий звездочку.

Наличие маркеров о причине срабатывания триггера

Не все электрики любят устанавливать дифференциальные автоматы, так как считают автоматический выключатель + УЗО более надежным.Вторая причина в том, что если устройство работает, невозможно определить, чем это вызвано — перегрузка, а нужно просто отключить какое-то устройство, или ток утечки, и нужно искать, где и что произошло.

Чтобы решить хотя бы вторую проблему, производители начали делать флажки, показывающие причину работы дифавтомата. В некоторых моделях это небольшая площадка, по положению которой определяется причина отключения.

Если отключение было вызвано перегрузкой, индикатор остается заподлицо с корпусом, как на фото справа.Если дифавтомат сработал при наличии тока утечки, флаг выступает на определенное расстояние от корпуса.

Тип конструкции

Дифференциальные автоматы бывают двух типов: электромеханические и электронные. Электромеханические более надежны, так как остаются работоспособными даже в случае отключения электроэнергии. То есть, если фаза потеряна, они тоже смогут работать и отключать ноль. Электронным для работы требуется питание, которое снимается с фазного провода, и при потере фазы они теряют свою работоспособность.

Производитель и цена

Не стоит экономить на электричестве, особенно на устройствах, защищающих проводку и жизнь. Поэтому рекомендуется всегда покупать комплектующие известных производителей. Legrand (Legrand) и Schneider (Шнайдер), Hager (Хагер) — лидеры рынка, но их продукция дорогая, а подделок много. У IEK (IEK), ABB (ABB) цены не такие высокие, но с нм больше проблем. В этом случае лучше не связываться с неизвестными производителями, так как они часто просто выходят из строя.

Выбор на самом деле не так уж и мал, даже если вы ограничитесь только этими пятью фирмами. У каждого производителя есть несколько линеек, которые различаются по цене, причем существенно. Чтобы понять разницу, нужно внимательно посмотреть характеристики. Каждый из них влияет на цену, поэтому внимательно изучите все данные перед покупкой.

Как подключить дифавтомат

Начнем с способов монтажа и порядка подключения проводов. Все очень просто, особых сложностей нет.В большинстве случаев он устанавливается на динраке. Для этого есть специальные выступы, удерживающие устройство на месте.

Электрическое подключение

Дифавтомат подключается к сети изолированными проводами. Сечение выбирается по номиналу. Обычно линия (блок питания) подключается к верхним розеткам — они подписаны нечетными числами, нагрузка — в нижних — четными числами. Поскольку к дифференциальному автомату подключены и фаза, и ноль, чтобы не путать, гнезда для «нуля» подписаны латинской буквой N.

В некоторых линиях вы можете подключить линию как к верхнему, так и к нижнему разъему. Пример такого устройства показан на фото выше (слева). В этом случае нумерация пишется на схеме через дробь — 1/2 вверху и 2/1 внизу, 3/4 вверху и 4/3 внизу. Это означает, что не имеет значения, подключена линия сверху или снизу.

Перед подключением линии с проводов снимается изоляция на расстоянии примерно 8-10 мм от края.На нужной клемме слегка ослабить крепежный винт, вставить проводник, затянуть винт с достаточно большим усилием. Затем провод несколько раз натягивают, чтобы убедиться в нормальном контакте.

Функциональная проверка

После подключения дифавтомата, подачи питания необходимо проверить работоспособность системы и правильность установки. Сначала тестируем сам агрегат. Для этого есть специальная кнопка с надписью «Test» или просто буква T. После того, как переключатели были приведены в рабочее состояние, нажимаем на эту кнопку.В этом случае устройство должно «выбить». Эта кнопка искусственно создает ток утечки, поэтому мы проверили работу дифавтомата. Если ответа не последовало, нужно проверить правильность подключения, если все правильно, неисправен прибор

Дальнейшее тестирование заключается в подключении простой нагрузки к каждой розетке. Это позволит проверить правильность подключения групп розеток. И последнее — поочередное включение бытовой техники, к которой подключены отдельные линии электропередач.

Схемы

При разработке схемы электропроводки в квартире или доме вариантов может быть множество. Они могут отличаться удобством и надежностью эксплуатации, степенью защиты. Есть простые варианты, требующие минимум затрат. Обычно они реализуются в небольших сетях. Например, на дачах, в малогабаритных квартирах с небольшим количеством бытовой техники. В большинстве случаев приходится устанавливать большое количество устройств, обеспечивающих сохранность электропроводки и защищающих людей от поражения электрическим током.

Простая схема

Не всегда имеет смысл устанавливать большое количество защитных устройств. Например, на дачном участке, где всего несколько розеток и освещения, достаточно установить только один дифавтомат в подъезде, от которого отдельные линии будут идти к группам потребителей — розетки и освещение — через автоматы.

Эта схема не потребует больших затрат, но при появлении тока утечки на любой из линий дифавтомат сработает, обесточив все.Света не будет, пока не будут выяснены и устранены причины.

Лучшая защита

Как уже было сказано, некоторые дифавтоматы ставятся на «мокрые» группы. К ним относятся кухня, ванная комната, внешнее освещение и приборы, использующие воду (кроме стиральной машины). Этот метод построения системы обеспечивает более высокую степень безопасности и лучше защищает проводку, оборудование и людей.

Реализация такого способа разводки потребует больших материальных затрат, но при этом система будет работать более надежно и стабильно.Поскольку при срабатывании одного из защитных устройств остальные останутся в рабочем состоянии. Такое подключение дифавтомата используется в большинстве квартир и в небольших домах.

Избирательные схемы

В разветвленных сетях электроснабжения возникает необходимость делать систему еще более сложной и дорогой. В этой версии после счетчика установлен входной дифференциальный автомат класса S или G. Далее каждая группа имеет свой автомат, а при необходимости также устанавливается на отдельных потребителей.Порядок подключения дифавтомата в этом случае смотрите на фото ниже.

При такой конструкции системы, когда срабатывает одно из линейных устройств, все остальные продолжают работать, поскольку входной дифференциальный переключатель имеет задержку срабатывания.

Основные ошибки при подключении дифавтоматов

Иногда после подключения дифавтомата не включается или вырубается при подключении любой нагрузки. Это означает, что что-то было сделано не так. Есть несколько типичных ошибок, возникающих при самостоятельной сборке щита:

  • Где-то совмещены провода защитного нуля (земли) и рабочего нуля (нейтрали).При такой ошибке дифавтомат вообще не включается — рычаги не фиксируются в верхнем положении. Придется искать, где совмещаются или смешиваются «земля» и «ноль».
  • Иногда при подключении дифавтомата ноль к нагрузке или расположенным ниже машинам снимается не с выхода устройства, а непосредственно с нулевой шины. При этом автоматические выключатели находятся в рабочем положении, но при попытке подключить нагрузку мгновенно отключаются.
  • С выхода дифавтомата ноль в нагрузку не подается, а возвращается в шину.Ноль для нагрузки также снимается с автобуса. В этом случае автоматические выключатели находятся в рабочем положении, но кнопка «Тест» не работает и при попытке включения нагрузки происходит отключение.
  • Нулевое соединение нарушено. От нулевой шины провод должен идти к соответствующему входу, обозначенному буквой N, который находится вверху, а не вниз. От нижнего нулевого вывода провод должен идти к нагрузке. Симптомы аналогичны: выключатели включены, «Тест» не работает, при подключении нагрузки срабатывает.
  • Если в цепи два дифавтомата — перепутаны нулевые провода. При такой ошибке включаются оба устройства, «Тест» работает на обоих устройствах, но при включении любой нагрузки вырубает сразу обе машины.
  • При наличии двух дифавтоматов приходящие от них нули были связаны где-то дальше. При этом взведены обе машины, но при нажатии на кнопку «тест» одной из них вырубаются сразу два устройства. Аналогичная ситуация возникает при включении любой нагрузки.

Теперь вы можете не только выбрать и подключить дифференциальный выключатель, но и понять, почему он выбивает, что именно пошло не так и исправить ситуацию самостоятельно.

стройчик.ру

Что нужно знать об УЗО

Прежде чем углубляться в вопросы, касающиеся схемы установки УЗО, рассмотрим особенности этих устройств, а также основные требования к ним, на основании которых они выбираются. В этой статье мы не будем касаться индексации, так как для углубления в нее требуются серьезные знания в области электротехники, и эта необходимость отпадает также в связи с тем, что выбор защитного устройства будет производиться исключительно на основании исходные данные.Для этого нужно выполнить несколько пунктов:

  • Рассмотрим необходимость подключения отдельного УЗО с автоматом или дифавтоматом.
  • Определите номинальный ток устройства. Для машины фактическое значение этого тока должно быть выбрано на одну ступень выше, чем данные тока отсечки, в том же случае, если используется дифавтомат, то указанное значение должно быть равно току отсечки.
  • Рассчитайте отсечку по дополнительному току (перегрузке), используя простой расчет.Для его расчета нужно знать максимально допустимый ток потребления, а затем полученное значение умножить на 1,25. Далее нужно оттроить таблицу значений стандартного ряда токов. Если результат отличается от указанных параметров, он округляется в большую сторону.
  • Определите допустимый ток утечки. В обычных устройствах это 30 или 100 мА, но есть исключения. Выбор будет зависеть от типа проводки.

Если необходимо использовать «пожарное» УЗО, то следует определить тип и расположение вторичных «ресурсных» устройств.

Обозначение УЗО на однолинейной схеме

Когда речь идет о схемах и проектах, очень важно уметь их правильно читать. Как правило, изображение УЗО на графической и конструкторской документации часто делается условно вместе с другими элементами. Это несколько затрудняет понимание принципов работы схемы и, в частности, ее отдельных компонентов. Обычный образ устройства защиты можно сравнить с изображением обычного выключателя с той лишь разницей, что элемент в нелинейной цепи представлен как два параллельных выключателя.На однолинейной схеме полюса, провода и элементы не изображаются визуально, а изображаются символически.

Этот момент подробно показан на рисунке ниже. На нем изображено двухполюсное УЗО с током утечки 30 мА. На это указывает цифра «2» вверху. Рядом с ним можно увидеть косую черту, пересекающую линию электропередачи. Биполярность устройства также продублирована в нижней части схематического изображения элемента в виде двух наклонных линий.

Разберем типовую схему «квартирного» подключения защитного устройства с учетом наличия счетчика на примере, представленном на рисунке ниже.Ознакомившись более подробно с принципом подключения, можно сделать вывод об оптимальном расположении УЗО, которое должно быть максимально близко к входу. Делать это нужно таким образом, чтобы между ними располагались счетчик и основная машина. Однако есть несколько ограничительных нюансов. Так, например, устройство общей защиты не может быть подключено к системе типа TN-C из-за его основных характеристик. Устаревший образец советских времен имеет защитный провод, подключенный напрямую к нейтрали, что становится причиной «несовместимости».

Устройство защитного отключения, являющееся устаревшей моделью советских времен с защитным проводом, подключенным к нейтрали, не позволяет подключить к нему устройство общей защиты.

Это лучший пример подключения заземленного УЗО. На схеме также есть желтые полосы, демонстрирующие принцип подключения дополнительных защитных устройств для групп потребителей, которые схематично должны быть расположены за соответствующими им автоматическими выключателями. В этом случае номинальный ток каждого вторичного устройства на пару футов выше, чем показатель назначенного ему автомата.

Но все это типично для современной электропроводки с учетом наличия «земли».

Для того, чтобы в дальнейшем более подробно ознакомиться с основами УЗО, обозначение на схеме необходимо выучить или по мере изучения статьи возвращаться к нему.

Подключение УЗО без заземления. Схема и особенности

Отсутствие заземляющих контуров в домах — обычная ситуация, требующая больших усилий и знаний, потому что нужно помнить основы электродинамики, но это не приговор.Главное, соблюдать четыре общих правила:

  • Проводка типа TN-C не допускает установку дифавтомата или общего УЗО.
  • Потенциально опасные потребители должны быть идентифицированы и защищены дополнительным отдельным устройством.
  • Следует выбрать кратчайший «электрический» путь от защитных проводов розеток и групп розеток к входной нулевой клемме УЗО.
  • Допускается каскадное подключение защитных устройств при условии, что ближайшие к электрическому вводу УЗО менее чувствительны, чем оконечные.

Многие, даже сертифицированные, электрики, забывая или просто не зная принципов электродинамики, не задумываются о том, как подключить УЗО без заземления. Предлагаемая ими схема обычно выглядит так: устанавливается общее защитное устройство, а затем все PE (нулевые защитные проводники) подводятся к входному нулю УЗО. С одной стороны, здесь несомненно видна разумная логическая цепочка, потому что на защитном проводе переключения не произойдет.Но все намного сложнее.

  • Кратковременный скачок тока может произойти в обмотке для компенсации дисбаланса тока между фазой и нулем, называемого «антидифференциальным» эффектом. Встречается довольно редко.
  • Более распространенным вариантом является неконтролируемое усиление дисбаланса токов, называемое «супердифференциальным» эффектом. Возникновение такой ситуации заставляет защитное устройство работать без присущей ему утечки. Тем не менее, серьезных поломок или поломок это не вызовет, а лишь принесет некоторый дискомфорт при постоянном «выбивании».

Сила «воздействия» зависит от длины ПЭ. Если его длина превышает два метра, то вероятность выхода из строя УЗО достигает 1 из 10 000. Числовой показатель довольно маленький, однако теория вероятностей практически непредсказуема.

Схема подключения УЗО

в однофазной сети

Так как в квартирах часто используется однофазное сетевое подключение. В этом случае оптимально в качестве защиты выбрать однофазные двухполюсные УЗО.Существует несколько вариантов схемы подключения для этого устройства, но мы рассмотрим наиболее распространенные, представленные на рисунке ниже.

Подключить устройство довольно просто. В паспорте и на приборе указаны основные точки маркировки и подключения фазы (L) и нуля (N). На схеме показаны вторичные машины, но их установка не является обязательной. Они нужны для распределения подключенной бытовой техники и освещения по группам. Таким образом, проблемная зона никак не повлияет на остальную часть квартиры или комнаты.Важно учитывать, что установка максимально допустимых токов на машинах не должна превышать уставки УЗО. Это связано с отсутствием ограничения тока в устройстве. Также следует обратить внимание на соединение фазы с нулем. Невнимательность может привести не только к отключению питания микросхемы, но и к поломке устройства защиты.

Схема включения УЗО в однофазной сети, по мнению специалистов, должна располагаться в непосредственной близости от счетчика электроэнергии (рядом с источником питания)

Ошибки и их последствия при подключении УЗО

Как и любую электрическую схему, схематическое изображение подключения защитного устройства к общей сети должно быть составлено, как прочитано позже, без малейших изъянов.Даже самый скромный дефект может привести к сбоям в работе системы в целом или самого УЗО, а серьезные отклонения могут вызвать довольно серьезные поломки. Ошибки могут быть разные, но среди них можно выделить ряд наиболее распространенных:

  • Нейтраль и земля подключаются после УЗО. В этом случае можно неверно истолковать схему, соединив нулевой рабочий провод, с разомкнутой частью электроустановки или с нулевым защитным проводом.В обоих случаях сумма будет одинаковой.
  • УЗО можно подключить с частичной фазой. Допуск такой ошибки приведет к ложному срабатыванию, возникающему из-за того, что нагрузка была подключена к нулевому рабочему проводнику перед УЗО.
  • Пренебрежение правилами подключения нулевого и заземляющего проводов в розетках. Проблема заключается в процессе установки розеток, в которых допускается соединение защитного и нулевого рабочих проводов.В этом случае устройство будет работать даже тогда, когда к розетке ничего не подключено.
  • Объединение нулей в цепи с двумя устройствами защиты. Распространенная ошибка — неправильное соединение в зоне защиты нулевых проводов обоих УЗО. Допускается из-за неаккуратности и неудобства разводки внутри стеновой панели. Недосмотр приведет к неконтролируемым отключениям устройств.
  • Использование двух и более УЗО усложняет работу по подключению нулевых проводов.Последствия невнимательности могут быть довольно серьезными. Тестирование тоже не поможет, так как устройство нареканий к нему не вызовет. Но самое первое подключение электроприборов может вызвать ошибку и срабатывание всех УЗО.
  • Невнимательность при подключении фазы и нуля, если они сняты с разных УЗО. Проблема возникает, когда нагрузка подключена к нейтральному проводу, принадлежащему другому устройству защиты.
  • Несоблюдение полярности подключения, что выражается в подключении фазы и нуля соответственно сверху и снизу.Это спровоцирует движение токов в одном направлении, в результате чего создаются условия для невозможности взаимной компенсации магнитных потоков. Это говорит о том, что перед покупкой нового УЗО следует внимательно изучить принцип подключения старого, так как расположение клемм может быть другим.
  • Не учитывать подробности при подключении трехфазного УЗО. Распространенная ошибка при подключении четырехполюсного УЗО — использование клемм одной фазы. Однако работа однофазных потребителей никак не повлияет на работу такого защитного устройства.

prokommunikacii.ru

Установка УЗО значительно повышает уровень безопасности при работе с электроустановками. Если УЗО имеет высокую чувствительность (30 мА), то предусмотрена защита от прямого прикосновения (касания).

Однако установка УЗО не означает, что соблюдаются обычные меры предосторожности при работе с электрическими установками.

Кнопку проверки необходимо нажимать регулярно, не реже одного раза в 6 месяцев.Если проверка не дала результата, то нужно подумать о замене УЗО, так как уровень электробезопасности снизился.

Установите УЗО на панель или корпус. Подключите оборудование точно так, как показано на схеме. Включите все нагрузки, подключенные к защищаемой сети.

УЗО срабатывает.

Если срабатывает УЗО, выясните, какое устройство стало причиной срабатывания, последовательно отключив нагрузку (выключите электрооборудование по очереди и посмотрите результат).Если такое устройство обнаружено, его необходимо отключить от сети и проверить. Если электрическая линия очень длинная, нормальные токи утечки могут быть довольно большими. В этом случае есть вероятность ложных срабатываний. Чтобы этого не произошло, необходимо разделить систему как минимум на две цепи, каждая из которых будет защищена собственным УЗО. Длину электрической линии можно рассчитать.

Если документально определить сумму токов утечки электропроводки и нагрузок невозможно, можно воспользоваться приблизительным расчетом (согласно СП 31-110-2003), приняв ток утечки нагрузки равным 0.4 мА на 1 А мощности, потребляемой нагрузкой, и ток утечки сети, равный 10 мкА на метр длины фазного провода электропроводки.

Пример расчета УЗО.

Для примера рассчитаем УЗО для электроплиты мощностью 5 кВт, установленной на кухне малогабаритной квартиры.

Примерное расстояние от панели до кухни может составлять 11 метров, соответственно расчетная утечка проводки 0,11 мА. Электроплита на полную мощность потребляет (примерно) 22.7A и имеет расчетный ток утечки 9,1 мА. Таким образом, сумма токов утечки этой электроустановки составляет 9,21 мА. Для защиты от токов утечки можно использовать УЗО с номинальным током утечки 27,63 мА, который округляется до ближайшего большего значения из существующих номиналов для дифференциала. ток, а именно УЗО 30мА.

Следующим шагом является определение рабочего тока УЗО. При указанном выше максимальном токе, потребляемом электроплитой, можно использовать номинальное (с небольшим запасом) УЗО 25А, либо с большим запасом — УЗО 32А.

Таким образом, мы рассчитали номинал УЗО, которое можно использовать для защиты электроплиты: УЗО 25А 30мА или УЗО 32А 30мА. (мы не должны забывать защищать УЗО автоматическим выключателем на 25 А для первого номинала УЗО и 25 А или 32 А для второго номинала).

Обозначение УЗО.

На схеме УЗО обозначено следующим образом Рис. 1 однофазное УЗО, рис. 2 — трехфазное УЗО.

Схему подключения УЗО рассмотрим на примере.На картинке. 1 показывает деталь распределительного шкафа.

Фото. 1 Схема подключения трехфазного УЗО с автоматическим выключателем (на фото № 1 УЗО, 2 — автоматический выключатель) и однофазным УЗО (3).

УЗО не защищает от токов короткого замыкания, поэтому устанавливается в паре с автоматическим выключателем. Что ставить перед УЗО или автоматом в данном случае не важно. Номинал УЗО должен быть равен или немного выше номинала автоматического выключателя.Например, автоматический выключатель на 16 Ампер, а это значит, что мы ставим УЗО на 16 или 25 А.

Как видно на фото. 1 для трехфазного УЗО (цифра 1) подходят трехфазный и нейтральный проводник, а после УЗО подключается автоматический выключатель (цифра 2). Потребитель подключит: фазные провода (красные стрелки) от выключателя; нулевой провод (синяя стрелка) — с УЗО.

Цифрой 3 на фото изображены дифференциальные автоматы, соединенные сборной шиной, принцип работы дифференциала.автомат аналогичен УЗО, но дополнительно защищает от токов КЗ и не требует дополнительной защиты от КЗ.

И соединение УЗО и дифференциала. машины такие же.

Подключаем к клемме L фазу , к нулю N (обозначения напечатаны на корпусе УЗО). Потребители тоже подключаются.

www.mirpodelki.ru

Апрель | 2018 | Диаграмма

не нужна

Как первый мир суетится вокруг проблем третьего мира, не говоря уже о кризисах, таких как наплыв беженцев (миллионов людей), ищущих убежище и новый дом, новое начало? Как мы начинаем представлять себе повседневные страдания и сложную глобальную политику, которая манипулирует и контролирует исход? Как мы начинаем понимать различные сущности, которые эксплуатируют семьи, истощают их последние деньги и то, что осталось от их достоинства?

Художественная литература помогает.

Опубликованная ранее в этом году четвертая запись из серии «Эса Хаттак / Рэйчел Гетти» Аусмы Зеханат Хан, A Dangerous Crossing, посвящена сложностям кризиса с беженцами и сосредоточена на судьбе молодой канадской добровольцы по имени Одри Клэр. Одри исчезает с острова Лесбос и замешана в двойном убийстве. Одна жертва — агент французского Интерпола, другая — сирийский беженец. Опасный переход полон проблем: как внутренние проблемы Эсы Хаттака с его мусульманской верой, так и попытки Эсы и Рэйчел понять, как политика и деньги вступают в сговор, чтобы манипулировать семьями, отчаянно пересекающими неизвестные земли.

Лесбос также является местом для девятой записи в серии Андреаса Калдиса Джеффри Сигера, An Aegaen April. Пожалуйста, не обращайте внимания на буколическое воплощение названия и его приятную аллитерацию и приготовьтесь к столь же сложной и нюансированной тайне, в которой бедственное положение беженцев используется как очаг для неприятностей и, что вполне естественно, тайны.

Серия

Хана началась с двух загадок , сосредоточенных на Торонто — , а затем улетела далеко за пределы третьей, Среди руин и , действие которой происходит в основном в Иране.Таким образом, переход на греческие острова (и различные места от Нидерландов до Бельгии) не показался Эсе Хаттак или Рэйчел Гетти большой натяжкой.

Но для Андреаса Калдиса, который является главным инспектором отдела по особым преступлениям Национальной полиции Греции и по служебной необходимости прыгуном по острову ( Убийство на Миконосе, Добыча на Патмосе и т.д. . А Сигер, который половину своего времени проводит в Греции, внимательно следит за деталями, политикой и бюрократией уголовного правосудия.

Жертва в начале Эгейский апрель года — влиятельный парень по имени Михалис Воландес. Он семидесятилетний греческий судоходный магнат. Его смерть яркая и шокирующая. Его разрезали пополам. Вертикально. «От шеи до промежности». Один взмах меча.

Когда Калдису сообщают по телефону о методах убийцы, Калдис резко говорит: «Давай еще раз». Калдис часто говорит вслух, о чем мы все думаем. Он измучен, утомлен и не любит спектакли.Он живет в зоне, свободной от мелодрамы.

Дана Маклафлин отвечает за операторов беженцев на Лесбосе в организации SafePassage и по телефону сообщает старшему инспектору Калдису, что один из ее сотрудников-беженцев был арестован за убийство Воландеса. Этот рабочий — «местный рабочий-беженец», человек, который хотел помочь своим соотечественникам. Его зовут Али Сера. Его нашли залитым кровью.

Сначала Калдис решает вызвать выстрелы удаленно и отправляет своего давнего приятеля, «бычьего человека» Янни, для проведения первоначального расследования.Часть An Aegean April разворачивается глазами Янни (и других персонажей, включая нашего злобного плохого парня; Дану; и даже Али, который большую часть своей жизни провел, «глядя на дно бочки с беженцами»).

Несмотря на жестокость убийцы и суровые условия для беженцев, которые добираются до Лесбоса, здесь много привлекательных пейзажей греческих островов. Вам захочется нырнуть в воду, понюхать воздух и потянуться за бутылкой узо, пока вы насладиться атмосферой.Но Сигер видит и недостатки — перенаселение, граффити, «скучные бетонные многоквартирные дома с их вездесущими балконами с плитами, которые преследовали всю современную Грецию, независимо от того, насколько зажиточные районы».

Что ж, как мир может более гуманно разрешить кризис с беженцами? Оказывается, у Михалиса Воландеса был план, и именно в изложении этого плана в середине истории Сигер показывает свою руку и, кажется, выдвигает (кхм) предложение.План предусматривает, что суда размером с паром с медицинскими, социальными и иммиграционными службами будут обрабатывать беженцев таким образом, чтобы у торговцев людьми не было шанса охотиться на слабых и отчаявшихся. План Воландеса по привнесению порядочности и человечности в разгар беспредела — вот что его убивает. Нельзя без последствий прервать чужой злой, прибыльный бизнес.

Никто не свистит чисто. Прессу навязывают, а также вмешиваются доброхоты, которые остаются там только на то время, чтобы сказать, что они были там.Именно Дана подводит итог «печальной реальности» конкурирующих интересов. «Кризис привлекает внимание СМИ, — говорит она. «Внимание СМИ привлекает искренних людей, которые переводят на деньги. Вместе с деньгами приходят спекулянты, которым наплевать на людей, находящихся в кризисе. Их интересует только собственный имидж и сбор средств. Хороший пиар и качественные реплики привлекают пожертвования, и для них это все, что имеет значение ».

Эгейский апрель года переносит нас в Турцию (вооруженный мечом убийца производит впечатление на ключевой встрече) и не останавливается до тех пор, пока не обнаружит широкий спектр давлений, оказывающих давление на то, что когда-то было безмятежным, тихим островом.Наш убийца сошел с ума, он перевернул стол против своих работодателей и придумал жестокую театральную постановку. Но он не единственный, кто устраивает напряженную схватку, готовую к фильму.

Хотите узнать немного о массовом исходе из Сирии (который продолжается уже восьмой год)? Да, читайте газету или смотрите видео в Интернете. (И не будьте равнодушны, когда кто-то упоминает город под названием Алеппо.) Или прочитайте An Aegean April.

++

Ранее рассмотрено: Опасный переход

Avdt 32 электромеханический или электронный.Узо электронный или электромеханический. Внешний источник питания

Для защиты от утечек тока используются дифференциальные токовые выключатели или устройства защитного отключения (УЗО). В каждой новой квартире, новом доме это устройство становится необходимым оборудованием.

Однако устройства с принципиально иной внутренней конструкцией, определяющей надежность всего УЗО, могут продаваться под общим названием. Конструкция может иметь различное расположение рычагов и кнопок управления, иметь стандартные или расширенные варианты подключения шин и проводов, но принципиальное значение имеет конструкция УЗО выпуска … Он может быть электромеханическим или электронным. Только как сразу отличить электромеханическое УЗО от электронного? Этот вопрос требует подробного рассмотрения.

Чем отличается электромеханическое УЗО от электронного
УЗО и дифавтоматы

(это УЗО и автоматический выключатель в одном корпусе) по своему внутреннему устройству делятся на два типа: электромеханические и электронные … Это никак не влияет на рабочие параметры и характеристики.Многие сразу задаются вопросом: а чем они отличаются? И разница есть, и важная: УЗО электромеханического типа сработает в любом случае, если в зоне повреждения появится ток утечки, вне зависимости от напряжения в сети или нет … Основной рабочий модуль электромеханическое УЗО представляет собой дифференциальный трансформатор (тороидальный сердечник с обмотками). Если в поврежденном месте происходит утечка, то во вторичной обмотке этого трансформатора появляется напряжение, которое включает поляризованное реле, что в свою очередь приводит к срабатыванию механизма отключения.

Электронные УЗО срабатывают при наличии утечки тока в зоне повреждения и только при наличии сетевого напряжения. То есть для полноценной работы устройству остаточного тока электронного типа требуется внешний источник питания. Это связано с тем, что основным рабочим модулем электронных УЗО является электронная плата с усилителем. И эта плата не будет работать без внешнего источника питания.

Откуда источник питания? Внутри УЗО нет батареек или аккумуляторов.А напряжение для питания электронной платы с усилителем идет от внешней сети. Есть сеть 220В, и появилась утечка тока — УЗО сработает! Если в сети нет напряжения, защитное устройство не сработает.

Итак, для работы электромеханического УЗО нужна только утечка тока, для электронного УЗО требуется утечка тока и напряжения в сети.


На фото слева — УЗО Hager с электромеханическим расцепителем, справа — УЗО с электронным расцепителем.

Насколько важно, чтобы защитное устройство оставалось работоспособным при отсутствии напряжения? Уверен, многие пользователи ответят примерно так: при наличии напряжения в сети электронное УЗО сработает. Если в сети нет напряжения, то зачем ему вообще работать, ведь в сети нет напряжения, а значит, утечку тока взять негде. А какие чрезвычайные ситуации вы знаете, когда может исчезнуть напряжение в доме или квартире или, как говорят в народе, «нет света»? Это может быть авария на подходящей к дому линии, это могут быть ремонтные работы электросетей, а может быть другая очень распространенная проблема — прогорание нулевого провода в доске пола.Все оборудование будет без признаков жизни, все сигнальные устройства (сигнальные лампы, если есть) укажут, что в сети нет напряжения. Однако фаза никуда не делась! Остается опасность поражения электрическим током. Представьте, что в такой ситуации произошло повреждение изоляции внутри стиральной машины, фаза попала в корпус. Если в этот момент прикоснуться к корпусу станка, произойдет течь и УЗО должно сработать. Но точно электронный УЗО не подойдет, так как на его электронную плату с усилителем приходит только «фаза» без нуля, нет источника питания, поэтому электронная плата не будет фиксировать результирующий ток утечки, импульс отключения будет не будет отправлен на механизм отключения, и УЗО не отключится.Для человека такая ситуация крайне опасна. Поэтому, как ни печально, при появлении тока утечки в этой ситуации электронное УЗО не сработает.

Еще одна распространенная проблема — скачки напряжения. Конечно, сейчас многие устанавливают реле напряжения для защиты, но не у всех они есть. Что такое скачки напряжения — это отклонение от номинала. То есть вместо 220 Вольт в вашей розетке может появиться 170 Вольт или 260 Вольт, а еще хуже — 380 Вольт. Повышенное напряжение опасно для электронного оборудования, которым фактически оснащены электронные УЗО и электронные дифференциальные автоматические устройства.Скачки напряжения могут повредить электронную плату с усилителем. Внешне все будет выглядеть целым и невредимым, но при возникновении утечки тока ситуация может стать плачевной для человека — из-за поврежденных электронных компонентов УЗО не отреагирует на утечку.

Вы можете даже не знать, что внутренняя начинка защитного устройства вышла из строя. Поэтому необходимо периодически проверять работу УЗО кнопкой «ТЕСТ». Специалисты рекомендуют проводить эту проверку не реже одного раза в месяц.

Итак, в электросети могут возникать различные аварийные ситуации, при которых электронные УЗО или диффавтоматика могут потерять свои защитные функции. Вышеуказанные проблемы не опасны для электромеханических защитных устройств. , поскольку для работы им не требуется внешний источник питания. Будет ли напряжение в сети или нет, электромеханическое УЗО (RCBO) сработает в любом случае при наличии утечки тока в сети.

Как отличить электромеханическое УЗО от электронного

Внешне эти два устройства очень похожи и многие пользователи, не задумываясь, покупают их без разбора в магазине, даже не зная об особенностях.Чтобы понять, какое устройство дифференциального тока перед вами является электронным или электромеханическим, необходимо уметь различать их. Вы думаете, что это под силу только профессионалам? Но уверяю, это не так, ничего сложного здесь нет.

Обратите внимание на схему на корпусе УЗО

Самый простой и надежный способ — изучить схему, изображенную на корпусе УЗО. Электрическая схема применяется к любому защитному устройству. Между показанными схемами электромеханического УЗО и электронного есть небольшие различия.

На схеме электромеханического УЗО или дифавтомата изображен дифференциальный трансформатор (через который «продета» фаза и ноль), вторичная обмотка этого трансформатора, а также поляризованное реле, подключенное к вторичной обмотке. Поляризованное реле уже действует непосредственно на механизм отключения. Все это показано на схеме. Вам просто нужно понять, какой цифрой обозначается каждый из описанных выше элементов. Например, электромеханическое УЗО европейского производителя HAGER:

.

Дифференциальный трансформатор помечен прямоугольником (иногда овалом) вокруг фазного и нулевого проводов.От него отходит виток вторичной обмотки, которая подключена к поляризованному реле. На схеме поляризованное реле обозначено прямоугольником или квадратом. Реле механически связано с триггером отключения.


Здесь также указана кнопка ТЕСТ с собственным сопротивлением (сопротивление позволяет создать утечку в 30 мА, безопасный порог для жизни человека). Как видите, в электромеханическом УЗО нет электронных плат и усилителей. Конструкция состоит из одного механика.

Теперь рассмотрим электронное УЗО. Например, электронный дифавтомат 16А, 220В, с током утечки 30 мА.


Как видно из схемы, на корпусе электронного дифавтомата практически все обозначено как на электромеханическом защитном устройстве.


Но, если присмотреться, можно увидеть, что между дифференциальным трансформатором и поляризованным реле есть дополнительный элемент в виде прямоугольника с буквой «А», обозначение I>.Это такая же электронная плата с усилителем. Кроме того, вы можете видеть, что к этой плате подходят два провода «фаза» и «ноль» (обозначены на рисунке зеленым цветом ниже). Это как раз тот внешний источник питания, который необходим для полноценной работы данного типа УЗО. Не будет блока питания, и УЗО работать не будет. Независимо от того, есть утечка или нет.


Итак, для работы электромеханического УЗО нужна только утечка тока, для электронного УЗО требуется утечка тока и напряжения в сети.Настоятельно рекомендуем приобрести УЗО или диффузионный автомат электромеханического типа.

Устройства защитного отключения (УЗО) — одно из самых популярных устройств, используемых как строительными корпорациями, так и частными пользователями. Но как можно быть уверенным в правильности выбора? Надеюсь, эта статья поможет вам ориентироваться на рынке УЗО, насыщенном различными моделями.

УЗО. Основы

Устройства защитного отключения (УЗО) или устройства дифференциальной защиты предназначены для защиты людей от поражения электрическим током в случае электрических неисправностей или при контакте с токоведущими частями электроустановки, а также для предотвращения пожаров и пожаров, вызванных: токи утечки и замыкания на землю… Эти функции не присущи обычным автоматическим выключателям, которые реагируют только на перегрузку или.

В чем причина потребности в этих устройствах для пожаротушения?

По статистике, причиной около 40% всех возгораний является «замыкание электропроводки».

Во многих случаях общая фраза «короткое замыкание электропроводки» часто подразумевает утечку электричества, которая возникает из-за старения или повреждения изоляции. В этом случае ток утечки может достигать 500 мА.Экспериментально установлено, что при протекании тока утечки именно такой силы (а что такое полампера? Ни тепловой, ни электромагнитный расцепители на ток такой силы просто не реагируют — хотя бы по той причине, что они не предназначены для этого) максимум на полчаса через мокрые опилки самовозгораются. (И это касается не только опилок, но вообще любой пыли.)

Как устройства дифференциальной защиты защищают вас и меня от поражения электрическим током?

Если человек прикоснется к токоведущей части, по его телу будет протекать ток, величина которого представляет собой частное от деления фазного напряжения (220 В) на сумму сопротивлений проводов, заземления и самого тела человека: Иперс = Uph / (Rпр + Rz + Rpers).В этом случае сопротивлениями заземления и проводки по сравнению с сопротивлением человеческого тела можно пренебречь, последнее можно принять равным 1000 Ом. Следовательно, рассматриваемое значение тока будет 0,22 А или 220 мА.

Из нормативно-справочной литературы по охране труда и технике безопасности известно, что минимальный ток, протекание которого уже ощущается человеческим организмом, составляет 5 мА. Следующее стандартизованное значение — это так называемый ток без отключения, равный 10 мА.Когда по телу человека протекает ток такой силы, происходит спонтанное сокращение мышц. Электрический ток 30 мА уже может вызвать паралич дыхания. Необратимые процессы, связанные с кровотечением и сердечной аритмией, начинаются в организме человека после протекания по телу тока 50 мА. Возможен летальный исход при воздействии тока 100 мА. Очевидно, что уже надо быть защищенным от тока, равного 10 мА.

Так, своевременная реакция автоматики на ток менее 500 мА защищает объект от возгорания, а на ток менее 10 мА — защищает человека от последствий случайного прикосновения к токоведущим частям.

Также известно, что за токоведущую часть, находящуюся под напряжением 220 В, можно спокойно продержаться 0,17 с. Если токоведущая часть находится под напряжением 380 В, время безопасного прикосновения сокращается до 0,08 с.

Проблема в том, что такой небольшой ток и даже за ничтожно малое время не способен исправить (и, конечно же, выключить) обычные защитные устройства.

Таким образом, родилось такое техническое решение, как ферромагнитный сердечник с тремя обмотками: — «токоподвод», «токоподвод», «управление».Ток, соответствующий фазному напряжению, подаваемому на нагрузку, и ток, протекающий от нагрузки в нейтральный проводник, индуцируют магнитные потоки противоположных знаков в сердечнике. При отсутствии утечек в нагрузке и в защищаемом участке проводки общий расход будет равен нулю. В противном случае (прикосновение, повреждение изоляции и т. Д.) Сумма двух потоков станет ненулевой.

Поток, возникающий в сердечнике, индуцирует электродвижущую силу в обмотке управления. Реле подключено к обмотке управления через прецизионное устройство фильтрации всех видов помех.Под действием ЭДС, возникающей в обмотке управления, реле размыкает фазную и нулевую цепи.

Во многих странах использование УЗО в электроустановках регулируется нормами и стандартами. Так, например, в РФ — принят в 1994-96 гг. ГОСТ Р 50571.3-94, ГОСТ Р 50807-95 и др. Согласно ГОСТ Р 50669-94 УЗО в обязательном порядке устанавливается в электросетях мобильных зданий из металла или с металлическим каркасом для уличной торговли и бытового обслуживания. .В последние годы администрациями крупных городов в соответствии с государственными стандартами и рекомендациями Главгосэнергонадзора приняты решения по оснащению фонда жилых и общественных зданий этими устройствами (в Москве — Распоряжение Правительства Москвы № 868-РП от 20.05.94 г.).

УЗО бывают разные …. Трехфазные и однофазные …

Но на этом деление УЗО на подклассы не заканчивается …

На данный момент на российском рынке представлены 2 принципиально разные категории УЗО.

1. Электромеханический (независимый от сети)

2. Электронный (зависит от сети)

Рассмотрим отдельно принцип работы каждой из категорий:

УЗО электромеханические

Предки УЗО — электромеханические. Принцип точной механики, т.е. заглянув внутрь такого УЗО, вы не увидите компараторов операционных усилителей, логики и тому подобного.

Состоит из нескольких основных компонентов:

1) Так называемый трансформатор тока нулевой последовательности, его назначение — отслеживать ток утечки и передавать его с определенным Ktr на вторичную обмотку (I 2), I ut = I 2 * Ktr (очень идеализированная формула , но отражающие суть процесса).

2) Чувствительный магнитоэлектрический элемент (запираемый, т.е. при срабатывании без внешнего вмешательства он не может вернуться в исходное состояние — защелку) — играет роль порогового элемента.

3) Реле — обеспечивает отключение при срабатывании защелки.

Этот тип УЗО требует высокоточной механики чувствительного магнитоэлектрического элемента. В настоящее время только несколько мировых компаний продают электромеханические УЗО. Их стоимость намного выше, чем цена электронных УЗО.

Почему электромеханические УЗО получили распространение в большинстве стран мира? Все очень просто — этот тип УЗО сработает при обнаружении тока утечки на любом уровне напряжения в сети.

Почему этот фактор (независимость от уровня сетевого напряжения) так важен?

Это связано с тем, что при использовании исправного (исправного) электромеханического УЗО мы гарантируем в 100% случаев срабатывание реле и, соответственно, отключение питания потребителя.

У электронных УЗО этот параметр тоже велик, но не равен 100% (как будет показано ниже, это связано с тем, что при определенном уровне сетевого напряжения не будет работать электронная цепь УЗО), а в В нашем случае каждый процент возможен для человеческих жизней (будь то прямая угроза жизни человека при касании проводов, или косвенная, в случае пожара из-за выгорания изоляции).

В большинстве так называемых «развитых» стран электромеханические УЗО являются стандартом и устройством, обязательным для широкого использования.В нашей стране постепенно происходят сдвиги в сторону обязательного использования УЗО, однако в большинстве случаев потребителю не предоставляется информация о типе УЗО, что влечет за собой использование дешевых электронных УЗО.

Электронные УЗО

Любой строительный рынок наводнен такими УЗО. Стоимость электронных УЗО местами ниже электромеханических до 10 раз.

Недостатком таких УЗО, как уже было сказано выше, является не 100% гарантия при исправном состоянии УЗО его срабатывания из-за появления тока утечки.Преимущество — дешевизна и доступность.

В принципе, электронное УЗО построено по той же схеме, что и электромеханическое (рис. 1). Отличие заключается в том, что место чувствительного магнитоэлектрического элемента занимает опорный элемент (компаратор, стабилитрон). Чтобы такая схема работала, вам понадобится выпрямитель, небольшой фильтр (возможно, даже КРЕН). Поскольку трансформатор тока нулевой последовательности является понижающим (в десятки раз), тогда также необходима схема усиления сигнала, которая, помимо полезного сигнала, также будет усиливать помехи (или сигнал дисбаланса, присутствующий при нулевой утечке). Текущий).Из вышесказанного очевидно, что момент срабатывания реле в этом типе УЗО определяется не только током утечки, но и напряжением сети.

Если вам не по карману электромеханическое УЗО, то все же стоит взять УЗО электронное, ведь оно работает в большинстве случаев.

Бывают и случаи, когда нет смысла покупать дорогое электромеханическое УЗО. Один из таких случаев — использование стабилизатора или источника бесперебойного питания (ИБП) при питании квартиры / дома.В этом случае нет смысла брать электромеханическое УЗО.

Сразу отмечу, что я говорю о категориях УЗО, их плюсах и минусах, а не о конкретных моделях. Вы можете купить некачественные УЗО как электромеханического, так и электронного типов. При покупке запрашивайте сертификат соответствия, ведь многие электронные УЗО на нашем рынке не сертифицированы.

Трансформатор тока нулевой последовательности (ТТНП)

Обычно это ферритовое кольцо, через которое (внутри) проходят фазный и нейтральный провод, они играют роль первичной обмотки.Вторичная обмотка равномерно намотана на поверхность кольца.

Идеально:

Пусть ток утечки равен нулю. Ток, протекающий через фазовый провод, создает по величине магнитное поле, создаваемое током, протекающим через нейтральный провод, и в противоположном направлении. Таким образом, общий поток муфты равен нулю, а ток, индуцированный во вторичной обмотке, равен нулю.

В момент протекания тока утечки в проводах (ноль, фаза) возникает неравенство токов в результате возникновения потока муфты и индукции тока, пропорционального току утечки, во вторичную обмотку.

На практике через вторичную обмотку протекает ток небаланса, который определяется используемым трансформатором. Требование к ТТНП следующее: ток небаланса должен быть значительно меньше тока утечки, приведенного во вторичную обмотку.

Выбор УЗО

Допустим, вы определились с типом УЗО (электромеханическое, электронное). Но что выбрать из огромного списка предлагаемых товаров?

Выбрать УЗО с достаточной точностью можно по двум параметрам:

Номинальный ток и ток утечки (ток отключения).

Номинальный ток — это максимальный ток, который проходит через фазовый провод. Этот ток легко найти, зная максимальную потребляемую мощность. Просто разделите потребляемую мощность в наихудшем случае (максимальная мощность при минимальном Cos (?)) На фазное напряжение. Ставить УЗО на ток больше номинального тока автомата перед УЗО не имеет смысла. В идеале с запасом берем УЗО на номинальный ток равный номинальному току автомата.

Часто встречаются УЗО

с номинальными токами 10,16,25,40 (А).

Ток утечки (рабочий ток) — обычно 10 мА, если УЗО установлено в квартире / доме для защиты жизни человека, и 100-300 мА на предприятии для предотвращения пожаров при сгорании проводов.

Есть и другие параметры УЗО, но они специфичны и не интересны рядовому потребителю.

Выход

В этой статье были рассмотрены основы понимания принципов работы УЗО, а также методы построения различных типов устройств защитного отключения.И электромеханические, и электронные УЗО безусловно имеют право на существование. имеет свои выразительные достоинства и недостатки.

УЗО (устройство защитного отключения) — Это электроустановочное изделие, предназначенное для отключения подачи электричества в проводку в случае утечки тока в случае нарушения изоляции в проводах или электроприборах.

УЗО, в отличие от автоматического выключателя, предназначено исключительно для защиты человека от поражения электрическим током, предотвращения возгорания и не принимает непосредственного участия в работе электроприборов.УЗО не защищает от короткого замыкания в проводке и в случае прикосновения человека к фазному и нулевому проводам.

На фото изображено двухпроводное устройство защитного отключения типа ВД1-63, предназначенное для работы в однофазной сети переменного тока 220 В и рассчитанное на ток защиты 30 мА. УЗО с такими характеристиками подходит для установки в подъезде практически любой квартирной электропроводки.

Ассортимент монтажных изделий включает комбинированные, в одном корпусе которых встроены УЗО и автоматический выключатель.Такое устройство называется выключателем дифференциального тока со встроенной максимальной токовой защитой. На фото представлен внешний вид модели RCBO32, рассчитанной на ток защиты электропроводки 16 А и защиты человека на 30 мА. Но такие устройства защиты не получили широкого распространения из-за их дороговизны.

Кроме того, в случае отключения сложно определить, является ли неисправность коротким замыканием или утечкой тока.

Как выбрать УЗО

Выбрать УЗО для квартирной проводки или дома для домашнего электрика не составит труда. Подходит любое однофазное УЗО, рассчитанное на рабочий ток равный току защиты автоматического выключателя и ток утечки 30 мА … Фотография такого УЗО дана в начале статьи.

Какой тип УЗО лучше всего подходит для квартиры


электромеханическое или электронное УЗО

выпускаются в двух исполнениях — электромеханическом и электронном. Для правильного выбора нужно сравнить их технические характеристики.

Сравнительная таблица характеристик электромеханического и электронного УЗО
Характеристика УЗО электромеханическое УЗО электронное
Цена низкая высокая
Конструкция сложная простая
Надежность высокая низкая
Допуск рабочего тока высокий низкий
КПД при обрыве нейтрального провода или при падении напряжения сети ниже допустимого сохраняется не работает
Устойчивость к скачкам перенапряжения в сети высокая низкая
размеры большой во много раз меньше

Как видно из таблицы, при отсутствии ограничений по габаритным размерам нужно выбирать УЗО электромеханическое.Электронное УЗО незаменимо при установке на отдельный электроприбор, например, в розетку или удлинитель.

Основные технические характеристики УЗО

Требования к техническим характеристикам УЗО установлены ГОСТ Р 51326.1-99 (МЭК 61008-1-96) «Автоматические выключатели дифференциального тока бытового и аналогичного назначения без встроенной максимальной токовой защиты».

Для желающих сделать более осознанный выбор я свел в таблицу все основные технические характеристики УЗО.

Таблица основных технических характеристик УЗО
Признак Обозначение Количество Примечание
Рабочее напряжение IN 220, 380 Для однофазной домашней сети УЗО устанавливается на напряжение 220 В, для трехфазной сети — на 380 В
Количество фаз 1, 3 Указывается в паспорте
Ток утечки срабатывания, I∆n мА 5 Инструкции по установке в ПУЭ нет, но можно найти в рекомендациях по применению электроприборов, например, теплый пол
10 Предназначен для подключения розеток, установленных в ванных, кухнях, детских комнатах и ​​бытовой техники, установленной на земле
30 Универсальный, подходит для любого дома или квартиры
100, 300 Применяется в промышленности, иногда устанавливается на вводе электропроводки в корпус для повышения пожарной безопасности
Максимальный ток нагрузки, In AND 6-125 Должен быть равен или превышать ток автоматического выключателя, установленного после УЗО
Максимальный коммутируемый ток, Im AND 500 Должен быть в 10 раз больше максимального тока нагрузки
Ток короткого замыкания, Inc кА 3-10 Максимальный ток, который может выдержать УЗО кратковременно в случае короткого замыкания в проводке
Время отключения мс Время, по истечении которого при превышении допустимого тока утечки УЗО должно отключить нагрузку
Периодичность проверок месяц 1 Чтобы выполнить простую проверку, просто нажмите кнопку «Проверка УЗО».Для диагностики времени отклика требуется специальный прибор
Рабочая температура ° C минус 25 — +40 Рабочая температура, при которой разрешена работа УЗО
Конструктивные характеристики Электромеханические Более надежные, дешевые, но более крупные электронные УЗО
Электронные Современные УЗО, дорогие, малогабаритные
Тип формы рабочего тока AS Отключение при медленном или резком нарастании синусоидального тока утечки
И Срабатывает, если синусоидальный или пульсирующий постоянный ток утечки увеличивается медленно или внезапно
IN Срабатывает, если синусоидальный, пульсирующий постоянный или постоянный ток утечки увеличивается медленно или внезапно
Способ установки Предназначен для монтажа на DIN-рейку в щите Предназначен для установки в электрощиты квартир и домов
Встраивается в розетку Устанавливается для защиты отдельного электрического устройства или, в случае старой электропроводки, для предотвращения ложных тревог из-за естественных токов утечки
В виде переходника, вставляемого в розетку
Удлинитель
Устанавливается на шнур питания электроприбора

На лицевой стороне устройства защитного отключения всегда имеется маркировка с основными техническими характеристиками.Расшифровка буквенно-цифрового обозначения показана на чертеже.

При выборе УЗО главное обращать внимание на напряжение, рабочий ток и ток утечки. Остальные параметры имеют второстепенное значение.

Схема подключения УЗО в щитке приборов

УЗО в панели четвертной разводки подключается сразу после счетчика в разрыв между нулевым и фазным проводами, идущими к выключателям.

Провода от счетчика подключаются поверх УЗО. Фазный провод L идет к левому контакту, а ноль N к правому контакту. Провода, идущие к машинам, подключаются к нижним клеммам в такой же последовательности. Желто-зеленый заземлитель прокладывается в обход УЗО.

Устройство и принцип работы УЗО

Когда УЗО находится во включенном состоянии (рычаг поднят вверх), через него подается напряжение питания на выключатели в проводке.Если включен потребитель электроэнергии, то по нейтральному и фазному проводам течет ток.

В УЗО провода проходят через дифференциальный кольцевой трансформатор, и когда через них протекает ток, в его магнитной цепи возбуждается магнитное поле. Если утечки нет, то токи в фазном и нулевом проводах равны и текут в противоположных направлениях. Следовательно, создаваемые ими магнитные поля имеют противоположную полярность и взаимно компенсируются. В этом случае по закону Кирхгофа ЭДС не возникает в дополнительной обмотке трансформатора, независимо от тока, протекающего по ней в нагрузку.

Принцип работы УЗО электромеханического

В том случае, если из-за нарушения изоляции бытового электроприбора по фазовому проводу протекает ток, больший, чем через фазный провод, в магнитопроводе трансформатора возникает магнитное поле. Если разность токов превышает I∆n, то в дополнительной обмотке индуцируется ЭДС достаточной величины для отключения УЗО и отключения питания проводки.

В электромеханическом УЗО к дополнительной обмотке трансформатора подключен электромагнит, соленоид которого механически связан с механизмом расцепления. Когда в обмотке возникает заданная ЭДС, соленоид втягивается и тем самым, воздействуя на механизм расцепления, размыкает контакты. Подача питания на проводку прекращается.

Принцип работы УЗО электронного

По внешнему виду штатное электронное УЗО ничем не отличается от электромеханического и отличить их можно только по маркировке или схеме, нанесенной на корпус.Принцип действия обоих типов УЗО одинаков, разница заключается в измерительном приборе. В электронике вместо электромагнита установлена ​​электронная схема в виде порогового компаратора с усилителем и реле.

При превышении разницы токов I∆n, протекающих по фазному и нулевому проводам, напряжение подается с усилителя на реле. Он срабатывает и УЗО перестает подавать напряжение на проводку.

Установка УЗО в экран на DIN-рейке

В стеновых панелях или коробках УЗО, как и другие монтажные электрические устройства, монтируются на DIN-рейку, ее также часто называют монтажной рейкой.Это металлическая пластина шириной 35 мм, изогнутая таким образом, что ее продольные края приподняты. Согласно ГОСТ Р МЭК 60715-2003 «Аппаратура распределения и управления низковольтная. Монтаж и крепление на рельсах электрооборудования в низковольтных комплектных распределительных и управляющих устройствах », обозначение Т35 .


Этот способ крепления не требует дополнительных креплений и позволяет быстро как установить УЗО, так и снять его для профилактики, проверки или замены.На фотографии показана DIN-рейка старого образца, когда она была профилем из алюминиевого сплава.


DIN-рейки устанавливаются в панели горизонтально. На тыльной стороне УЗО есть два фиксатора — стационарный (на фото слева) и подпружиненный подвижный (справа). Таким образом, чтобы установить УЗО на рейку, нужно надеть верхнюю фиксированную защелку на край DIN-рейки, а затем прижать к ней нижнюю часть. Подвижная защелка погрузится в корпус УЗО и выйдет из него при прижатии УЗО к DIN-рейке всей плоскостью.

Для снятия УЗО с DIN-рейки достаточно вставить конец лезвия плоской отвертки, расположенный ниже отходящего проводника, в ушко подвижного фиксатора и надавить на него. Защелка выйдет из зацепления, и нижняя часть УЗО свободно отодвинется от DIN-рейки.

Подключенное УЗО находится под фазным напряжением и перед демонтажем необходимо отключить питание.

Как правильно подключить провода к УЗО

Бесперебойная работа всей электропроводки определяется не только правильным выбором сечения провода и электроприборов, но и надежностью их соединения между собой.Несмотря на простоту этой операции, часто допускаются ошибки, что впоследствии приводит к подгоранию контактов и выходу из строя УЗО.

Основной особенностью электромеханических устройств является их работа вне зависимости от наличия напряжения в сети.

Тока утечки будет вполне достаточно для работы оборудования, в это время во вторичной обмотке трансформатора возникает ток, что является причиной срабатывания реле, а соответственно и триггера.

Для работы электронного УЗО без напряжения не обойтись, в силу совершенно других принципов работы.

Внутри них есть усилитель и плата для него, срабатывающая при наличии даже небольшого тока во вторичной обмотке. Плата увеличивает доступный ток и передает импульс, достаточно сильный, чтобы активировать реле.

Именно поэтому в конструкции таких УЗО присутствует трансформатор меньшего размера.

Электромеханические агрегаты

имеют простую, но в то же время более надежную конструкцию, поэтому они реже ломаются в процессе эксплуатации.Но можно отключить электронное устройство при малом импульсе в сети.

В этом случае потребуется замена микросхемы или полупроводников. Несмотря на это, большая популярность электронных УЗО обусловлена ​​их более низкой стоимостью.

Более того, современные разработки позволили оснастить такое оборудование дополнительной защитой от скачков напряжения. Как только произойдет скачок, он отключится.

Есть несколько других способов отличить эти два типа УЗО.

Самое сложное — посмотреть на схему внутри. Если это электромеханическое устройство, то на его схеме будет показан трансформатор дифференциального типа, у которого вторая обмотка подключена непосредственно к реле.

Реле может быть схематично показано в виде квадрата, иногда прямоугольника. Связь с сетью, питающей узел, не следует показывать схематично.

Если рассматривать схематическое изображение УЗО электрического типа, то плата на нем будет изображена в виде треугольника.На схеме показаны линии от блока питания.

Простой аккумулятор можно использовать, чтобы отличить одно устройство от другого. Включаем оборудование и двумя проводами подключаем к нему его столбы.

Таким образом, мы провоцируем скачок тока, в результате которого, если это УЗО электромеханическое, реле выключится. Соответственно, если отключения не произошло, то у нас электронный вариант.

Если у вас нет под рукой аккумулятора, найдите постоянный магнит среднего размера и поднесите его к корпусу рассматриваемого оборудования.В этом случае обязательным условием является включенное состояние агрегата. Переместите магнит вдоль боковой и передней панели. Если реле не работает, перед вами электронное оборудование, а если работает — электромеханическое.

Пишите комментарии, дополнения к статье, может я что-то упустил. Загляните, буду рад, если найдете на моем еще что-нибудь полезное.

Устройства защитного отключения бывают двух типов по принципу внутреннего устройства. Это электромеханические и электронные.Это касается и дифавтоматов, поскольку УЗО являются их неотъемлемой частью. Различный принцип внутреннего устройства этих устройств не влияет на их рабочие параметры. Однако есть нюансы, при которых один вид УЗО исправно выполняет свои функции, а другой — не может, что может привести к плачевным последствиям. Поэтому еще перед покупкой нужно знать, как их отличить.

Отличить электромеханическое УЗО от электронного можно тремя способами.Это соответствует схеме подключения, которая изображена на корпусе устройства, с использованием обычной батареи и постоянного магнита. Давайте подробнее рассмотрим каждый метод ниже.

1. С помощью схемы подключения, которая изображена на корпусе устройства.

Я считаю, что это самый простой способ их различить, поскольку для этого не требуются какие-либо дополнительные элементы и инструменты. Здесь главное запомнить отличия схем и все.

Если вы возьмете в руки какое-либо УЗО или дифавтомат, то на его корпусе вы обязательно найдете схему их внутреннего устройства. На самом деле существует два типа схем. Это один тип для электромеханического типа и второй тип для электронного типа. Хотя у каждого типа схемы есть небольшие отличия, они не столь значительны.

В двух словах: электромеханическое УЗО или дифавтомат состоит из дифференциального трансформатора и поляризованного реле. Если в контролируемой цепи возникает ток утечки, он генерирует ток во вторичной обмотке дифференциального трансформатора.Этот дифференциальный ток вызывает срабатывание реле, которое воздействует на триггер, вызывая срабатывание устройства.

Итак, на схеме нам нужно найти дифференциальный трансформатор и поляризованное реле. Первый обозначается овалом вокруг фазного и нейтрального проводников, а реле обозначается квадратом или прямоугольником. Реле с трансформатором соединены посредством вторичной обмотки, которая показана сплошной линией. Пунктирной линией обозначена механическая связь со спусковым крючком.Также на схеме часто изображается кнопка «Тест», но ее нет на представленном на фото дифавтомате.

На фото ниже я подписал необходимые элементы на схеме.

Электронные УЗО и дифавтоматы

имеют немного другую схему подключения на корпусе. Из названия можно понять, что работой таких устройств управляет электронная плата.

В двух словах: Если в управляемой цепи возникает ток утечки, то он поражает ток во вторичной обмотке дифференциального трансформатора.Этот дифференциальный ток улавливается электронной платой, усиливает его и создает импульс, от которого срабатывает реле. Реле уже воздействует на курок, тем самым выводя из строя устройство.

Электронные элементы намного компактнее и поэтому такие УЗО и дифавтоматы зачастую меньше по размеру. На рынке представлены электронные одномодульные защитные устройства размером с однополюсный автоматический выключатель.

Здесь, на схеме, нам нужно помимо дифференциального трансформатора и реле найти плату электронного усилителя.Обозначается треугольником. Также ни одна плата не работает без питания, поэтому на схеме есть дополнительные линии для ее питания. На фото ниже я подписала все необходимые элементы.

В результате получаем:

  • Если на схеме изображен овал над нулевым и фазным проводниками (дифференциальный трансформатор) и квадрат (реле), соединенные сплошной линией, то перед вами УЗО электромеханическое или дифавтомат.
  • Если на схеме изображен овал над нейтральным и фазным проводниками (дифференциальный трансформатор) и квадрат (реле), соединенный сплошной линией через треугольник (плата усилителя), к которому подключены две силовые линии, то перед вами электронное УЗО или дифавтомат.

2. Второй способ отличить электромеханическое УЗО от электронного — использовать аккумулятор.

Хотя этот вариант надежен, мне он кажется более сложным, так как с собой нужно иметь заряженный аккумулятор, два провода и отвертку. Также в магазине, думаю, вам в руки не дадут девайс, чтобы можно было к нему что-то подключить и поэкспериментировать. Еще много защитных устройств продаются в запечатанной упаковке (коробке), вскрыть которую в магазине тоже не разрешат.

Однако этот способ имеет право на жизнь и я вам об этом расскажу. Например, на фото я использую RCBO от Schneider Electric.

Здесь все просто. Надо сверху к единице, например к нулевому полюсу прикрутить один провод. Второй провод прикрутите к нижнему нулевому полюсу. Затем взвести ручку управления, т.е. включить УЗО или дифавтомат. Теперь нужно замкнуть другие концы проводов на любую заряженную батарею. Если устройство отключается, значит, оно электромеханическое.Если не выключается, то переверните аккумулятор (поменяйте полярность) и попробуйте снова замкнуть провода. Если устройство отключается, то однозначно электромеханическое.

Почему электромеханические УЗО и дифавтоматы работают от аккумуляторов? Потому что аккумулятор начинает разряжаться через замкнутый полюс, т.е. на одном полюсе появляется ток, который, в свою очередь, влияет на дифференциальный ток во вторичной обмотке трансформатора. Достаточно сработать поляризованное реле.

Если прибор не выключается, значит он электронный.Почему не выключается УЗО этого типа? Потому что для работы платы усилителя нужна мощность, которой нет. Следовательно, усилитель не подает импульс на реле, которое не влияет на триггер.

Такую операцию можно проводить на любом полюсе, нуле и фазе. Электромеханическое защитное устройство сработает в любом случае.

3. Третий способ отличить электромеханическое УЗО от электронного — с помощью постоянного магнита.

Здесь тоже нет ничего сложного. Просто нужно где-то найти постоянный магнит средних размеров (1 / 4-1 / 3 УЗО).

Последовательность действий следующая:

  • подбираем УЗО или дифавтомат;
  • взведение рычага, т.е. включение;
  • мы вращаем магнит вокруг передней и боковой части устройства круговыми движениями.

Если при таких движениях прибор отключается, то он электромеханический, а если нет, то электронный.

Leave Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *